GPMDB Data Sources

From TheGPMWiki
(Difference between revisions)
Jump to: navigation, search
 
(23 intermediate revisions not shown)
Line 27: Line 27:
==Data from publications==
==Data from publications==
-
The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of August 12, 2018.
+
The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of November 3, 2019.
#Lipton MS, Pasa-Tolic&#39; L, Anderson GA, Anderson DJ, Auberry DL, Battista JR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen Y, Stritmatter E, Tolic&#39; N, Udseth HR, Venkateswaran A, Wong KK, Zhao R, Smith RD,  (2002) &quot;Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags.&quot; <i>Proc Natl Acad Sci U S A</i> <b>99</b>(17):11049&ndash;54; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/12177431 12177431]; doi: [https://dx.doi.org/10.1073/pnas.172170199 10.1073/pnas.172170199]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/12177431 498].
#Lipton MS, Pasa-Tolic&#39; L, Anderson GA, Anderson DJ, Auberry DL, Battista JR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen Y, Stritmatter E, Tolic&#39; N, Udseth HR, Venkateswaran A, Wong KK, Zhao R, Smith RD,  (2002) &quot;Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags.&quot; <i>Proc Natl Acad Sci U S A</i> <b>99</b>(17):11049&ndash;54; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/12177431 12177431]; doi: [https://dx.doi.org/10.1073/pnas.172170199 10.1073/pnas.172170199]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/12177431 498].
Line 527: Line 527:
#Chamr&aacute;d I, Rix U, Stukalov A, Gridling M, Parapatics K, M&uuml;ller AC, Altiok S, Colinge J, Superti-Furga G, Haura EB, Bennett KL,  (2013) &quot;A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies.&quot; <i>J Proteome Res</i> <b>12</b>(9):4005&ndash;17; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23901793 23901793]; doi: [https://dx.doi.org/10.1021/pr400309p 10.1021/pr400309p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23901793 56].
#Chamr&aacute;d I, Rix U, Stukalov A, Gridling M, Parapatics K, M&uuml;ller AC, Altiok S, Colinge J, Superti-Furga G, Haura EB, Bennett KL,  (2013) &quot;A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies.&quot; <i>J Proteome Res</i> <b>12</b>(9):4005&ndash;17; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23901793 23901793]; doi: [https://dx.doi.org/10.1021/pr400309p 10.1021/pr400309p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23901793 56].
#Oosterkamp MJ, Boeren S, Plugge CM, Schaap PJ, Stams AJ,  (2013) &quot;Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.&quot; <i>Proteomics</i> <b>13</b>(18-19):2886&ndash;94; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23907812 23907812]; doi: [https://dx.doi.org/10.1002/pmic.201200571 10.1002/pmic.201200571]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23907812 16].
#Oosterkamp MJ, Boeren S, Plugge CM, Schaap PJ, Stams AJ,  (2013) &quot;Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.&quot; <i>Proteomics</i> <b>13</b>(18-19):2886&ndash;94; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23907812 23907812]; doi: [https://dx.doi.org/10.1002/pmic.201200571 10.1002/pmic.201200571]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23907812 16].
 +
#Kwon SC, Yi H, Eichelbaum K, F&ouml;hr S, Fischer B, You KT, Castello A, Krijgsveld J, Hentze MW, Kim VN,  (2013) &quot;The RNA-binding protein repertoire of embryonic stem cells.&quot; <i>Nat Struct Mol Biol</i> <b>20</b>(9):1122&ndash;30; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23912277 23912277]; doi: [https://dx.doi.org/10.1038/nsmb.2638 10.1038/nsmb.2638]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23912277 36].
#Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B,  (2013) &quot;Global proteome analysis of the NCI-60 cell line panel.&quot; <i>Cell Rep</i> <b>4</b>(3):609&ndash;20; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23933261 23933261]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.07.018 10.1016/j.celrep.2013.07.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23933261 899].
#Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B,  (2013) &quot;Global proteome analysis of the NCI-60 cell line panel.&quot; <i>Cell Rep</i> <b>4</b>(3):609&ndash;20; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23933261 23933261]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.07.018 10.1016/j.celrep.2013.07.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23933261 899].
#Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM,  (2013) &quot;Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis.&quot; <i>J Proteome Res</i> <b>12</b>(9):4101&ndash;10; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23937099 23937099]; doi: [https://dx.doi.org/10.1021/pr400433h 10.1021/pr400433h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23937099 112].
#Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM,  (2013) &quot;Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis.&quot; <i>J Proteome Res</i> <b>12</b>(9):4101&ndash;10; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/23937099 23937099]; doi: [https://dx.doi.org/10.1021/pr400433h 10.1021/pr400433h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23937099 112].
Line 584: Line 585:
#Bland C, Bellanger L, Armengaud J,  (2014) &quot;Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides.&quot; <i>J Proteome Res</i> <b>13</b>(2):668&ndash;80; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24313271 24313271]; doi: [https://dx.doi.org/10.1021/pr400774z 10.1021/pr400774z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313271 9].
#Bland C, Bellanger L, Armengaud J,  (2014) &quot;Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides.&quot; <i>J Proteome Res</i> <b>13</b>(2):668&ndash;80; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24313271 24313271]; doi: [https://dx.doi.org/10.1021/pr400774z 10.1021/pr400774z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313271 9].
#Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, Lin PY, Hong RW, Sung TY, Chen YJ,  (2014) &quot;Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography.&quot; <i>Anal Chem</i> <b>86</b>(1):685&ndash;93; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24313913 24313913]; doi: [https://dx.doi.org/10.1021/ac4031175 10.1021/ac4031175]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313913 27].
#Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, Lin PY, Hong RW, Sung TY, Chen YJ,  (2014) &quot;Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography.&quot; <i>Anal Chem</i> <b>86</b>(1):685&ndash;93; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24313913 24313913]; doi: [https://dx.doi.org/10.1021/ac4031175 10.1021/ac4031175]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313913 27].
 +
#Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, Kim JS, Zhang Y, Wang X, Ivey RG, Zhao L, Min H, Lee Y, Yu MH, Yang EG, Lee C, Wang P, Rodriguez H, Kim Y, Carr SA, Paulovich AG,  (2014) &quot;Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins.&quot; <i>Nat Methods</i> <b>11</b>(2):149&ndash;55; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24317253 24317253]; doi: [https://dx.doi.org/10.1038/nmeth.2763 10.1038/nmeth.2763]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24317253 221].
#Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC,  (2014) &quot;Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):594&ndash;605; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24319056 24319056]; doi: [https://dx.doi.org/10.1074/mcp.M113.032680 10.1074/mcp.M113.032680]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24319056 9].
#Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC,  (2014) &quot;Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):594&ndash;605; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24319056 24319056]; doi: [https://dx.doi.org/10.1074/mcp.M113.032680 10.1074/mcp.M113.032680]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24319056 9].
#Beck F, Geiger J, Gambaryan S, Veit J, Vaudel M, Nollau P, Kohlbacher O, Martens L, Walter U, Sickmann A, Zahedi RP,  (2014) &quot;Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways.&quot; <i>Blood</i> <b>123</b>(5):e1&ndash;e10; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24324209 24324209]; doi: [https://dx.doi.org/10.1182/blood-2013-07-512384 10.1182/blood-2013-07-512384]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24324209 19].
#Beck F, Geiger J, Gambaryan S, Veit J, Vaudel M, Nollau P, Kohlbacher O, Martens L, Walter U, Sickmann A, Zahedi RP,  (2014) &quot;Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways.&quot; <i>Blood</i> <b>123</b>(5):e1&ndash;e10; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24324209 24324209]; doi: [https://dx.doi.org/10.1182/blood-2013-07-512384 10.1182/blood-2013-07-512384]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24324209 19].
Line 647: Line 649:
#Han D, Jin J, Woo J, Min H, Kim Y,  (2014) &quot;Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.&quot; <i>Proteomics</i> <b>14</b>(13-14):1604&ndash;9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24753479 24753479]; doi: [https://dx.doi.org/10.1002/pmic.201300495 10.1002/pmic.201300495]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24753479 107].
#Han D, Jin J, Woo J, Min H, Kim Y,  (2014) &quot;Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.&quot; <i>Proteomics</i> <b>14</b>(13-14):1604&ndash;9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24753479 24753479]; doi: [https://dx.doi.org/10.1002/pmic.201300495 10.1002/pmic.201300495]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24753479 107].
#Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jim&eacute;nez CR,  (2014) &quot;Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.&quot; <i>J Proteomics</i> <b>106</b>:191&ndash;204; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24769233 24769233]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.04.028 10.1016/j.jprot.2014.04.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24769233 36].
#Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jim&eacute;nez CR,  (2014) &quot;Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.&quot; <i>J Proteomics</i> <b>106</b>:191&ndash;204; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24769233 24769233]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.04.028 10.1016/j.jprot.2014.04.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24769233 36].
 +
#Renvois&eacute; M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C,  (2014) &quot;Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.&quot; <i>J Proteomics</i> <b>106</b>:140&ndash;50; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24769239 24769239]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.04.022 10.1016/j.jprot.2014.04.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24769239 48].
#Eravci M, Sommer C, Selbach M,  (2014) &quot;IPG strip-based peptide fractionation for shotgun proteomics.&quot; <i>Methods Mol Biol</i> <b>1156</b>:67&ndash;77; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24791982 24791982]; doi: [https://dx.doi.org/10.1007/978-1-4939-0685-7_5 10.1007/978-1-4939-0685-7_5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24791982 41].
#Eravci M, Sommer C, Selbach M,  (2014) &quot;IPG strip-based peptide fractionation for shotgun proteomics.&quot; <i>Methods Mol Biol</i> <b>1156</b>:67&ndash;77; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24791982 24791982]; doi: [https://dx.doi.org/10.1007/978-1-4939-0685-7_5 10.1007/978-1-4939-0685-7_5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24791982 41].
#G&uuml;ther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA,  (2014) &quot;High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.&quot; <i>J Proteome Res</i> <b>13</b>(6):2796&ndash;806; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24792668 24792668]; doi: [https://dx.doi.org/10.1021/pr401209w 10.1021/pr401209w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24792668 154].
#G&uuml;ther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA,  (2014) &quot;High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.&quot; <i>J Proteome Res</i> <b>13</b>(6):2796&ndash;806; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/24792668 24792668]; doi: [https://dx.doi.org/10.1021/pr401209w 10.1021/pr401209w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24792668 154].
Line 699: Line 702:
#Yang W, Ramachandran A, You S, Jeong H, Morley S, Mulone MD, Logvinenko T, Kim J, Hwang D, Freeman MR, Adam RM,  (2014) &quot;Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells.&quot; <i>Cell Commun Signal</i> <b>12</b>:44; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25080971 25080971]; doi: [https://dx.doi.org/10.1186/s12964-014-0044-z 10.1186/s12964-014-0044-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25080971 30].
#Yang W, Ramachandran A, You S, Jeong H, Morley S, Mulone MD, Logvinenko T, Kim J, Hwang D, Freeman MR, Adam RM,  (2014) &quot;Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells.&quot; <i>Cell Commun Signal</i> <b>12</b>:44; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25080971 25080971]; doi: [https://dx.doi.org/10.1186/s12964-014-0044-z 10.1186/s12964-014-0044-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25080971 30].
#Labas V, Grasseau I, Cahier K, Gargaros A, Harichaux G, Teixeira-Gomes AP, Alves S, Bourin M, G&eacute;rard N, Blesbois E,  (2015) &quot;Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen.&quot; <i>J Proteomics</i> <b>112</b>:313&ndash;35; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25086240 25086240]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.07.024 10.1016/j.jprot.2014.07.024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25086240 44].
#Labas V, Grasseau I, Cahier K, Gargaros A, Harichaux G, Teixeira-Gomes AP, Alves S, Bourin M, G&eacute;rard N, Blesbois E,  (2015) &quot;Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen.&quot; <i>J Proteomics</i> <b>112</b>:313&ndash;35; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25086240 25086240]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.07.024 10.1016/j.jprot.2014.07.024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25086240 44].
 +
#Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG, Stevanovi&#x107; S, Stickel JS,  (2015) &quot;Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.&quot; <i>Leukemia</i> <b>29</b>(3):647&ndash;59; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25092142 25092142]; doi: [https://dx.doi.org/10.1038/leu.2014.233 10.1038/leu.2014.233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25092142 73].
#Alqahtani A, Heesom K, Bramson JL, Curiel D, Ugai H, Matthews DA,  (2014) &quot;Analysis of purified wild type and mutant adenovirus particles by SILAC based quantitative proteomics.&quot; <i>J Gen Virol</i> <b>95</b>(Pt 11):2504&ndash;11; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25096814 25096814]; doi: [https://dx.doi.org/10.1099/vir.0.068221-0 10.1099/vir.0.068221-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096814 22].
#Alqahtani A, Heesom K, Bramson JL, Curiel D, Ugai H, Matthews DA,  (2014) &quot;Analysis of purified wild type and mutant adenovirus particles by SILAC based quantitative proteomics.&quot; <i>J Gen Virol</i> <b>95</b>(Pt 11):2504&ndash;11; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25096814 25096814]; doi: [https://dx.doi.org/10.1099/vir.0.068221-0 10.1099/vir.0.068221-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096814 22].
#Jin L, Huo Y, Zheng Z, Jiang X, Deng H, Chen Y, Lian Q, Ge R, Deng H,  (2014) &quot;Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3138&ndash;51; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25096996 25096996]; doi: [https://dx.doi.org/10.1074/mcp.M113.033217 10.1074/mcp.M113.033217]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096996 11].
#Jin L, Huo Y, Zheng Z, Jiang X, Deng H, Chen Y, Lian Q, Ge R, Deng H,  (2014) &quot;Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3138&ndash;51; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25096996 25096996]; doi: [https://dx.doi.org/10.1074/mcp.M113.033217 10.1074/mcp.M113.033217]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096996 11].
Line 868: Line 872:
#Lardi M, Aguilar C, Pedrioli A, Omasits U, Suppiger A, C&aacute;rcamo-Oyarce G, Schmid N, Ahrens CH, Eberl L, Pessi G,  (2015) &quot;&sigma;54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111.&quot; <i>Appl Environ Microbiol</i> <b>81</b>(12):4077&ndash;89; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25841012 25841012]; doi: [https://dx.doi.org/10.1128/AEM.00694-15 10.1128/AEM.00694-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841012 40].
#Lardi M, Aguilar C, Pedrioli A, Omasits U, Suppiger A, C&aacute;rcamo-Oyarce G, Schmid N, Ahrens CH, Eberl L, Pessi G,  (2015) &quot;&sigma;54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111.&quot; <i>Appl Environ Microbiol</i> <b>81</b>(12):4077&ndash;89; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25841012 25841012]; doi: [https://dx.doi.org/10.1128/AEM.00694-15 10.1128/AEM.00694-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841012 40].
#Piersma SR, Knol JC, de Reus I, Labots M, Sampadi BK, Pham TV, Ishihama Y, Verheul HM, Jimenez CR,  (2015) &quot;Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):247&ndash;58; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25841592 25841592]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.03.019 10.1016/j.jprot.2015.03.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841592 31].
#Piersma SR, Knol JC, de Reus I, Labots M, Sampadi BK, Pham TV, Ishihama Y, Verheul HM, Jimenez CR,  (2015) &quot;Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):247&ndash;58; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25841592 25841592]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.03.019 10.1016/j.jprot.2015.03.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841592 31].
 +
#Krishnan RK, Nolte H, Sun T, Kaur H, Sreenivasan K, Looso M, Offermanns S, Kr&uuml;ger M, Swiercz JM,  (2015) &quot;Quantitative analysis of the TNF-&alpha;-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKK&beta; substrate.&quot; <i>Nat Commun</i> <b>6</b>:6658; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25849741 25849741]; doi: [https://dx.doi.org/10.1038/ncomms7658 10.1038/ncomms7658]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25849741 53].
#Krisp C, Yang H, van Soest R, Molloy MP,  (2015) &quot;Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1708&ndash;19; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25850434 25850434]; doi: [https://dx.doi.org/10.1074/mcp.M114.046425 10.1074/mcp.M114.046425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850434 12].
#Krisp C, Yang H, van Soest R, Molloy MP,  (2015) &quot;Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1708&ndash;19; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25850434 25850434]; doi: [https://dx.doi.org/10.1074/mcp.M114.046425 10.1074/mcp.M114.046425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850434 12].
#Stuart SA, Houel S, Lee T, Wang N, Old WM, Ahn NG,  (2015) &quot;A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1599&ndash;615; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25850435 25850435]; doi: [https://dx.doi.org/10.1074/mcp.M114.047233 10.1074/mcp.M114.047233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850435 255].
#Stuart SA, Houel S, Lee T, Wang N, Old WM, Ahn NG,  (2015) &quot;A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1599&ndash;615; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25850435 25850435]; doi: [https://dx.doi.org/10.1074/mcp.M114.047233 10.1074/mcp.M114.047233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850435 255].
Line 877: Line 882:
#Welinder C, Paw&#x142;owski K, Sugihara Y, Yakovleva M, J&ouml;nsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Jansson B, Laurell T, Fehniger T, D&ouml;me B, Malm J, Wieslander E, Nishimura T, Marko-Varga G,  (2015) &quot;A protein deep sequencing evaluation of metastatic melanoma tissues.&quot; <i>PLoS One</i> <b>10</b>(4):e0123661; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25874936 25874936]; doi: [https://dx.doi.org/10.1371/journal.pone.0123661 10.1371/journal.pone.0123661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25874936 11].
#Welinder C, Paw&#x142;owski K, Sugihara Y, Yakovleva M, J&ouml;nsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Jansson B, Laurell T, Fehniger T, D&ouml;me B, Malm J, Wieslander E, Nishimura T, Marko-Varga G,  (2015) &quot;A protein deep sequencing evaluation of metastatic melanoma tissues.&quot; <i>PLoS One</i> <b>10</b>(4):e0123661; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25874936 25874936]; doi: [https://dx.doi.org/10.1371/journal.pone.0123661 10.1371/journal.pone.0123661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25874936 11].
#Hosp F, Scheltema RA, Eberl HC, Kulak NA, Keilhauer EC, Mayr K, Mann M,  (2015) &quot;A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):2030&ndash;41; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25887394 25887394]; doi: [https://dx.doi.org/10.1074/mcp.O115.049460 10.1074/mcp.O115.049460]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25887394 234].
#Hosp F, Scheltema RA, Eberl HC, Kulak NA, Keilhauer EC, Mayr K, Mann M,  (2015) &quot;A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):2030&ndash;41; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25887394 25887394]; doi: [https://dx.doi.org/10.1074/mcp.O115.049460 10.1074/mcp.O115.049460]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25887394 234].
 +
#Yu Y, Sikorski P, Bowman-Gholston C, Cacciabeve N, Nelson KE, Pieper R,  (2015) &quot;Diagnosing inflammation and infection in the urinary system via proteomics.&quot; <i>J Transl Med</i> <b>13</b>:111; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25889401 25889401]; doi: [https://dx.doi.org/10.1186/s12967-015-0475-3 10.1186/s12967-015-0475-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25889401 260].
#Xu R, Greening DW, Rai A, Ji H, Simpson RJ,  (2015) &quot;Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.&quot; <i>Methods</i> <b>87</b>:11&ndash;25; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25890246 25890246]; doi: [https://dx.doi.org/10.1016/j.ymeth.2015.04.008 10.1016/j.ymeth.2015.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890246 4].
#Xu R, Greening DW, Rai A, Ji H, Simpson RJ,  (2015) &quot;Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.&quot; <i>Methods</i> <b>87</b>:11&ndash;25; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25890246 25890246]; doi: [https://dx.doi.org/10.1016/j.ymeth.2015.04.008 10.1016/j.ymeth.2015.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890246 4].
#van der Mijn JC, Labots M, Piersma SR, Pham TV, Knol JC, Broxterman HJ, Verheul HM, Jim&eacute;nez CR,  (2015) &quot;Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):259&ndash;63; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25890253 25890253]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.04.006 10.1016/j.jprot.2015.04.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890253 10].
#van der Mijn JC, Labots M, Piersma SR, Pham TV, Knol JC, Broxterman HJ, Verheul HM, Jim&eacute;nez CR,  (2015) &quot;Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):259&ndash;63; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/25890253 25890253]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.04.006 10.1016/j.jprot.2015.04.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890253 10].
Line 967: Line 973:
#Courtney DG, Poulsen ET, Kennedy S, Moore JE, Atkinson SD, Maurizi E, Nesbit MA, Moore CB, Enghild JJ,  (2015) &quot;Protein Composition of TGFBI-R124C- and TGFBI-R555W-Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy.&quot; <i>Invest Ophthalmol Vis Sci</i> <b>56</b>(8):4653&ndash;61; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26207300 26207300]; doi: [https://dx.doi.org/10.1167/iovs.15-16922 10.1167/iovs.15-16922]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26207300 39].
#Courtney DG, Poulsen ET, Kennedy S, Moore JE, Atkinson SD, Maurizi E, Nesbit MA, Moore CB, Enghild JJ,  (2015) &quot;Protein Composition of TGFBI-R124C- and TGFBI-R555W-Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy.&quot; <i>Invest Ophthalmol Vis Sci</i> <b>56</b>(8):4653&ndash;61; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26207300 26207300]; doi: [https://dx.doi.org/10.1167/iovs.15-16922 10.1167/iovs.15-16922]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26207300 39].
#D&iacute;ez P, Droste C, D&eacute;gano RM, Gonz&aacute;lez-Mu&ntilde;oz M, Ibarrola N, P&eacute;rez-Andr&eacute;s M, Garin-Muga A, Segura V, Marko-Varga G, LaBaer J, Orfao A, Corrales FJ, De Las Rivas J, Fuentes M,  (2015) &quot;Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>14</b>(9):3530&ndash;40; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26216070 26216070]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00474 10.1021/acs.jproteome.5b00474]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26216070 60].
#D&iacute;ez P, Droste C, D&eacute;gano RM, Gonz&aacute;lez-Mu&ntilde;oz M, Ibarrola N, P&eacute;rez-Andr&eacute;s M, Garin-Muga A, Segura V, Marko-Varga G, LaBaer J, Orfao A, Corrales FJ, De Las Rivas J, Fuentes M,  (2015) &quot;Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>14</b>(9):3530&ndash;40; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26216070 26216070]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00474 10.1021/acs.jproteome.5b00474]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26216070 60].
 +
#Golizeh M, Schneider C, Ohlund LB, Sleno L,  (2015) &quot;Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions.&quot; <i>Data Brief</i> <b>3</b>:95&ndash;8; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26217725 26217725]; doi: [https://dx.doi.org/10.1016/j.dib.2015.02.007 10.1016/j.dib.2015.02.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26217725 4].
#Berger ST, Ahmed S, Muntel J, Cuevas Polo N, Bachur R, Kentsis A, Steen J, Steen H,  (2015) &quot;MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2814&ndash;23; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26223766 26223766]; doi: [https://dx.doi.org/10.1074/mcp.O115.049650 10.1074/mcp.O115.049650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26223766 113].
#Berger ST, Ahmed S, Muntel J, Cuevas Polo N, Bachur R, Kentsis A, Steen J, Steen H,  (2015) &quot;MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2814&ndash;23; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26223766 26223766]; doi: [https://dx.doi.org/10.1074/mcp.O115.049650 10.1074/mcp.O115.049650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26223766 113].
#Woo J, Han D, Park J, Kim SJ, Kim Y,  (2015) &quot;In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation.&quot; <i>Proteomics</i> <b>15</b>(21):3617&ndash;22; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26227174 26227174]; doi: [https://dx.doi.org/10.1002/pmic.201400623 10.1002/pmic.201400623]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26227174 27].
#Woo J, Han D, Park J, Kim SJ, Kim Y,  (2015) &quot;In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation.&quot; <i>Proteomics</i> <b>15</b>(21):3617&ndash;22; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/26227174 26227174]; doi: [https://dx.doi.org/10.1002/pmic.201400623 10.1002/pmic.201400623]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26227174 27].
Line 1,255: Line 1,262:
#Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL,  (2016) &quot;Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1.&quot; <i>Sci Signal</i> <b>9</b>(430):ra56; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27245613 27245613]; doi: [https://dx.doi.org/10.1126/scisignal.aaf0583 10.1126/scisignal.aaf0583]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27245613 14].
#Bullen JW, Tchernyshyov I, Holewinski RJ, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, Van Eyk J, Semenza GL,  (2016) &quot;Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1.&quot; <i>Sci Signal</i> <b>9</b>(430):ra56; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27245613 27245613]; doi: [https://dx.doi.org/10.1126/scisignal.aaf0583 10.1126/scisignal.aaf0583]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27245613 14].
#Patella F, Neilson LJ, Athineos D, Erami Z, Anderson KI, Blyth K, Ryan KM, Zanivan S,  (2016) &quot;In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability.&quot; <i>J Proteome Res</i> <b>15</b>(7):2187&ndash;97; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27246970 27246970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00166 10.1021/acs.jproteome.6b00166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27246970 25].
#Patella F, Neilson LJ, Athineos D, Erami Z, Anderson KI, Blyth K, Ryan KM, Zanivan S,  (2016) &quot;In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability.&quot; <i>J Proteome Res</i> <b>15</b>(7):2187&ndash;97; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27246970 27246970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00166 10.1021/acs.jproteome.6b00166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27246970 25].
 +
#Rai AN, Thornton JA, Stokes J, Sunesara I, Swiatlo E, Nanduri B,  (2016) &quot;Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia.&quot; <i>Sci Rep</i> <b>6</b>:26964; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27247105 27247105]; doi: [https://dx.doi.org/10.1038/srep26964 10.1038/srep26964]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27247105 21].
#Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, Kawaler E, Mundt F, Krug K, Tu Z, Lei JT, Gatza ML, Wilkerson M, Perou CM, Yellapantula V, Huang KL, Lin C, McLellan MD, Yan P, Davies SR, Townsend RR, Skates SJ, Wang J, Zhang B, Kinsinger CR, Mesri M, Rodriguez H, Ding L, Paulovich AG, Feny&ouml; D, Ellis MJ, Carr SA, NCI CPTAC.,  (2016) &quot;Proteogenomics connects somatic mutations to signalling in breast cancer.&quot; <i>Nature</i> <b>534</b>(7605):55&ndash;62; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27251275 27251275]; doi: [https://dx.doi.org/10.1038/nature18003 10.1038/nature18003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27251275 1265].
#Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, Kawaler E, Mundt F, Krug K, Tu Z, Lei JT, Gatza ML, Wilkerson M, Perou CM, Yellapantula V, Huang KL, Lin C, McLellan MD, Yan P, Davies SR, Townsend RR, Skates SJ, Wang J, Zhang B, Kinsinger CR, Mesri M, Rodriguez H, Ding L, Paulovich AG, Feny&ouml; D, Ellis MJ, Carr SA, NCI CPTAC.,  (2016) &quot;Proteogenomics connects somatic mutations to signalling in breast cancer.&quot; <i>Nature</i> <b>534</b>(7605):55&ndash;62; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27251275 27251275]; doi: [https://dx.doi.org/10.1038/nature18003 10.1038/nature18003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27251275 1265].
#Humphrey ES, Su SP, Nagrial AM, Hochgr&auml;fe F, Pajic M, Lehrbach GM, Parton RG, Yap AS, Horvath LG, Chang DK, Biankin AV, Wu J, Daly RJ,  (2016) &quot;Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(8):2671&ndash;85; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27259358 27259358]; doi: [https://dx.doi.org/10.1074/mcp.M116.058313 10.1074/mcp.M116.058313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27259358 112].
#Humphrey ES, Su SP, Nagrial AM, Hochgr&auml;fe F, Pajic M, Lehrbach GM, Parton RG, Yap AS, Horvath LG, Chang DK, Biankin AV, Wu J, Daly RJ,  (2016) &quot;Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(8):2671&ndash;85; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27259358 27259358]; doi: [https://dx.doi.org/10.1074/mcp.M116.058313 10.1074/mcp.M116.058313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27259358 112].
Line 1,300: Line 1,308:
#Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW,  (2016) &quot;Comprehensive Identification of RNA-Binding Domains in Human Cells.&quot; <i>Mol Cell</i> <b>63</b>(4):696&ndash;710; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27453046 27453046]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.06.029 10.1016/j.molcel.2016.06.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27453046 12].
#Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW,  (2016) &quot;Comprehensive Identification of RNA-Binding Domains in Human Cells.&quot; <i>Mol Cell</i> <b>63</b>(4):696&ndash;710; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27453046 27453046]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.06.029 10.1016/j.molcel.2016.06.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27453046 12].
#Thomsen MS, Birkelund S, Burkhart A, Stensballe A, Moos T,  (2016) &quot;Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier.&quot; <i>J Neurochem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27456748 27456748]; doi: [https://dx.doi.org/10.1111/jnc.13747 10.1111/jnc.13747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27456748 12].
#Thomsen MS, Birkelund S, Burkhart A, Stensballe A, Moos T,  (2016) &quot;Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier.&quot; <i>J Neurochem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27456748 27456748]; doi: [https://dx.doi.org/10.1111/jnc.13747 10.1111/jnc.13747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27456748 12].
 +
#Zhao Y, Tian B, Sadygov RG, Zhang Y, Brasier AR,  (2016) &quot;Integrative proteomic analysis reveals reprograming tumor necrosis factor signaling in epithelial mesenchymal transition.&quot; <i>J Proteomics</i> <b>148</b>:126&ndash;38; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27461979 27461979]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.07.014 10.1016/j.jprot.2016.07.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27461979 30].
#Osinalde N, Sanchez-Quiles V, Akimov V, Aloria K, Arizmendi JM, Blagoev B, Kratchmarova I,  (2016) &quot;Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27463037 27463037]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00233 10.1021/acs.jproteome.6b00233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27463037 55].
#Osinalde N, Sanchez-Quiles V, Akimov V, Aloria K, Arizmendi JM, Blagoev B, Kratchmarova I,  (2016) &quot;Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27463037 27463037]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00233 10.1021/acs.jproteome.6b00233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27463037 55].
#Liu Z, Wang F, Chen J, Zhou Y, Zou H,  (2016) &quot;Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.&quot; <i>J Chromatogr A</i> <b>1461</b>:35&ndash;41; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27470094 27470094]; doi: [https://dx.doi.org/10.1016/j.chroma.2016.07.042 10.1016/j.chroma.2016.07.042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27470094 9].
#Liu Z, Wang F, Chen J, Zhou Y, Zou H,  (2016) &quot;Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.&quot; <i>J Chromatogr A</i> <b>1461</b>:35&ndash;41; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27470094 27470094]; doi: [https://dx.doi.org/10.1016/j.chroma.2016.07.042 10.1016/j.chroma.2016.07.042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27470094 9].
Line 1,320: Line 1,329:
#Liu L, Phua YW, Lee RS, Ma X, Jenkins Y, Novy K, Humphrey ES, Chan H, Shearer R, Ong PC, Dai W, Saunders DN, Lucet IS, Daly RJ,  (2016) &quot;Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases.&quot; <i>J Biol Chem</i> <b>291</b>(41):21571&ndash;21583; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27531744 27531744]; doi: [https://dx.doi.org/10.1074/jbc.M116.748897 10.1074/jbc.M116.748897]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27531744 6].
#Liu L, Phua YW, Lee RS, Ma X, Jenkins Y, Novy K, Humphrey ES, Chan H, Shearer R, Ong PC, Dai W, Saunders DN, Lucet IS, Daly RJ,  (2016) &quot;Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases.&quot; <i>J Biol Chem</i> <b>291</b>(41):21571&ndash;21583; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27531744 27531744]; doi: [https://dx.doi.org/10.1074/jbc.M116.748897 10.1074/jbc.M116.748897]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27531744 6].
#Mattei B, Spinelli F, Pontiggia D, De Lorenzo G,  (2016) &quot;Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.&quot; <i>Front Plant Sci</i> <b>7</b>:1107; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27532006 27532006]; doi: [https://dx.doi.org/10.3389/fpls.2016.01107 10.3389/fpls.2016.01107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27532006 12].
#Mattei B, Spinelli F, Pontiggia D, De Lorenzo G,  (2016) &quot;Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.&quot; <i>Front Plant Sci</i> <b>7</b>:1107; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27532006 27532006]; doi: [https://dx.doi.org/10.3389/fpls.2016.01107 10.3389/fpls.2016.01107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27532006 12].
 +
#Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, Mechref Y,  (2016) &quot;HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells.&quot; <i>J Proteome Res</i> <b>15</b>(10):3624&ndash;3634; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27533485 27533485]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00429 10.1021/acs.jproteome.6b00429]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27533485 36].
#Solari FA, Mattheij NJ, Burkhart JM, Swieringa F, Collins PW, Cosemans JM, Sickmann A, Heemskerk JW, Zahedi RP,  (2016) &quot;Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3154&ndash;3169; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27535140 27535140]; doi: [https://dx.doi.org/10.1074/mcp.M116.060368 10.1074/mcp.M116.060368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535140 23].
#Solari FA, Mattheij NJ, Burkhart JM, Swieringa F, Collins PW, Cosemans JM, Sickmann A, Heemskerk JW, Zahedi RP,  (2016) &quot;Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3154&ndash;3169; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27535140 27535140]; doi: [https://dx.doi.org/10.1074/mcp.M116.060368 10.1074/mcp.M116.060368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535140 23].
#Wei W, Luo W, Wu F, Peng X, Zhang Y, Zhang M, Zhao Y, Su N, Qi Y, Chen L, Zhang Y, Wen B, He F, Xu P,  (2016) &quot;Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.&quot; <i>J Proteome Res</i> <b>15</b>(11):3988&ndash;3997; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27535590 27535590]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00390 10.1021/acs.jproteome.6b00390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535590 150].
#Wei W, Luo W, Wu F, Peng X, Zhang Y, Zhang M, Zhao Y, Su N, Qi Y, Chen L, Zhang Y, Wen B, He F, Xu P,  (2016) &quot;Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.&quot; <i>J Proteome Res</i> <b>15</b>(11):3988&ndash;3997; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27535590 27535590]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00390 10.1021/acs.jproteome.6b00390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535590 150].
Line 1,328: Line 1,338:
#He PH, Dong WX, Chu XL, Feng MG, Ying SH,  (2016) &quot;The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana.&quot; <i>Environ Microbiol</i> <b>18</b>(11):4153&ndash;4169; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27554994 27554994]; doi: [https://dx.doi.org/10.1111/1462-2920.13500 10.1111/1462-2920.13500]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27554994 34].
#He PH, Dong WX, Chu XL, Feng MG, Ying SH,  (2016) &quot;The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana.&quot; <i>Environ Microbiol</i> <b>18</b>(11):4153&ndash;4169; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27554994 27554994]; doi: [https://dx.doi.org/10.1111/1462-2920.13500 10.1111/1462-2920.13500]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27554994 34].
#Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR,  (2016) &quot;Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.&quot; <i>PLoS Negl Trop Dis</i> <b>10</b>(8):e0004921; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27556644 27556644]; doi: [https://dx.doi.org/10.1371/journal.pntd.0004921 10.1371/journal.pntd.0004921]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27556644 7].
#Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR,  (2016) &quot;Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.&quot; <i>PLoS Negl Trop Dis</i> <b>10</b>(8):e0004921; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27556644 27556644]; doi: [https://dx.doi.org/10.1371/journal.pntd.0004921 10.1371/journal.pntd.0004921]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27556644 7].
-
#Cassidy L, Prasse D, Linke D, Schmitz RA, Tholey A,  (2016) &quot;Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei.&quot; <i>J Proteome Res</i> <b>15</b>(10):3773&ndash;3783; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27557128 27557128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00569 10.1021/acs.jproteome.6b00569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27557128 6].
+
#Cassidy L, Prasse D, Linke D, Schmitz RA, Tholey A,  (2016) &quot;Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei.&quot; <i>J Proteome Res</i> <b>15</b>(10):3773&ndash;3783; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27557128 27557128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00569 10.1021/acs.jproteome.6b00569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27557128 12].
#H&auml;upl B, Ihling CH, Sinz A,  (2016) &quot;Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(10):3686&ndash;3699; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27559607 27559607]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00513 10.1021/acs.jproteome.6b00513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27559607 81].
#H&auml;upl B, Ihling CH, Sinz A,  (2016) &quot;Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(10):3686&ndash;3699; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27559607 27559607]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00513 10.1021/acs.jproteome.6b00513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27559607 81].
#Jiang Y, Lee J, Lee JH, Lee JW, Kim JH, Choi WH, Yoo YD, Cha-Molstad H, Kim BY, Kwon YT, Noh SA, Kim KP, Lee MJ,  (2016) &quot;The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.&quot; <i>Autophagy</i> <b>12</b>(11):2197&ndash;2212; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27560450 27560450]; doi: [https://dx.doi.org/10.1080/15548627.2016.1222991 10.1080/15548627.2016.1222991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560450 2].
#Jiang Y, Lee J, Lee JH, Lee JW, Kim JH, Choi WH, Yoo YD, Cha-Molstad H, Kim BY, Kwon YT, Noh SA, Kim KP, Lee MJ,  (2016) &quot;The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.&quot; <i>Autophagy</i> <b>12</b>(11):2197&ndash;2212; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27560450 27560450]; doi: [https://dx.doi.org/10.1080/15548627.2016.1222991 10.1080/15548627.2016.1222991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560450 2].
#Hesse AM, Dupierris V, Adam C, Court M, Barthe D, Emadali A, Masselon C, Ferro M, Bruley C,  (2016) &quot;hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data.&quot; <i>J Proteome Res</i> <b>15</b>(10):3896&ndash;3903; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27560970 27560970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00853 10.1021/acs.jproteome.5b00853]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560970 142].
#Hesse AM, Dupierris V, Adam C, Court M, Barthe D, Emadali A, Masselon C, Ferro M, Bruley C,  (2016) &quot;hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data.&quot; <i>J Proteome Res</i> <b>15</b>(10):3896&ndash;3903; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27560970 27560970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00853 10.1021/acs.jproteome.5b00853]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560970 142].
#Ross SH, Rollings C, Anderson KE, Hawkins PT, Stephens LR, Cantrell DA,  (2016) &quot;Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells.&quot; <i>Immunity</i> <b>45</b>(3):685&ndash;700; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27566939 27566939]; doi: [https://dx.doi.org/10.1016/j.immuni.2016.07.022 10.1016/j.immuni.2016.07.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27566939 208].
#Ross SH, Rollings C, Anderson KE, Hawkins PT, Stephens LR, Cantrell DA,  (2016) &quot;Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells.&quot; <i>Immunity</i> <b>45</b>(3):685&ndash;700; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27566939 27566939]; doi: [https://dx.doi.org/10.1016/j.immuni.2016.07.022 10.1016/j.immuni.2016.07.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27566939 208].
 +
#Moulos P, Samiotaki M, Panayotou G, Dedos SG,  (2016) &quot;Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands.&quot; <i>Sci Data</i> <b>3</b>:160073; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27576083 27576083]; doi: [https://dx.doi.org/10.1038/sdata.2016.73 10.1038/sdata.2016.73]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27576083 6].
#Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML,  (2016) &quot;Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.&quot; <i>Sci Signal</i> <b>9</b>(443):rs9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27577262 27577262]; doi: [https://dx.doi.org/10.1126/scisignal.aaf7329 10.1126/scisignal.aaf7329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27577262 10].
#Larsen SC, Sylvestersen KB, Mund A, Lyon D, Mullari M, Madsen MV, Daniel JA, Jensen LJ, Nielsen ML,  (2016) &quot;Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.&quot; <i>Sci Signal</i> <b>9</b>(443):rs9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27577262 27577262]; doi: [https://dx.doi.org/10.1126/scisignal.aaf7329 10.1126/scisignal.aaf7329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27577262 10].
#Delaveau T, Davoine D, Jolly A, Vallot A, Rouvi&egrave;re JO, Gerber A, Brochet S, Plessis M, Roquigny R, Merhej J, Leger T, Garcia C, Lelandais G, Laine E, Palancade B, Devaux F, Garcia M,  (2016) &quot;Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae.&quot; <i>Nucleic Acids Res</i> <b>44</b>(18):8826&ndash;8841; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27580715 27580715]; doi: [https://dx.doi.org/10.1093/nar/gkw732 10.1093/nar/gkw732]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27580715 19].
#Delaveau T, Davoine D, Jolly A, Vallot A, Rouvi&egrave;re JO, Gerber A, Brochet S, Plessis M, Roquigny R, Merhej J, Leger T, Garcia C, Lelandais G, Laine E, Palancade B, Devaux F, Garcia M,  (2016) &quot;Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae.&quot; <i>Nucleic Acids Res</i> <b>44</b>(18):8826&ndash;8841; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27580715 27580715]; doi: [https://dx.doi.org/10.1093/nar/gkw732 10.1093/nar/gkw732]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27580715 19].
Line 1,428: Line 1,439:
#St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JD, Rajendran D, Couzens AL, Currie KW, Tkach JM, Cheung SW, Pelletier L, Gingras AC,  (2016) &quot;Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators.&quot; <i>Cell Rep</i> <b>17</b>(9):2488&ndash;2501; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27880917 27880917]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.10.078 10.1016/j.celrep.2016.10.078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27880917 315].
#St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JD, Rajendran D, Couzens AL, Currie KW, Tkach JM, Cheung SW, Pelletier L, Gingras AC,  (2016) &quot;Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators.&quot; <i>Cell Rep</i> <b>17</b>(9):2488&ndash;2501; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27880917 27880917]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.10.078 10.1016/j.celrep.2016.10.078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27880917 315].
#Sheppard C, Blombach F, Belsom A, Schulz S, Daviter T, Smollett K, Mahieu E, Erdmann S, Tinnefeld P, Garrett R, Grohmann D, Rappsilber J, Werner F,  (2016) &quot;Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP.&quot; <i>Nat Commun</i> <b>7</b>:13595; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27882920 27882920]; doi: [https://dx.doi.org/10.1038/ncomms13595 10.1038/ncomms13595]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27882920 9].
#Sheppard C, Blombach F, Belsom A, Schulz S, Daviter T, Smollett K, Mahieu E, Erdmann S, Tinnefeld P, Garrett R, Grohmann D, Rappsilber J, Werner F,  (2016) &quot;Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP.&quot; <i>Nat Commun</i> <b>7</b>:13595; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27882920 27882920]; doi: [https://dx.doi.org/10.1038/ncomms13595 10.1038/ncomms13595]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27882920 9].
 +
#Mossina A, Lukas C, Merl-Pham J, Uhl FE, Mutze K, Schamberger A, Staab-Weijnitz C, Jia J, Yildirim A&Ouml;, K&ouml;nigshoff M, Hauck SM, Eickelberg O, Meiners S,  (2017) &quot;Cigarette smoke alters the secretome of lung epithelial cells.&quot; <i>Proteomics</i> <b>17</b>(1-2):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27891773 27891773]; doi: [https://dx.doi.org/10.1002/pmic.201600243 10.1002/pmic.201600243]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27891773 24].
#Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr,  (2016) &quot;Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers.&quot; <i>Oncotarget</i> <b>7</b>(52):86999&ndash;87015; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27894104 27894104]; doi: [https://dx.doi.org/10.18632/oncotarget.13569 10.18632/oncotarget.13569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27894104 898].
#Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG Jr,  (2016) &quot;Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers.&quot; <i>Oncotarget</i> <b>7</b>(52):86999&ndash;87015; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27894104 27894104]; doi: [https://dx.doi.org/10.18632/oncotarget.13569 10.18632/oncotarget.13569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27894104 898].
#Gonneaud A, Jones C, Turgeon N, L&eacute;vesque D, Asselin C, Boudreau F, Boisvert FM,  (2016) &quot;A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids.&quot; <i>Sci Rep</i> <b>6</b>:38195; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27901089 27901089]; doi: [https://dx.doi.org/10.1038/srep38195 10.1038/srep38195]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27901089 38].
#Gonneaud A, Jones C, Turgeon N, L&eacute;vesque D, Asselin C, Boudreau F, Boisvert FM,  (2016) &quot;A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids.&quot; <i>Sci Rep</i> <b>6</b>:38195; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27901089 27901089]; doi: [https://dx.doi.org/10.1038/srep38195 10.1038/srep38195]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27901089 38].
 +
#Song L, Wang F, Dong Z, Hua X, Xia Q,  (2017) &quot;Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.&quot; <i>J Proteomics</i> <b>154</b>:49&ndash;58; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27903465 27903465]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.11.018 10.1016/j.jprot.2016.11.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27903465 6].
#Sundberg M, Strage EM, Bergquist J, Holst BS, Ramstr&ouml;m M,  (2016) &quot;Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.&quot; <i>PLoS One</i> <b>11</b>(12):e0167138; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27907059 27907059]; doi: [https://dx.doi.org/10.1371/journal.pone.0167138 10.1371/journal.pone.0167138]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27907059 3].
#Sundberg M, Strage EM, Bergquist J, Holst BS, Ramstr&ouml;m M,  (2016) &quot;Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.&quot; <i>PLoS One</i> <b>11</b>(12):e0167138; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27907059 27907059]; doi: [https://dx.doi.org/10.1371/journal.pone.0167138 10.1371/journal.pone.0167138]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27907059 3].
#Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ, Stark LA, Hay RT,  (2016) &quot;A proteomic approach to analyse the aspirin-mediated lysine acetylome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27913581 27913581]; doi: [https://dx.doi.org/10.1074/mcp.O116.065219 10.1074/mcp.O116.065219]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27913581 40].
#Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ, Stark LA, Hay RT,  (2016) &quot;A proteomic approach to analyse the aspirin-mediated lysine acetylome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/27913581 27913581]; doi: [https://dx.doi.org/10.1074/mcp.O116.065219 10.1074/mcp.O116.065219]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27913581 40].
Line 1,461: Line 1,474:
#Kreutz D, Bileck A, Plessl K, Wolrab D, Groessl M, Keppler BK, Meier SM, Gerner C,  (2016) &quot;Response Profiling Using Shotgun Proteomics Enables Global Metallodrug Mechanisms of Action To Be Established.&quot; <i>Chemistry</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28071820 28071820]; doi: [https://dx.doi.org/10.1002/chem.201604516 10.1002/chem.201604516]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28071820 6].
#Kreutz D, Bileck A, Plessl K, Wolrab D, Groessl M, Keppler BK, Meier SM, Gerner C,  (2016) &quot;Response Profiling Using Shotgun Proteomics Enables Global Metallodrug Mechanisms of Action To Be Established.&quot; <i>Chemistry</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28071820 28071820]; doi: [https://dx.doi.org/10.1002/chem.201604516 10.1002/chem.201604516]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28071820 6].
#Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J, Zhang H, Li K, Lin Y, Xiao X, Liang J, Li Y, Chen W, Tan Y, Sheng L, Lu B, Lu W, Gao M, Qiu P, Su X, Yin W, Hu J, Chen Z, Sai K, Wang J, Chen F, Chen Y, Zhu S, Liu D, Cheng S, Xie Z, Zhu W, Yan G,  (2017) &quot;The Anti-Warburg Effect Elicited by the cAMP-PGC1&alpha; Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.&quot; <i>Cell Rep</i> <b>18</b>(2):468&ndash;481; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28076790 28076790]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.12.037 10.1016/j.celrep.2016.12.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28076790 60].
#Xing F, Luan Y, Cai J, Wu S, Mai J, Gu J, Zhang H, Li K, Lin Y, Xiao X, Liang J, Li Y, Chen W, Tan Y, Sheng L, Lu B, Lu W, Gao M, Qiu P, Su X, Yin W, Hu J, Chen Z, Sai K, Wang J, Chen F, Chen Y, Zhu S, Liu D, Cheng S, Xie Z, Zhu W, Yan G,  (2017) &quot;The Anti-Warburg Effect Elicited by the cAMP-PGC1&alpha; Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.&quot; <i>Cell Rep</i> <b>18</b>(2):468&ndash;481; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28076790 28076790]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.12.037 10.1016/j.celrep.2016.12.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28076790 60].
 +
#Loroch S, Trabold K, Gambaryan S, Rei&szlig; C, Schwierczek K, Fleming I, Sickmann A, Behnisch W, Zieger B, Zahedi RP, Walter U, Jurk K,  (2017) &quot;Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B.&quot; <i>Thromb Haemost</i> <b>117</b>(3):556&ndash;569; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28078347 28078347]; doi: [https://dx.doi.org/10.1160/TH16-07-0515 10.1160/TH16-07-0515]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28078347 20].
#Scott NE, Rogers LD, Prudova A, Brown NF, Fortelny N, Overall CM, Foster LJ,  (2017) &quot;Interactome disassembly during apoptosis occurs independent of caspase cleavage.&quot; <i>Mol Syst Biol</i> <b>13</b>(1):906; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28082348 28082348]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28082348 521].
#Scott NE, Rogers LD, Prudova A, Brown NF, Fortelny N, Overall CM, Foster LJ,  (2017) &quot;Interactome disassembly during apoptosis occurs independent of caspase cleavage.&quot; <i>Mol Syst Biol</i> <b>13</b>(1):906; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28082348 28082348]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28082348 521].
#Emmott E, Sorgeloos F, Caddy SL, Vashist S, Sosnovtsev S, Lloyd R, Heesom K, Locker N, Goodfellow I,  (2017) &quot;Norovirus-mediated modification of the translational landscape via virus and host-induced cleavage of translation initiation factors.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28087593 28087593]; doi: [https://dx.doi.org/10.1074/mcp.M116.062448 10.1074/mcp.M116.062448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28087593 3].
#Emmott E, Sorgeloos F, Caddy SL, Vashist S, Sosnovtsev S, Lloyd R, Heesom K, Locker N, Goodfellow I,  (2017) &quot;Norovirus-mediated modification of the translational landscape via virus and host-induced cleavage of translation initiation factors.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28087593 28087593]; doi: [https://dx.doi.org/10.1074/mcp.M116.062448 10.1074/mcp.M116.062448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28087593 3].
Line 1,472: Line 1,486:
#Badalato N, Guillot A, Sabarly V, Dubois M, Pourette N, Pontoire B, Robert P, Bridier A, Monnet V, Sousa DZ, Durand S, Maz&eacute;as L, Bul&eacute;on A, Bouchez T, Mortha G, Bize A,  (2017) &quot;Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties.&quot; <i>PLoS One</i> <b>12</b>(1):e0170524; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28114419 28114419]; doi: [https://dx.doi.org/10.1371/journal.pone.0170524 10.1371/journal.pone.0170524]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28114419 24].
#Badalato N, Guillot A, Sabarly V, Dubois M, Pourette N, Pontoire B, Robert P, Bridier A, Monnet V, Sousa DZ, Durand S, Maz&eacute;as L, Bul&eacute;on A, Bouchez T, Mortha G, Bize A,  (2017) &quot;Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties.&quot; <i>PLoS One</i> <b>12</b>(1):e0170524; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28114419 28114419]; doi: [https://dx.doi.org/10.1371/journal.pone.0170524 10.1371/journal.pone.0170524]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28114419 24].
#Glisovic-Aplenc T, Gill S, Spruce LA, Smith IR, Fazelinia H, Shestova O, Ding H, Tasian SK, Aplenc R, Seeholzer SH,  (2017) &quot;Improved plasma membrane proteome coverage with a label-free non-affinity-purified workflow.&quot; <i>Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28116781 28116781]; doi: [https://dx.doi.org/10.1002/pmic.201600344 10.1002/pmic.201600344]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28116781 41].
#Glisovic-Aplenc T, Gill S, Spruce LA, Smith IR, Fazelinia H, Shestova O, Ding H, Tasian SK, Aplenc R, Seeholzer SH,  (2017) &quot;Improved plasma membrane proteome coverage with a label-free non-affinity-purified workflow.&quot; <i>Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28116781 28116781]; doi: [https://dx.doi.org/10.1002/pmic.201600344 10.1002/pmic.201600344]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28116781 41].
 +
#Baker MS, Ahn SB, Mohamedali A, Islam MT, Cantor D, Verhaert PD, Fanayan S, Sharma S, Nice EC, Connor M, Ranganathan S,  (2017) &quot;Accelerating the search for the missing proteins in the human proteome.&quot; <i>Nat Commun</i> <b>8</b>:14271; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28117396 28117396]; doi: [https://dx.doi.org/10.1038/ncomms14271 10.1038/ncomms14271]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28117396 12].
#Kulak NA, Geyer PE, Mann M,  (2017) &quot;Loss-less nano-fractionator for high sensitivity, high coverage proteomics.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28126900 28126900]; doi: [https://dx.doi.org/10.1074/mcp.O116.065136 10.1074/mcp.O116.065136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28126900 60].
#Kulak NA, Geyer PE, Mann M,  (2017) &quot;Loss-less nano-fractionator for high sensitivity, high coverage proteomics.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28126900 28126900]; doi: [https://dx.doi.org/10.1074/mcp.O116.065136 10.1074/mcp.O116.065136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28126900 60].
#Yu Y, Kwon K, Tsitrin T, Bekele S, Sikorski P, Nelson KE, Pieper R,  (2017) &quot;Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections.&quot; <i>PLoS Pathog</i> <b>13</b>(1):e1006151; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28129394 28129394]; doi: [https://dx.doi.org/10.1371/journal.ppat.1006151 10.1371/journal.ppat.1006151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28129394 72].
#Yu Y, Kwon K, Tsitrin T, Bekele S, Sikorski P, Nelson KE, Pieper R,  (2017) &quot;Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections.&quot; <i>PLoS Pathog</i> <b>13</b>(1):e1006151; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28129394 28129394]; doi: [https://dx.doi.org/10.1371/journal.ppat.1006151 10.1371/journal.ppat.1006151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28129394 72].
Line 1,477: Line 1,492:
#Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B, Singh M, Semtner M, Mah N, Aur&eacute; K, Leong M, Zabiegalov O, Lyras EM, Pfiffer V, Fauler B, Eichhorst J, Wiesner B, Huebner N, Priller J, Mielke T, Meierhofer D, Izsv&aacute;k Z, Meier JC, Bouillaud F, Adjaye J, Schuelke M, Wanker EE, Lomb&egrave;s A, Prigione A,  (2017) &quot;Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.&quot; <i>Cell Stem Cell</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28132834 28132834]; doi: [https://dx.doi.org/10.1016/j.stem.2016.12.013 10.1016/j.stem.2016.12.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132834 14].
#Lorenz C, Lesimple P, Bukowiecki R, Zink A, Inak G, Mlody B, Singh M, Semtner M, Mah N, Aur&eacute; K, Leong M, Zabiegalov O, Lyras EM, Pfiffer V, Fauler B, Eichhorst J, Wiesner B, Huebner N, Priller J, Mielke T, Meierhofer D, Izsv&aacute;k Z, Meier JC, Bouillaud F, Adjaye J, Schuelke M, Wanker EE, Lomb&egrave;s A, Prigione A,  (2017) &quot;Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.&quot; <i>Cell Stem Cell</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28132834 28132834]; doi: [https://dx.doi.org/10.1016/j.stem.2016.12.013 10.1016/j.stem.2016.12.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132834 14].
#Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F,  (2017) &quot;PP2A<sup>Cdc55</sup> Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation.&quot; <i>Mol Cell</i> <b>65</b>(3):393&ndash;402.e3; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28132839 28132839]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.12.018 10.1016/j.molcel.2016.12.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132839 120].
#Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F,  (2017) &quot;PP2A<sup>Cdc55</sup> Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation.&quot; <i>Mol Cell</i> <b>65</b>(3):393&ndash;402.e3; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28132839 28132839]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.12.018 10.1016/j.molcel.2016.12.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132839 120].
 +
#Liu X, Zhao B, Sun L, Bhuripanyo K, Wang Y, Bi Y, Davuluri RV, Duong DM, Nanavati D, Yin J, Kiyokawa H,  (2017) &quot;Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes.&quot; <i>Nat Commun</i> <b>8</b>:14286; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28134249 28134249]; doi: [https://dx.doi.org/10.1038/ncomms14286 10.1038/ncomms14286]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28134249 5].
#Zolg DP, Wilhelm M, Schnatbaum K, Zerweck J, Knaute T, Delanghe B, Bailey DJ, Gessulat S, Ehrlich HC, Weininger M, Yu P, Schlegl J, Kramer K, Schmidt T, Kusebauch U, Deutsch EW, Aebersold R, Moritz RL, Wenschuh H, Moehring T, Aiche S, Huhmer A, Reimer U, Kuster B,  (2017) &quot;Building ProteomeTools based on a complete synthetic human proteome.&quot; <i>Nat Methods</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28135259 28135259]; doi: [https://dx.doi.org/10.1038/nmeth.4153 10.1038/nmeth.4153]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28135259 1095].
#Zolg DP, Wilhelm M, Schnatbaum K, Zerweck J, Knaute T, Delanghe B, Bailey DJ, Gessulat S, Ehrlich HC, Weininger M, Yu P, Schlegl J, Kramer K, Schmidt T, Kusebauch U, Deutsch EW, Aebersold R, Moritz RL, Wenschuh H, Moehring T, Aiche S, Huhmer A, Reimer U, Kuster B,  (2017) &quot;Building ProteomeTools based on a complete synthetic human proteome.&quot; <i>Nat Methods</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28135259 28135259]; doi: [https://dx.doi.org/10.1038/nmeth.4153 10.1038/nmeth.4153]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28135259 1095].
 +
#Zhang F, Xiao Y, Wang Y,  (2017) &quot;SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells.&quot; <i>Chem Res Toxicol</i> <b>30</b>(4):1006&ndash;1014; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28140569 28140569]; doi: [https://dx.doi.org/10.1021/acs.chemrestox.6b00416 10.1021/acs.chemrestox.6b00416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28140569 66].
#Abe Y, Nagano M, Tada A, Adachi J, Tomonaga T,  (2017) &quot;Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters.&quot; <i>J Proteome Res</i> <b>16</b>(2):1077&ndash;1086; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28152594 28152594]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00576 10.1021/acs.jproteome.6b00576]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28152594 41].
#Abe Y, Nagano M, Tada A, Adachi J, Tomonaga T,  (2017) &quot;Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters.&quot; <i>J Proteome Res</i> <b>16</b>(2):1077&ndash;1086; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28152594 28152594]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00576 10.1021/acs.jproteome.6b00576]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28152594 41].
#Jung SY, Choi JM, Rousseaux MW, Malovannaya A, Kim JJ, Kutzera J, Wang Y, Huang Y, Zhu W, Maity S, Zoghbi HY, Qin J,  (2017) &quot;An anatomically resolved mouse brain proteome reveals Parkinson disease-relevant pathways.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28153913 28153913]; doi: [https://dx.doi.org/10.1074/mcp.M116.061440 10.1074/mcp.M116.061440]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28153913 610].
#Jung SY, Choi JM, Rousseaux MW, Malovannaya A, Kim JJ, Kutzera J, Wang Y, Huang Y, Zhu W, Maity S, Zoghbi HY, Qin J,  (2017) &quot;An anatomically resolved mouse brain proteome reveals Parkinson disease-relevant pathways.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28153913 28153913]; doi: [https://dx.doi.org/10.1074/mcp.M116.061440 10.1074/mcp.M116.061440]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28153913 610].
Line 1,485: Line 1,502:
#Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R,  (2017) &quot;Expanding proteome coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) combined with broad specificity proteolysis.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28164708 28164708]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00915 10.1021/acs.jproteome.6b00915]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28164708 7].
#Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R,  (2017) &quot;Expanding proteome coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) combined with broad specificity proteolysis.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28164708 28164708]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00915 10.1021/acs.jproteome.6b00915]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28164708 7].
#Petrovic V, Olaisen C, Sharma A, Nepal A, Bugge S, Sundby E, Hoff BH, Slupphaug G, Otterlei M,  (2017) &quot;On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay.&quot; <i>Anal Biochem</i> <b>523</b>:10&ndash;16; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28167071 28167071]; doi: [https://dx.doi.org/10.1016/j.ab.2017.01.027 10.1016/j.ab.2017.01.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28167071 3].
#Petrovic V, Olaisen C, Sharma A, Nepal A, Bugge S, Sundby E, Hoff BH, Slupphaug G, Otterlei M,  (2017) &quot;On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay.&quot; <i>Anal Biochem</i> <b>523</b>:10&ndash;16; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28167071 28167071]; doi: [https://dx.doi.org/10.1016/j.ab.2017.01.027 10.1016/j.ab.2017.01.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28167071 3].
 +
#Worthington J, Spain G, Timms JF,  (2017) &quot;Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):608&ndash;621; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28174229 28174229]; doi: [https://dx.doi.org/10.1074/mcp.M116.061267 10.1074/mcp.M116.061267]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174229 190].
#Li X, Gao M, Choi JM, Kim BJ, Zhou MT, Chen Z, Jain AN, Jung SY, Yuan J, Wang W, Wang Y, Chen J,  (2017) &quot;CRISPR/Cas9-Coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28174230 28174230]; doi: [https://dx.doi.org/10.1074/mcp.M116.064543 10.1074/mcp.M116.064543]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174230 44].
#Li X, Gao M, Choi JM, Kim BJ, Zhou MT, Chen Z, Jain AN, Jung SY, Yuan J, Wang W, Wang Y, Chen J,  (2017) &quot;CRISPR/Cas9-Coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28174230 28174230]; doi: [https://dx.doi.org/10.1074/mcp.M116.064543 10.1074/mcp.M116.064543]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174230 44].
#Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A,  (2017) &quot;Tracking the embryonic stem cell transition from ground state pluripotency.&quot; <i>Development</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28174249 28174249]; doi: [https://dx.doi.org/10.1242/dev.142711 10.1242/dev.142711]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174249 24].
#Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A,  (2017) &quot;Tracking the embryonic stem cell transition from ground state pluripotency.&quot; <i>Development</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28174249 28174249]; doi: [https://dx.doi.org/10.1242/dev.142711 10.1242/dev.142711]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174249 24].
Line 1,553: Line 1,571:
#Perl K, Ushakov K, Pozniak Y, Yizhar-Barnea O, Bhonker Y, Shivatzki S, Geiger T, Avraham KB, Shamir R,  (2017) &quot;Reduced changes in protein compared to mRNA levels across non-proliferating tissues.&quot; <i>BMC Genomics</i> <b>18</b>(1):305; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28420336 28420336]; doi: [https://dx.doi.org/10.1186/s12864-017-3683-9 10.1186/s12864-017-3683-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28420336 6].
#Perl K, Ushakov K, Pozniak Y, Yizhar-Barnea O, Bhonker Y, Shivatzki S, Geiger T, Avraham KB, Shamir R,  (2017) &quot;Reduced changes in protein compared to mRNA levels across non-proliferating tissues.&quot; <i>BMC Genomics</i> <b>18</b>(1):305; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28420336 28420336]; doi: [https://dx.doi.org/10.1186/s12864-017-3683-9 10.1186/s12864-017-3683-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28420336 6].
#Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, Fana M, Lowden C, Zhang P, Bothorel B, Michniewicz MG, Magill ST, Holmes MM, Goodman RH, Simonneaux V, Figeys D, Cheng HM,  (2017) &quot;miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.&quot; <i>Cell Rep</i> <b>19</b>(3):505&ndash;520; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28423315 28423315]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.03.057 10.1016/j.celrep.2017.03.057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28423315 128].
#Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, Fana M, Lowden C, Zhang P, Bothorel B, Michniewicz MG, Magill ST, Holmes MM, Goodman RH, Simonneaux V, Figeys D, Cheng HM,  (2017) &quot;miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.&quot; <i>Cell Rep</i> <b>19</b>(3):505&ndash;520; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28423315 28423315]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.03.057 10.1016/j.celrep.2017.03.057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28423315 128].
 +
#Maus RLG, Jakub JW, Nevala WK, Christensen TA, Noble-Orcutt K, Sachs Z, Hieken TJ, Markovic SN,  (2017) &quot;Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation.&quot; <i>Front Immunol</i> <b>8</b>:358; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28424693 28424693]; doi: [https://dx.doi.org/10.3389/fimmu.2017.00358 10.3389/fimmu.2017.00358]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28424693 18].
#Treiber T, Treiber N, Plessmann U, Harlander S, Dai&szlig; JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G,  (2017) &quot;A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.&quot; <i>Mol Cell</i> <b>66</b>(2):270&ndash;284.e13; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28431233 28431233]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.03.014 10.1016/j.molcel.2017.03.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431233 3033].
#Treiber T, Treiber N, Plessmann U, Harlander S, Dai&szlig; JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G,  (2017) &quot;A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.&quot; <i>Mol Cell</i> <b>66</b>(2):270&ndash;284.e13; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28431233 28431233]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.03.014 10.1016/j.molcel.2017.03.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431233 3033].
#Beyene GT, Kalayou S, Riaz T, Tonjum T,  (2017) &quot;Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis.&quot; <i>BMC Microbiol</i> <b>17</b>(1):96; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28431522 28431522]; doi: [https://dx.doi.org/10.1186/s12866-017-1004-8 10.1186/s12866-017-1004-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431522 108].
#Beyene GT, Kalayou S, Riaz T, Tonjum T,  (2017) &quot;Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis.&quot; <i>BMC Microbiol</i> <b>17</b>(1):96; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28431522 28431522]; doi: [https://dx.doi.org/10.1186/s12866-017-1004-8 10.1186/s12866-017-1004-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431522 108].
Line 1,558: Line 1,577:
#Clulow JA, Storck EM, Lanyon-Hogg T, Kalesh KA, Jones LH, Tate EW,  (2017) &quot;Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane.&quot; <i>Chem Commun (Camb)</i> <b>53</b>(37):5182&ndash;5185; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28439590 28439590]; doi: [https://dx.doi.org/10.1039/c6cc08797c 10.1039/c6cc08797c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28439590 32].
#Clulow JA, Storck EM, Lanyon-Hogg T, Kalesh KA, Jones LH, Tate EW,  (2017) &quot;Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane.&quot; <i>Chem Commun (Camb)</i> <b>53</b>(37):5182&ndash;5185; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28439590 28439590]; doi: [https://dx.doi.org/10.1039/c6cc08797c 10.1039/c6cc08797c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28439590 32].
#Yeung ATY, Hale C, Lee AH, Gill EE, Bushell W, Parry-Smith D, Goulding D, Pickard D, Roumeliotis T, Choudhary J, Thomson N, Skarnes WC, Dougan G, Hancock REW,  (2017) &quot;Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis.&quot; <i>Nat Commun</i> <b>8</b>:15013; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28440293 28440293]; doi: [https://dx.doi.org/10.1038/ncomms15013 10.1038/ncomms15013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28440293 1].
#Yeung ATY, Hale C, Lee AH, Gill EE, Bushell W, Parry-Smith D, Goulding D, Pickard D, Roumeliotis T, Choudhary J, Thomson N, Skarnes WC, Dougan G, Hancock REW,  (2017) &quot;Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis.&quot; <i>Nat Commun</i> <b>8</b>:15013; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28440293 28440293]; doi: [https://dx.doi.org/10.1038/ncomms15013 10.1038/ncomms15013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28440293 1].
 +
#Labots M, van der Mijn JC, Beekhof R, Piersma SR, de Goeij-de Haas RR, Pham TV, Knol JC, Dekker H, van Grieken NCT, Verheul HMW, Jim&eacute;nez CR,  (2017) &quot;Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.&quot; <i>J Proteomics</i> <b>162</b>:99&ndash;107; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28442448 28442448]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.04.014 10.1016/j.jprot.2017.04.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28442448 40].
#Arntzen M&Oslash;, V&aacute;rnai A, Mackie RI, Eijsink VGH, Pope PB,  (2017) &quot;Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity.&quot; <i>Environ Microbiol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28447389 28447389]; doi: [https://dx.doi.org/10.1111/1462-2920.13770 10.1111/1462-2920.13770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28447389 20].
#Arntzen M&Oslash;, V&aacute;rnai A, Mackie RI, Eijsink VGH, Pope PB,  (2017) &quot;Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity.&quot; <i>Environ Microbiol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28447389 28447389]; doi: [https://dx.doi.org/10.1111/1462-2920.13770 10.1111/1462-2920.13770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28447389 20].
#Nguyen EV, Huhtinen K, Goo YA, Kaipio K, Andersson N, Rantanen V, Hynninen J, Lahesmaa R, Carpen O, Goodlett DR,  (2017) &quot;Hyper-phosphorylation of Sequestosome-1 distinguishes resistance to cisplatin in patient derived high grade serous ovarian cancer cells.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28455291 28455291]; doi: [https://dx.doi.org/10.1074/mcp.M116.058321 10.1074/mcp.M116.058321]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28455291 60].
#Nguyen EV, Huhtinen K, Goo YA, Kaipio K, Andersson N, Rantanen V, Hynninen J, Lahesmaa R, Carpen O, Goodlett DR,  (2017) &quot;Hyper-phosphorylation of Sequestosome-1 distinguishes resistance to cisplatin in patient derived high grade serous ovarian cancer cells.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28455291 28455291]; doi: [https://dx.doi.org/10.1074/mcp.M116.058321 10.1074/mcp.M116.058321]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28455291 60].
Line 1,577: Line 1,597:
#Fijalkowska D, Verbruggen S, Ndah E, Jonckheere V, Menschaert G, Van Damme P,  (2017) &quot;eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs.&quot; <i>Nucleic Acids Res</i> <b>45</b>(13):7997&ndash;8013; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28541577 28541577]; doi: [https://dx.doi.org/10.1093/nar/gkx469 10.1093/nar/gkx469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28541577 19].
#Fijalkowska D, Verbruggen S, Ndah E, Jonckheere V, Menschaert G, Van Damme P,  (2017) &quot;eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs.&quot; <i>Nucleic Acids Res</i> <b>45</b>(13):7997&ndash;8013; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28541577 28541577]; doi: [https://dx.doi.org/10.1093/nar/gkx469 10.1093/nar/gkx469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28541577 19].
#Hakimi O, Ternette N, Murphy R, Kessler BM, Carr A,  (2017) &quot;A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.&quot; <i>PLoS One</i> <b>12</b>(5):e0177656; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28542244 28542244]; doi: [https://dx.doi.org/10.1371/journal.pone.0177656 10.1371/journal.pone.0177656]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28542244 116].
#Hakimi O, Ternette N, Murphy R, Kessler BM, Carr A,  (2017) &quot;A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.&quot; <i>PLoS One</i> <b>12</b>(5):e0177656; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28542244 28542244]; doi: [https://dx.doi.org/10.1371/journal.pone.0177656 10.1371/journal.pone.0177656]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28542244 116].
 +
#Wu PW, Mason KE, Durbin-Johnson BP, Salemi M, Phinney BS, Rocke DM, Parker GJ, Rice RH,  (2017) &quot;Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically variant peptides.&quot; <i>Proteomics</i> <b>17</b>(13-14):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28544375 28544375]; doi: [https://dx.doi.org/10.1002/pmic.201600462 10.1002/pmic.201600462]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28544375 24].
#Kume K, Cantwell H, Neumann FR, Jones AW, Snijders AP, Nurse P,  (2017) &quot;A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control.&quot; <i>PLoS Genet</i> <b>13</b>(5):e1006767; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28545058 28545058]; doi: [https://dx.doi.org/10.1371/journal.pgen.1006767 10.1371/journal.pgen.1006767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28545058 192].
#Kume K, Cantwell H, Neumann FR, Jones AW, Snijders AP, Nurse P,  (2017) &quot;A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control.&quot; <i>PLoS Genet</i> <b>13</b>(5):e1006767; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28545058 28545058]; doi: [https://dx.doi.org/10.1371/journal.pgen.1006767 10.1371/journal.pgen.1006767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28545058 192].
#Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C,  (2017) &quot;An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin.&quot; <i>Angew Chem Int Ed Engl</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28547791 28547791]; doi: [https://dx.doi.org/10.1002/anie.201702242 10.1002/anie.201702242]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28547791 4].
#Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C,  (2017) &quot;An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin.&quot; <i>Angew Chem Int Ed Engl</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28547791 28547791]; doi: [https://dx.doi.org/10.1002/anie.201702242 10.1002/anie.201702242]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28547791 4].
#Hou J, Li Z, Zhong W, Hao Q, Lei L, Wang L, Zhao D, Xu P, Zhou Y, Wang Y, Xu T,  (2017) &quot;Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats.&quot; <i>Diabetes</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28559245 28559245]; doi: [https://dx.doi.org/10.2337/db16-1305 10.2337/db16-1305]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28559245 12].
#Hou J, Li Z, Zhong W, Hao Q, Lei L, Wang L, Zhao D, Xu P, Zhou Y, Wang Y, Xu T,  (2017) &quot;Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats.&quot; <i>Diabetes</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28559245 28559245]; doi: [https://dx.doi.org/10.2337/db16-1305 10.2337/db16-1305]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28559245 12].
 +
#Li JY, Cai F, Ye XG, Liang JS, Li JK, Wu MY, Zhao D, Jiang ZD, You ZY, Zhong BX,  (2017) &quot;Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication.&quot; <i>J Proteome Res</i> <b>16</b>(7):2495&ndash;2507; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28569067 28569067]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00077 10.1021/acs.jproteome.7b00077]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28569067 72].
#Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B,  (2017) &quot;CYLD deubiquitinase is necessary for proper ubiquitination and degradation of the epidermal growth factor receptor.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28572092 28572092]; doi: [https://dx.doi.org/10.1074/mcp.M116.066423 10.1074/mcp.M116.066423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28572092 108].
#Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B,  (2017) &quot;CYLD deubiquitinase is necessary for proper ubiquitination and degradation of the epidermal growth factor receptor.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28572092 28572092]; doi: [https://dx.doi.org/10.1074/mcp.M116.066423 10.1074/mcp.M116.066423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28572092 108].
#Bj R&aring;s K&Oslash;, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj R&aring;s M, Otterlei M,  (2017) &quot;Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication.&quot; <i>Nucleic Acids Res</i> <b>45</b>(14):8291&ndash;8301; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28575236 28575236]; doi: [https://dx.doi.org/10.1093/nar/gkx476 10.1093/nar/gkx476]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28575236 31].
#Bj R&aring;s K&Oslash;, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj R&aring;s M, Otterlei M,  (2017) &quot;Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication.&quot; <i>Nucleic Acids Res</i> <b>45</b>(14):8291&ndash;8301; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28575236 28575236]; doi: [https://dx.doi.org/10.1093/nar/gkx476 10.1093/nar/gkx476]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28575236 31].
Line 1,586: Line 1,608:
#Zhang J, Lu S, Zhou Y, Meng K, Chen Z, Cui Y, Shi Y, Wang T, He QY,  (2017) &quot;Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.&quot; <i>Proteomics</i> <b>17</b>(13-14):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28590090 28590090]; doi: [https://dx.doi.org/10.1002/pmic.201700103 10.1002/pmic.201700103]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28590090 6].
#Zhang J, Lu S, Zhou Y, Meng K, Chen Z, Cui Y, Shi Y, Wang T, He QY,  (2017) &quot;Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.&quot; <i>Proteomics</i> <b>17</b>(13-14):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28590090 28590090]; doi: [https://dx.doi.org/10.1002/pmic.201700103 10.1002/pmic.201700103]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28590090 6].
#Jensen SR, Schoof EM, Wheeler SE, Hvid H, Ahnfelt-R&oslash;nne J, Hansen BF, Nishimura E, Olsen GS, Kislinger T, Brubaker PL,  (2017) &quot;Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors.&quot; <i>Endocrinology</i> <b>158</b>(8):2470&ndash;2485; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28591806 28591806]; doi: [https://dx.doi.org/10.1210/en.2017-00194 10.1210/en.2017-00194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28591806 10].
#Jensen SR, Schoof EM, Wheeler SE, Hvid H, Ahnfelt-R&oslash;nne J, Hansen BF, Nishimura E, Olsen GS, Kislinger T, Brubaker PL,  (2017) &quot;Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors.&quot; <i>Endocrinology</i> <b>158</b>(8):2470&ndash;2485; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28591806 28591806]; doi: [https://dx.doi.org/10.1210/en.2017-00194 10.1210/en.2017-00194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28591806 10].
 +
#Pearson LJ, Klaharn IY, Thongsawang B, Manuprasert W, Saejew T, Somparn P, Chuengsaman P, Kanjanabuch T, Pisitkun T,  (2017) &quot;Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers.&quot; <i>PLoS One</i> <b>12</b>(6):e0178601; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28594924 28594924]; doi: [https://dx.doi.org/10.1371/journal.pone.0178601 10.1371/journal.pone.0178601]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28594924 90].
#Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C, Bramsen JB, S&oslash;rensen KD, H&oslash;yer S, &Oslash;rntoft TF, Andersen CL, Nielsen ML, Olsen JV,  (2017) &quot;An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes.&quot; <i>Cell Syst</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28601559 28601559]; doi: [https://dx.doi.org/10.1016/j.cels.2017.05.009 10.1016/j.cels.2017.05.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28601559 93].
#Bekker-Jensen DB, Kelstrup CD, Batth TS, Larsen SC, Haldrup C, Bramsen JB, S&oslash;rensen KD, H&oslash;yer S, &Oslash;rntoft TF, Andersen CL, Nielsen ML, Olsen JV,  (2017) &quot;An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes.&quot; <i>Cell Syst</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28601559 28601559]; doi: [https://dx.doi.org/10.1016/j.cels.2017.05.009 10.1016/j.cels.2017.05.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28601559 93].
#Haas TL, Sciuto MR, Brunetto L, Valvo C, Signore M, Fiori ME, di Martino S, Giannetti S, Morgante L, Boe A, Patrizii M, Warnken U, Schn&ouml;lzer M, Ciolfi A, Di Stefano C, Biffoni M, Ricci-Vitiani L, Pallini R, De Maria R,  (2017) &quot;Integrin &alpha;7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma.&quot; <i>Cell Stem Cell</i> <b>21</b>(1):35&ndash;50.e9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28602620 28602620]; doi: [https://dx.doi.org/10.1016/j.stem.2017.04.009 10.1016/j.stem.2017.04.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28602620 3].
#Haas TL, Sciuto MR, Brunetto L, Valvo C, Signore M, Fiori ME, di Martino S, Giannetti S, Morgante L, Boe A, Patrizii M, Warnken U, Schn&ouml;lzer M, Ciolfi A, Di Stefano C, Biffoni M, Ricci-Vitiani L, Pallini R, De Maria R,  (2017) &quot;Integrin &alpha;7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma.&quot; <i>Cell Stem Cell</i> <b>21</b>(1):35&ndash;50.e9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28602620 28602620]; doi: [https://dx.doi.org/10.1016/j.stem.2017.04.009 10.1016/j.stem.2017.04.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28602620 3].
Line 1,599: Line 1,622:
#Sung E, Kwon OK, Lee JM, Lee S,  (2017) &quot;Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells.&quot; <i>Electrophoresis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28627741 28627741]; doi: [https://dx.doi.org/10.1002/elps.201700052 10.1002/elps.201700052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28627741 2].
#Sung E, Kwon OK, Lee JM, Lee S,  (2017) &quot;Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells.&quot; <i>Electrophoresis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28627741 28627741]; doi: [https://dx.doi.org/10.1002/elps.201700052 10.1002/elps.201700052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28627741 2].
#Loke I, &Oslash;stergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M,  (2017) &quot;Paucimannose-Rich <i>N</i>-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28630087 28630087]; doi: [https://dx.doi.org/10.1074/mcp.M116.066746 10.1074/mcp.M116.066746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28630087 118].
#Loke I, &Oslash;stergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M,  (2017) &quot;Paucimannose-Rich <i>N</i>-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28630087 28630087]; doi: [https://dx.doi.org/10.1074/mcp.M116.066746 10.1074/mcp.M116.066746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28630087 118].
 +
#Ahsan N, Belmont J, Chen Z, Clifton JG, Salomon AR,  (2017) &quot;Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction.&quot; <i>J Proteomics</i> <b>165</b>:69&ndash;74; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28634120 28634120]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.06.013 10.1016/j.jprot.2017.06.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28634120 30].
#Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H,  (2017) &quot;Bacterial cellulose shifts transcriptome and proteome of cultured endothelial cells towards native differentiation.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28637836 28637836]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000001 10.1074/mcp.RA117.000001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28637836 2].
#Feil G, Horres R, Schulte J, Mack AF, Petzoldt S, Arnold C, Meng C, Jost L, Boxleitner J, Kiessling-Wolf N, Serbest E, Helm D, Kuster B, Hartmann I, Korff T, Hahne H,  (2017) &quot;Bacterial cellulose shifts transcriptome and proteome of cultured endothelial cells towards native differentiation.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28637836 28637836]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000001 10.1074/mcp.RA117.000001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28637836 2].
#Cosme J, Guo H, Hadipour-Lakmehsari S, Emili A, Gramolini AO,  (2017) &quot;Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28641008 28641008]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00144 10.1021/acs.jproteome.7b00144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28641008 39].
#Cosme J, Guo H, Hadipour-Lakmehsari S, Emili A, Gramolini AO,  (2017) &quot;Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28641008 28641008]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00144 10.1021/acs.jproteome.7b00144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28641008 39].
Line 1,658: Line 1,682:
#van den Eshof BL, Hoogendijk AJ, Simpson PJ, van Alphen FPJ, Zanivan S, Mertens K, Meijer AB, van den Biggelaar M,  (2017) &quot;Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics.&quot; <i>Arterioscler Thromb Vasc Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28818855 28818855]; doi: [https://dx.doi.org/10.1161/ATVBAHA.117.309926 10.1161/ATVBAHA.117.309926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28818855 57].
#van den Eshof BL, Hoogendijk AJ, Simpson PJ, van Alphen FPJ, Zanivan S, Mertens K, Meijer AB, van den Biggelaar M,  (2017) &quot;Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics.&quot; <i>Arterioscler Thromb Vasc Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28818855 28818855]; doi: [https://dx.doi.org/10.1161/ATVBAHA.117.309926 10.1161/ATVBAHA.117.309926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28818855 57].
#Ayre DC, Chute IC, Joy AP, Barnett DA, Hogan AM, Gr&uuml;ll MP, Pe&ntilde;a-Castillo L, Lang AS, Lewis SM, Christian SL,  (2017) &quot;CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo.&quot; <i>Sci Rep</i> <b>7</b>(1):8642; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28819186 28819186]; doi: [https://dx.doi.org/10.1038/s41598-017-08094-8 10.1038/s41598-017-08094-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28819186 146].
#Ayre DC, Chute IC, Joy AP, Barnett DA, Hogan AM, Gr&uuml;ll MP, Pe&ntilde;a-Castillo L, Lang AS, Lewis SM, Christian SL,  (2017) &quot;CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo.&quot; <i>Sci Rep</i> <b>7</b>(1):8642; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28819186 28819186]; doi: [https://dx.doi.org/10.1038/s41598-017-08094-8 10.1038/s41598-017-08094-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28819186 146].
 +
#Singh H, Yu Y, Suh MJ, Torralba MG, Stenzel RD, Tovchigrechko A, Thovarai V, Harkins DM, Rajagopala SV, Osborne W, Cogen FR, Kaplowitz PB, Nelson KE, Madupu R, Pieper R,  (2017) &quot;Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function.&quot; <i>Theranostics</i> <b>7</b>(10):2704&ndash;2717; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28819457 28819457]; doi: [https://dx.doi.org/10.7150/thno.19679 10.7150/thno.19679]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28819457 663].
#Hung CL, Pan SH, Han CL, Chang CW, Hsu YL, Su CH, Shih SC, Lai YJ, Chiang Chiau JS, Yeh HI, Liu CY, Lee HC, Lam CSP,  (2017) &quot;Membrane Proteomics of Impaired Energetics and Cytoskeletal Disorganization in Elderly Diet-Induced Diabetic Mice.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28823169 28823169]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00148 10.1021/acs.jproteome.7b00148]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28823169 14].
#Hung CL, Pan SH, Han CL, Chang CW, Hsu YL, Su CH, Shih SC, Lai YJ, Chiang Chiau JS, Yeh HI, Liu CY, Lee HC, Lam CSP,  (2017) &quot;Membrane Proteomics of Impaired Energetics and Cytoskeletal Disorganization in Elderly Diet-Induced Diabetic Mice.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28823169 28823169]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00148 10.1021/acs.jproteome.7b00148]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28823169 14].
#Fu L, Liu KK, Sun MA, Tian CP, Sun R, Morales Betanzos C, Tallman KA, Porter NA, Yang Y, Guo DJ, Liebler DC, Yang J,  (2017) &quot;Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28827280 28827280]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000108 10.1074/mcp.RA117.000108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28827280 12].
#Fu L, Liu KK, Sun MA, Tian CP, Sun R, Morales Betanzos C, Tallman KA, Porter NA, Yang Y, Guo DJ, Liebler DC, Yang J,  (2017) &quot;Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28827280 28827280]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000108 10.1074/mcp.RA117.000108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28827280 12].
Line 1,664: Line 1,689:
#Wildburger NC, Esparza TJ, LeDuc RD, Fellers RT, Thomas PM, Cairns NJ, Kelleher NL, Bateman RJ, Brody DL,  (2017) &quot;Diversity of Amyloid-beta Proteoforms in the Alzheimer&#39;s Disease Brain.&quot; <i>Sci Rep</i> <b>7</b>(1):9520; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28842697 28842697]; doi: [https://dx.doi.org/10.1038/s41598-017-10422-x 10.1038/s41598-017-10422-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28842697 22].
#Wildburger NC, Esparza TJ, LeDuc RD, Fellers RT, Thomas PM, Cairns NJ, Kelleher NL, Bateman RJ, Brody DL,  (2017) &quot;Diversity of Amyloid-beta Proteoforms in the Alzheimer&#39;s Disease Brain.&quot; <i>Sci Rep</i> <b>7</b>(1):9520; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28842697 28842697]; doi: [https://dx.doi.org/10.1038/s41598-017-10422-x 10.1038/s41598-017-10422-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28842697 22].
#Andersen PR, Tirian L, Vunjak M, Brennecke J,  (2017) &quot;A heterochromatin-dependent transcription machinery drives piRNA expression.&quot; <i>Nature</i> <b>549</b>(7670):54&ndash;59; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28847004 28847004]; doi: [https://dx.doi.org/10.1038/nature23482 10.1038/nature23482]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28847004 46].
#Andersen PR, Tirian L, Vunjak M, Brennecke J,  (2017) &quot;A heterochromatin-dependent transcription machinery drives piRNA expression.&quot; <i>Nature</i> <b>549</b>(7670):54&ndash;59; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28847004 28847004]; doi: [https://dx.doi.org/10.1038/nature23482 10.1038/nature23482]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28847004 46].
 +
#Guo J, Wang P, Cheng Q, Sun L, Wang H, Wang Y, Kao L, Li Y, Qiu T, Yang W, Shen H,  (2017) &quot;Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.).&quot; <i>J Proteomics</i> <b>168</b>:15&ndash;27; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28847649 28847649]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.08.013 10.1016/j.jprot.2017.08.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28847649 6].
#Mohl BP, Emmott E, Roy P,  (2017) &quot;Phosphoproteomic analysis reveals the importance of kinase regulation during orbivirus infection.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28851738 28851738]; doi: [https://dx.doi.org/10.1074/mcp.M117.067355 10.1074/mcp.M117.067355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28851738 6].
#Mohl BP, Emmott E, Roy P,  (2017) &quot;Phosphoproteomic analysis reveals the importance of kinase regulation during orbivirus infection.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28851738 28851738]; doi: [https://dx.doi.org/10.1074/mcp.M117.067355 10.1074/mcp.M117.067355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28851738 6].
#Merkley ED, Sego LH, Lin A, Leiser OP, Kaiser BLD, Adkins JN, Keim PS, Wagner DM, Kreuzer HW,  (2017) &quot;Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague.&quot; <i>PLoS One</i> <b>12</b>(8):e0183478; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28854255 28854255]; doi: [https://dx.doi.org/10.1371/journal.pone.0183478 10.1371/journal.pone.0183478]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28854255 343].
#Merkley ED, Sego LH, Lin A, Leiser OP, Kaiser BLD, Adkins JN, Keim PS, Wagner DM, Kreuzer HW,  (2017) &quot;Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague.&quot; <i>PLoS One</i> <b>12</b>(8):e0183478; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28854255 28854255]; doi: [https://dx.doi.org/10.1371/journal.pone.0183478 10.1371/journal.pone.0183478]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28854255 343].
Line 1,689: Line 1,715:
#Avenarius MR, Krey JF, Dumont RA, Morgan CP, Benson CB, Vijayakumar S, Cunningham CL, Scheffer DI, Corey DP, M&uuml;ller U, Jones SM, Barr-Gillespie PG,  (2017) &quot;Heterodimeric capping protein is required for stereocilia length and width regulation.&quot; <i>J Cell Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28899994 28899994]; doi: [https://dx.doi.org/10.1083/jcb.201704171 10.1083/jcb.201704171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28899994 52].
#Avenarius MR, Krey JF, Dumont RA, Morgan CP, Benson CB, Vijayakumar S, Cunningham CL, Scheffer DI, Corey DP, M&uuml;ller U, Jones SM, Barr-Gillespie PG,  (2017) &quot;Heterodimeric capping protein is required for stereocilia length and width regulation.&quot; <i>J Cell Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28899994 28899994]; doi: [https://dx.doi.org/10.1083/jcb.201704171 10.1083/jcb.201704171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28899994 52].
#Rowland EA, Greco TM, Snowden CK, McCabe AL, Silhavy TJ, Cristea IM,  (2017) &quot;Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes.&quot; <i>MBio</i> <b>8</b>(5):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28900027 28900027]; doi: [https://dx.doi.org/10.1128/mBio.01096-17 10.1128/mBio.01096-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28900027 2].
#Rowland EA, Greco TM, Snowden CK, McCabe AL, Silhavy TJ, Cristea IM,  (2017) &quot;Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes.&quot; <i>MBio</i> <b>8</b>(5):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28900027 28900027]; doi: [https://dx.doi.org/10.1128/mBio.01096-17 10.1128/mBio.01096-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28900027 2].
 +
#Midgett M, L&oacute;pez CS, David L, Maloyan A, Rugonyi S,  (2017) &quot;Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium.&quot; <i>Front Physiol</i> <b>8</b>:631; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28912723 28912723]; doi: [https://dx.doi.org/10.3389/fphys.2017.00631 10.3389/fphys.2017.00631]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28912723 1].
#Hospital MA, Jacquel A, Mazed F, Saland E, Larrue C, Mondesir J, Birsen R, Green AS, Lambert M, Sujobert P, Gautier EF, Salnot V, Le Gall M, Decroocq J, Poulain L, Jacque N, Fontenay M, Kosmider O, R&eacute;cher C, Auberger P, Mayeux P, Bouscary D, Sarry JE, Tamburini J,  (2017) &quot;RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.&quot; <i>Leukemia</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28914261 28914261]; doi: [https://dx.doi.org/10.1038/leu.2017.284 10.1038/leu.2017.284]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28914261 17].
#Hospital MA, Jacquel A, Mazed F, Saland E, Larrue C, Mondesir J, Birsen R, Green AS, Lambert M, Sujobert P, Gautier EF, Salnot V, Le Gall M, Decroocq J, Poulain L, Jacque N, Fontenay M, Kosmider O, R&eacute;cher C, Auberger P, Mayeux P, Bouscary D, Sarry JE, Tamburini J,  (2017) &quot;RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.&quot; <i>Leukemia</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28914261 28914261]; doi: [https://dx.doi.org/10.1038/leu.2017.284 10.1038/leu.2017.284]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28914261 17].
#Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, Rassner M, Gr&ouml;nke S, Froelich J, Dieterich C, Mann M, Alic N, Beyer A, Partridge L,  (2017) &quot;A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance.&quot; <i>Mol Syst Biol</i> <b>13</b>(9):939; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28916541 28916541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28916541 92].
#Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, Rassner M, Gr&ouml;nke S, Froelich J, Dieterich C, Mann M, Alic N, Beyer A, Partridge L,  (2017) &quot;A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance.&quot; <i>Mol Syst Biol</i> <b>13</b>(9):939; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/28916541 28916541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28916541 92].
Line 1,726: Line 1,753:
#Karg E, Smets M, Ryan J, Forn&eacute; I, Qin W, Mulholland CB, Kalideris G, Imhof A, Bultmann S, Leonhardt H,  (2017) &quot;Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells.&quot; <i>J Mol Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29055779 29055779]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.10.014 10.1016/j.jmb.2017.10.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29055779 32].
#Karg E, Smets M, Ryan J, Forn&eacute; I, Qin W, Mulholland CB, Kalideris G, Imhof A, Bultmann S, Leonhardt H,  (2017) &quot;Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells.&quot; <i>J Mol Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29055779 29055779]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.10.014 10.1016/j.jmb.2017.10.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29055779 32].
#Hartl M, F&uuml;&szlig;l M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Pl&ouml;chinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I,  (2017) &quot;Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in <i>Arabidopsis</i>.&quot; <i>Mol Syst Biol</i> <b>13</b>(10):949; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29061669 29061669]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29061669 44].
#Hartl M, F&uuml;&szlig;l M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Pl&ouml;chinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I,  (2017) &quot;Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in <i>Arabidopsis</i>.&quot; <i>Mol Syst Biol</i> <b>13</b>(10):949; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29061669 29061669]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29061669 44].
 +
#Graham LC, Eaton SL, Brunton PJ, Atrih A, Smith C, Lamont DJ, Gillingwater TH, Pennetta G, Skehel P, Wishart TM,  (2017) &quot;Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture.&quot; <i>Mol Neurodegener</i> <b>12</b>(1):77; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29078798 29078798]; doi: [https://dx.doi.org/10.1186/s13024-017-0221-9 10.1186/s13024-017-0221-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29078798 6].
#Pan D, Gao J, Zeng X, Ma G, Li N, Huang X, Du X, Miao Q, Lian J, Xu L, Zhou H, Chen S,  (2017) &quot;Quantitative proteomic Analysis Reveals up-regulation of caveolin-1 in FOXP3-overexpressed human gastric cancer cells.&quot; <i>Sci Rep</i> <b>7</b>(1):14460; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29089565 29089565]; doi: [https://dx.doi.org/10.1038/s41598-017-14453-2 10.1038/s41598-017-14453-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29089565 10].
#Pan D, Gao J, Zeng X, Ma G, Li N, Huang X, Du X, Miao Q, Lian J, Xu L, Zhou H, Chen S,  (2017) &quot;Quantitative proteomic Analysis Reveals up-regulation of caveolin-1 in FOXP3-overexpressed human gastric cancer cells.&quot; <i>Sci Rep</i> <b>7</b>(1):14460; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29089565 29089565]; doi: [https://dx.doi.org/10.1038/s41598-017-14453-2 10.1038/s41598-017-14453-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29089565 10].
#Schuster H, Peper JK, B&ouml;sm&uuml;ller HC, R&ouml;hle K, Backert L, Bilich T, Ney B, L&ouml;ffler MW, Kowalewski DJ, Trautwein N, Rabsteyn A, Engler T, Braun S, Haen SP, Walz JS, Schmid-Horch B, Brucker SY, Wallwiener D, Kohlbacher O, Fend F, Rammensee HG, Stevanovi&#x107; S, Staebler A, Wagner P,  (2017) &quot;The immunopeptidomic landscape of ovarian carcinomas.&quot; <i>Proc Natl Acad Sci U S A</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29093164 29093164]; doi: [https://dx.doi.org/10.1073/pnas.1707658114 10.1073/pnas.1707658114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29093164 275].
#Schuster H, Peper JK, B&ouml;sm&uuml;ller HC, R&ouml;hle K, Backert L, Bilich T, Ney B, L&ouml;ffler MW, Kowalewski DJ, Trautwein N, Rabsteyn A, Engler T, Braun S, Haen SP, Walz JS, Schmid-Horch B, Brucker SY, Wallwiener D, Kohlbacher O, Fend F, Rammensee HG, Stevanovi&#x107; S, Staebler A, Wagner P,  (2017) &quot;The immunopeptidomic landscape of ovarian carcinomas.&quot; <i>Proc Natl Acad Sci U S A</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29093164 29093164]; doi: [https://dx.doi.org/10.1073/pnas.1707658114 10.1073/pnas.1707658114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29093164 275].
Line 1,748: Line 1,776:
#Cherry JD, Zeineddin A, Dammer EB, Webster JA, Duong D, Seyfried NT, Levey AI, Alvarez VE, Huber BR, Stein TD, Kiernan PT, McKee AC, Lah JJ, Hales CM,  (2017) &quot;Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy.&quot; <i>J Neuropathol Exp Neurol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29145658 29145658]; doi: [https://dx.doi.org/10.1093/jnen/nlx100 10.1093/jnen/nlx100]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29145658 4].
#Cherry JD, Zeineddin A, Dammer EB, Webster JA, Duong D, Seyfried NT, Levey AI, Alvarez VE, Huber BR, Stein TD, Kiernan PT, McKee AC, Lah JJ, Hales CM,  (2017) &quot;Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy.&quot; <i>J Neuropathol Exp Neurol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29145658 29145658]; doi: [https://dx.doi.org/10.1093/jnen/nlx100 10.1093/jnen/nlx100]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29145658 4].
#Le Guerrou&eacute; F, Eck F, Jung J, Starzetz T, Mittelbronn M, Kaulich M, Behrends C,  (2017) &quot;Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mitophagy Pathway.&quot; <i>Mol Cell</i> <b>68</b>(4):786&ndash;796.e6; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29149599 29149599]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.10.029 10.1016/j.molcel.2017.10.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29149599 138].
#Le Guerrou&eacute; F, Eck F, Jung J, Starzetz T, Mittelbronn M, Kaulich M, Behrends C,  (2017) &quot;Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mitophagy Pathway.&quot; <i>Mol Cell</i> <b>68</b>(4):786&ndash;796.e6; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29149599 29149599]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.10.029 10.1016/j.molcel.2017.10.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29149599 138].
 +
#Hu D, Xue S, Zhao C, Wei M, Yan H, Quan Y, Yu W,  (2018) &quot;Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells.&quot; <i>Proteomics</i> <b>18</b>(1):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29150924 29150924]; doi: [https://dx.doi.org/10.1002/pmic.201700133 10.1002/pmic.201700133]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29150924 8].
#Korkmaz AG, Popov T, Peisl L, Codrea MC, Nahnsen S, Steimle A, Velic A, Macek B, von Bergen M, Bernhardt J, Frick JS,  (2017) &quot;Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29155090 29155090]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.11.008 10.1016/j.jprot.2017.11.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29155090 21].
#Korkmaz AG, Popov T, Peisl L, Codrea MC, Nahnsen S, Steimle A, Velic A, Macek B, von Bergen M, Bernhardt J, Frick JS,  (2017) &quot;Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29155090 29155090]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.11.008 10.1016/j.jprot.2017.11.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29155090 21].
#F&ouml;ll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nystr&ouml;m A, Kern JS,  (2017) &quot;Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas.&quot; <i>Matrix Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29158163 29158163]; doi: [https://dx.doi.org/10.1016/j.matbio.2017.11.004 10.1016/j.matbio.2017.11.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29158163 24].
#F&ouml;ll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nystr&ouml;m A, Kern JS,  (2017) &quot;Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas.&quot; <i>Matrix Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29158163 29158163]; doi: [https://dx.doi.org/10.1016/j.matbio.2017.11.004 10.1016/j.matbio.2017.11.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29158163 24].
Line 1,755: Line 1,784:
#Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen JV,  (2018) &quot;Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(1):727&ndash;738; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29183128 29183128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00602 10.1021/acs.jproteome.7b00602]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183128 107].
#Kelstrup CD, Bekker-Jensen DB, Arrey TN, Hogrebe A, Harder A, Olsen JV,  (2018) &quot;Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(1):727&ndash;738; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29183128 29183128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00602 10.1021/acs.jproteome.7b00602]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183128 107].
#Winter DL, Hart-Smith G, Wilkins MR,  (2018) &quot;Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification.&quot; <i>J Mol Biol</i> <b>430</b>(1):102&ndash;118; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29183786 29183786]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.11.009 10.1016/j.jmb.2017.11.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183786 18].
#Winter DL, Hart-Smith G, Wilkins MR,  (2018) &quot;Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification.&quot; <i>J Mol Biol</i> <b>430</b>(1):102&ndash;118; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29183786 29183786]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.11.009 10.1016/j.jmb.2017.11.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183786 18].
 +
#Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, Lam TT, Gerstein MB, Sestan N, Nairn AC,  (2017) &quot;A multiregional proteomic survey of the postnatal human brain.&quot; <i>Nat Neurosci</i> <b>20</b>(12):1787&ndash;1795; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29184206 29184206]; doi: [https://dx.doi.org/10.1038/s41593-017-0011-2 10.1038/s41593-017-0011-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29184206 196].
#Lacombe M, Marie-Desvergne C, Combes F, Kraut A, Bruley C, Vandenbrouck Y, Chamel Mossuz V, Cout&eacute; Y, Brun V,  (2017) &quot;Proteomic characterization of human exhaled breath condensate.&quot; <i>J Breath Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29189203 29189203]; doi: [https://dx.doi.org/10.1088/1752-7163/aa9e71 10.1088/1752-7163/aa9e71]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29189203 4].
#Lacombe M, Marie-Desvergne C, Combes F, Kraut A, Bruley C, Vandenbrouck Y, Chamel Mossuz V, Cout&eacute; Y, Brun V,  (2017) &quot;Proteomic characterization of human exhaled breath condensate.&quot; <i>J Breath Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29189203 29189203]; doi: [https://dx.doi.org/10.1088/1752-7163/aa9e71 10.1088/1752-7163/aa9e71]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29189203 4].
#Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, T&otilde;nisson N, Kramer K, G&ouml;tze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, M&eacute;dard G, Jeremias I, Spiekermann K, Kuster B,  (2017) &quot;The target landscape of clinical kinase drugs.&quot; <i>Science</i> <b>358</b>(6367):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29191878 29191878]; doi: [https://dx.doi.org/10.1126/science.aan4368 10.1126/science.aan4368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29191878 3032].
#Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, Reinecke M, Ruprecht B, Petzoldt S, Meng C, Zecha J, Reiter K, Qiao H, Helm D, Koch H, Schoof M, Canevari G, Casale E, Depaolini SR, Feuchtinger A, Wu Z, Schmidt T, Rueckert L, Becker W, Huenges J, Garz AK, Gohlke BO, Zolg DP, Kayser G, Vooder T, Preissner R, Hahne H, T&otilde;nisson N, Kramer K, G&ouml;tze K, Bassermann F, Schlegl J, Ehrlich HC, Aiche S, Walch A, Greif PA, Schneider S, Felder ER, Ruland J, M&eacute;dard G, Jeremias I, Spiekermann K, Kuster B,  (2017) &quot;The target landscape of clinical kinase drugs.&quot; <i>Science</i> <b>358</b>(6367):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29191878 29191878]; doi: [https://dx.doi.org/10.1126/science.aan4368 10.1126/science.aan4368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29191878 3032].
Line 1,769: Line 1,799:
#Bizzotto S, Uzquiano A, Dingli F, Ershov D, Houllier A, Arras G, Richards M, Loew D, Minc N, Croquelois A, Houdusse A, Francis F,  (2017) &quot;Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex.&quot; <i>Sci Rep</i> <b>7</b>(1):17308; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29229923 29229923]; doi: [https://dx.doi.org/10.1038/s41598-017-15253-4 10.1038/s41598-017-15253-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29229923 28].
#Bizzotto S, Uzquiano A, Dingli F, Ershov D, Houllier A, Arras G, Richards M, Loew D, Minc N, Croquelois A, Houdusse A, Francis F,  (2017) &quot;Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex.&quot; <i>Sci Rep</i> <b>7</b>(1):17308; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29229923 29229923]; doi: [https://dx.doi.org/10.1038/s41598-017-15253-4 10.1038/s41598-017-15253-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29229923 28].
#Alli-Shaik A, Wee S, Lim LHK, Gunaratne J,  (2017) &quot;Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.&quot; <i>Breast Cancer Res</i> <b>19</b>(1):132; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29233185 29233185]; doi: [https://dx.doi.org/10.1186/s13058-017-0924-4 10.1186/s13058-017-0924-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29233185 263].
#Alli-Shaik A, Wee S, Lim LHK, Gunaratne J,  (2017) &quot;Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.&quot; <i>Breast Cancer Res</i> <b>19</b>(1):132; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29233185 29233185]; doi: [https://dx.doi.org/10.1186/s13058-017-0924-4 10.1186/s13058-017-0924-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29233185 263].
 +
#Maumus M, Manferdini C, Toupet K, Chuchana P, Casteilla L, Gachet M, Jorgensen C, Lisignoli G, No&euml;l D,  (2017) &quot;Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis.&quot; <i>Front Immunol</i> <b>8</b>:1638; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29238343 29238343]; doi: [https://dx.doi.org/10.3389/fimmu.2017.01638 10.3389/fimmu.2017.01638]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29238343 120].
#Chong C, Marino F, Pak HS, Racle J, Daniel RT, M&uuml;ller M, Gfeller D, Coukos G, Bassani-Sternberg M,  (2017) &quot;High-throughput and sensitive immunopeptidomics platform reveals profound IFN&gamma;-mediated remodeling of the HLA ligandome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29242379 29242379]; doi: [https://dx.doi.org/10.1074/mcp.TIR117.000383 10.1074/mcp.TIR117.000383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29242379 121].
#Chong C, Marino F, Pak HS, Racle J, Daniel RT, M&uuml;ller M, Gfeller D, Coukos G, Bassani-Sternberg M,  (2017) &quot;High-throughput and sensitive immunopeptidomics platform reveals profound IFN&gamma;-mediated remodeling of the HLA ligandome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29242379 29242379]; doi: [https://dx.doi.org/10.1074/mcp.TIR117.000383 10.1074/mcp.TIR117.000383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29242379 121].
#M&uuml;ller AK, F&ouml;ll M, Heckelmann B, Kiefer S, Werner M, Schilling O, Biniossek ML, Jilg CA, Drendel V,  (2017) &quot;Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases.&quot; <i>Neoplasia</i> <b>20</b>(2):140&ndash;151; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29248718 29248718]; doi: [https://dx.doi.org/10.1016/j.neo.2017.10.009 10.1016/j.neo.2017.10.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29248718 15].
#M&uuml;ller AK, F&ouml;ll M, Heckelmann B, Kiefer S, Werner M, Schilling O, Biniossek ML, Jilg CA, Drendel V,  (2017) &quot;Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases.&quot; <i>Neoplasia</i> <b>20</b>(2):140&ndash;151; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29248718 29248718]; doi: [https://dx.doi.org/10.1016/j.neo.2017.10.009 10.1016/j.neo.2017.10.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29248718 15].
Line 1,777: Line 1,808:
#Abdelmegid S, Murugaiyan J, Abo-Ismail M, Caswell JL, Kelton D, Kirby GM,  (2017) &quot;Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis.&quot; <i>Int J Mol Sci</i> <b>19</b>(1):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29283389 29283389]; doi: [https://dx.doi.org/10.3390/ijms19010078 10.3390/ijms19010078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29283389 11].
#Abdelmegid S, Murugaiyan J, Abo-Ismail M, Caswell JL, Kelton D, Kirby GM,  (2017) &quot;Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis.&quot; <i>Int J Mol Sci</i> <b>19</b>(1):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29283389 29283389]; doi: [https://dx.doi.org/10.3390/ijms19010078 10.3390/ijms19010078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29283389 11].
#Kelley RC, McDonagh B, Ferreira LF,  (2018) &quot;Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice.&quot; <i>Exp Gerontol</i> <b>103</b>:69&ndash;79; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29289553 29289553]; doi: [https://dx.doi.org/10.1016/j.exger.2017.12.017 10.1016/j.exger.2017.12.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29289553 24].
#Kelley RC, McDonagh B, Ferreira LF,  (2018) &quot;Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice.&quot; <i>Exp Gerontol</i> <b>103</b>:69&ndash;79; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29289553 29289553]; doi: [https://dx.doi.org/10.1016/j.exger.2017.12.017 10.1016/j.exger.2017.12.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29289553 24].
 +
#Behr M, Sergeant K, Leclercq CC, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G,  (2018) &quot;Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl.&quot; <i>BMC Plant Biol</i> <b>18</b>(1):1; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29291729 29291729]; doi: [https://dx.doi.org/10.1186/s12870-017-1213-1 10.1186/s12870-017-1213-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29291729 20].
#Ritz D, Sani E, Debiec H, Ronco P, Neri D, Fugmann T,  (2018) &quot;Membranal and blood-soluble HLA class II peptidome analyses using data-dependent and independent acquisition.&quot; <i>Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29314611 29314611]; doi: [https://dx.doi.org/10.1002/pmic.201700246 10.1002/pmic.201700246]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29314611 27].
#Ritz D, Sani E, Debiec H, Ronco P, Neri D, Fugmann T,  (2018) &quot;Membranal and blood-soluble HLA class II peptidome analyses using data-dependent and independent acquisition.&quot; <i>Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29314611 29314611]; doi: [https://dx.doi.org/10.1002/pmic.201700246 10.1002/pmic.201700246]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29314611 27].
#Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD,  (2018) &quot;Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness.&quot; <i>J Proteomics</i> <b>175</b>:144&ndash;155; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29317357 29317357]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.12.021 10.1016/j.jprot.2017.12.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29317357 55].
#Kooijman S, Brummelman J, van Els CACM, Marino F, Heck AJR, Mommen GPM, Metz B, Kersten GFA, Pennings JLA, Meiring HD,  (2018) &quot;Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness.&quot; <i>J Proteomics</i> <b>175</b>:144&ndash;155; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29317357 29317357]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.12.021 10.1016/j.jprot.2017.12.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29317357 55].
Line 1,806: Line 1,838:
#Karayel &Ouml;, &#x15E;anal E, Giese SH, &Uuml;retmen Kag&#x131;al&#x131; ZC, Polat AN, Hu CK, Renard BY, Tuncbag N, &Ouml;zl&uuml; N,  (2018) &quot;Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis.&quot; <i>Sci Rep</i> <b>8</b>(1):2269; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29396449 29396449]; doi: [https://dx.doi.org/10.1038/s41598-018-20231-5 10.1038/s41598-018-20231-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29396449 16].
#Karayel &Ouml;, &#x15E;anal E, Giese SH, &Uuml;retmen Kag&#x131;al&#x131; ZC, Polat AN, Hu CK, Renard BY, Tuncbag N, &Ouml;zl&uuml; N,  (2018) &quot;Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis.&quot; <i>Sci Rep</i> <b>8</b>(1):2269; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29396449 29396449]; doi: [https://dx.doi.org/10.1038/s41598-018-20231-5 10.1038/s41598-018-20231-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29396449 16].
#Ikoma M, Gantt S, Casper C, Ogata Y, Zhang Q, Basom R, Dyen MR, Rose TM, Barcy S,  (2018) &quot;KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite.&quot; <i>PLoS One</i> <b>13</b>(2):e0192659; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29425228 29425228]; doi: [https://dx.doi.org/10.1371/journal.pone.0192659 10.1371/journal.pone.0192659]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29425228 3].
#Ikoma M, Gantt S, Casper C, Ogata Y, Zhang Q, Basom R, Dyen MR, Rose TM, Barcy S,  (2018) &quot;KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite.&quot; <i>PLoS One</i> <b>13</b>(2):e0192659; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29425228 29425228]; doi: [https://dx.doi.org/10.1371/journal.pone.0192659 10.1371/journal.pone.0192659]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29425228 3].
 +
#Vornhagen J, Quach P, Santana-Ufret V, Alishetti V, Brokaw A, Armistead B, Qing Tang H, MacDonald JW, Bammler TK, Adams Waldorf KM, Uldbjerg N, Rajagopal L,  (2018) &quot;Human Cervical Mucus Plugs Exhibit Insufficiencies in Antimicrobial Activity Towards Group B Streptococcus.&quot; <i>J Infect Dis</i> <b>217</b>(10):1626&ndash;1636; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29425317 29425317]; doi: [https://dx.doi.org/10.1093/infdis/jiy076 10.1093/infdis/jiy076]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29425317 1].
#Sandow JJ, Rainczuk A, Infusini G, Makanji M, Bilandzic M, Wilson AL, Fairweather N, Stanton PG, Garama D, Gough D, Jobling TW, Webb AI, Stephens AN,  (2018) &quot;Discovery and Validation of Novel Protein Biomarkers in Ovarian Cancer Patient Urine.&quot; <i>Proteomics Clin Appl</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29426060 29426060]; doi: [https://dx.doi.org/10.1002/prca.201700135 10.1002/prca.201700135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29426060 10].
#Sandow JJ, Rainczuk A, Infusini G, Makanji M, Bilandzic M, Wilson AL, Fairweather N, Stanton PG, Garama D, Gough D, Jobling TW, Webb AI, Stephens AN,  (2018) &quot;Discovery and Validation of Novel Protein Biomarkers in Ovarian Cancer Patient Urine.&quot; <i>Proteomics Clin Appl</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29426060 29426060]; doi: [https://dx.doi.org/10.1002/prca.201700135 10.1002/prca.201700135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29426060 10].
#De Muyt A, Pyatnitskaya A, Andr&eacute;ani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Cout&eacute; Y, Cejka P, Gu&eacute;rois R, Borde V,  (2018) &quot;A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation.&quot; <i>Genes Dev</i> <b>32</b>(3-4):283&ndash;296; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29440262 29440262]; doi: [https://dx.doi.org/10.1101/gad.308510.117 10.1101/gad.308510.117]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29440262 19].
#De Muyt A, Pyatnitskaya A, Andr&eacute;ani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Cout&eacute; Y, Cejka P, Gu&eacute;rois R, Borde V,  (2018) &quot;A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation.&quot; <i>Genes Dev</i> <b>32</b>(3-4):283&ndash;296; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29440262 29440262]; doi: [https://dx.doi.org/10.1101/gad.308510.117 10.1101/gad.308510.117]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29440262 19].
Line 1,820: Line 1,853:
#O&#39;Loughlin T, Masters TA, Buss F,  (2018) &quot;The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.&quot; <i>EMBO Rep</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29467281 29467281]; doi: [https://dx.doi.org/10.15252/embr.201744884 10.15252/embr.201744884]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467281 34].
#O&#39;Loughlin T, Masters TA, Buss F,  (2018) &quot;The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.&quot; <i>EMBO Rep</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29467281 29467281]; doi: [https://dx.doi.org/10.15252/embr.201744884 10.15252/embr.201744884]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467281 34].
#Di Costanzo A, Del Gaudio N, Conte L, Dell&#39;Aversana C, Vermeulen M, de Th&eacute; H, Migliaccio A, Nebbioso A, Altucci L,  (2018) &quot;The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia.&quot; <i>Oncogene</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29467492 29467492]; doi: [https://dx.doi.org/10.1038/s41388-018-0143-1 10.1038/s41388-018-0143-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467492 6].
#Di Costanzo A, Del Gaudio N, Conte L, Dell&#39;Aversana C, Vermeulen M, de Th&eacute; H, Migliaccio A, Nebbioso A, Altucci L,  (2018) &quot;The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia.&quot; <i>Oncogene</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29467492 29467492]; doi: [https://dx.doi.org/10.1038/s41388-018-0143-1 10.1038/s41388-018-0143-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467492 6].
 +
#Lee SE, Song J, B&ouml;sl K, M&uuml;ller AC, Vitko D, Bennett KL, Superti-Furga G, Pandey A, Kandasamy RK, Kim MS,  (2018) &quot;Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines.&quot; <i>Proteomics</i> <b>18</b>(8):e1700386; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29474001 29474001]; doi: [https://dx.doi.org/10.1002/pmic.201700386 10.1002/pmic.201700386]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29474001 200].
#Chen D, Shen X, Sun L,  (2018) &quot;Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.&quot; <i>Anal Chim Acta</i> <b>1012</b>:1&ndash;9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29475469 29475469]; doi: [https://dx.doi.org/10.1016/j.aca.2018.01.037 10.1016/j.aca.2018.01.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29475469 2].
#Chen D, Shen X, Sun L,  (2018) &quot;Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.&quot; <i>Anal Chim Acta</i> <b>1012</b>:1&ndash;9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29475469 29475469]; doi: [https://dx.doi.org/10.1016/j.aca.2018.01.037 10.1016/j.aca.2018.01.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29475469 2].
#Hermanns T, Pichlo C, Woiwode I, Klopffleisch K, Witting KF, Ovaa H, Baumann U, Hofmann K,  (2018) &quot;A family of unconventional deubiquitinases with modular chain specificity determinants.&quot; <i>Nat Commun</i> <b>9</b>(1):799; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29476094 29476094]; doi: [https://dx.doi.org/10.1038/s41467-018-03148-5 10.1038/s41467-018-03148-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29476094 18].
#Hermanns T, Pichlo C, Woiwode I, Klopffleisch K, Witting KF, Ovaa H, Baumann U, Hofmann K,  (2018) &quot;A family of unconventional deubiquitinases with modular chain specificity determinants.&quot; <i>Nat Commun</i> <b>9</b>(1):799; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29476094 29476094]; doi: [https://dx.doi.org/10.1038/s41467-018-03148-5 10.1038/s41467-018-03148-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29476094 18].
Line 1,830: Line 1,864:
#Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, Potluri LP, Moody CS, Zeng J, Prisic S, Paulson JN, Muntel J, Madduri AVR, Velarde J, Mayfield JA, Locher C, Wang T, Quackenbush J, Rhee KY, Moody DB, Steen H, Husson RN,  (2018) &quot;Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface.&quot; <i>MBio</i> <b>9</b>(2):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29511081 29511081]; doi: [https://dx.doi.org/10.1128/mBio.02333-17 10.1128/mBio.02333-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511081 48].
#Carette X, Platig J, Young DC, Helmel M, Young AT, Wang Z, Potluri LP, Moody CS, Zeng J, Prisic S, Paulson JN, Muntel J, Madduri AVR, Velarde J, Mayfield JA, Locher C, Wang T, Quackenbush J, Rhee KY, Moody DB, Steen H, Husson RN,  (2018) &quot;Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface.&quot; <i>MBio</i> <b>9</b>(2):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29511081 29511081]; doi: [https://dx.doi.org/10.1128/mBio.02333-17 10.1128/mBio.02333-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511081 48].
#Iradi MCG, Triplett JC, Thomas JD, Davila R, Crown AM, Brown H, Lewis J, Swanson MS, Xu G, Rodriguez-Lebron E, Borchelt DR,  (2018) &quot;Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy.&quot; <i>Sci Rep</i> <b>8</b>(1):4049; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29511296 29511296]; doi: [https://dx.doi.org/10.1038/s41598-018-21371-4 10.1038/s41598-018-21371-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511296 23].
#Iradi MCG, Triplett JC, Thomas JD, Davila R, Crown AM, Brown H, Lewis J, Swanson MS, Xu G, Rodriguez-Lebron E, Borchelt DR,  (2018) &quot;Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy.&quot; <i>Sci Rep</i> <b>8</b>(1):4049; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29511296 29511296]; doi: [https://dx.doi.org/10.1038/s41598-018-21371-4 10.1038/s41598-018-21371-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511296 23].
 +
#Evans PR, Gerber KJ, Dammer EB, Duong DM, Goswami D, Lustberg DJ, Zou J, Yang JJ, Dudek SM, Griffin PR, Seyfried NT, Hepler JR,  (2018) &quot;Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca<sup>2+</sup>/CaM) and CaM Kinase II (CaMKII) Binding Partner.&quot; <i>J Proteome Res</i> <b>17</b>(4):1700&ndash;1711; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29518331 29518331]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00027 10.1021/acs.jproteome.8b00027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29518331 6].
#Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, Yuan J, Chen R, Li Y, Ge Z, Ji J, Zhang L, Wang J, Li Z, Lai Y, Hu Y, Li Y, Li Y, Gao J, Chen L, Xu J, Zhang C, Jung SY, Choi JM, Jain A, Liu M, Song L, Liu W, Guo G, Gong T, Huang Y, Qiu Y, Huang W, Shi T, Zhu W, Wang Y, He F, Shen L, Qin J,  (2018) &quot;A proteomic landscape of diffuse-type gastric cancer.&quot; <i>Nat Commun</i> <b>9</b>(1):1012; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29520031 29520031]; doi: [https://dx.doi.org/10.1038/s41467-018-03121-2 10.1038/s41467-018-03121-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520031 164].
#Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, Yuan J, Chen R, Li Y, Ge Z, Ji J, Zhang L, Wang J, Li Z, Lai Y, Hu Y, Li Y, Li Y, Gao J, Chen L, Xu J, Zhang C, Jung SY, Choi JM, Jain A, Liu M, Song L, Liu W, Guo G, Gong T, Huang Y, Qiu Y, Huang W, Shi T, Zhu W, Wang Y, He F, Shen L, Qin J,  (2018) &quot;A proteomic landscape of diffuse-type gastric cancer.&quot; <i>Nat Commun</i> <b>9</b>(1):1012; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29520031 29520031]; doi: [https://dx.doi.org/10.1038/s41467-018-03121-2 10.1038/s41467-018-03121-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520031 164].
#Ojalill M, Rappu P, Siljam&auml;ki E, Taimen P, Bostr&ouml;m P, Heino J,  (2018) &quot;The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis.&quot; <i>Prostate</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29520855 29520855]; doi: [https://dx.doi.org/10.1002/pros.23503 10.1002/pros.23503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520855 62].
#Ojalill M, Rappu P, Siljam&auml;ki E, Taimen P, Bostr&ouml;m P, Heino J,  (2018) &quot;The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis.&quot; <i>Prostate</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29520855 29520855]; doi: [https://dx.doi.org/10.1002/pros.23503 10.1002/pros.23503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520855 62].
#Chen JT, Liu CC, Yu JS, Li HH, Lai MC,  (2018) &quot;Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29524648 29524648]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.02.031 10.1016/j.jprot.2018.02.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29524648 4].
#Chen JT, Liu CC, Yu JS, Li HH, Lai MC,  (2018) &quot;Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29524648 29524648]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.02.031 10.1016/j.jprot.2018.02.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29524648 4].
#Deeke SA, Starr AE, Ning Z, Ahmadi S, Zhang X, Mayne J, Chiang CK, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D,  (2018) &quot;Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.&quot; <i>Am J Gastroenterol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29531307 29531307]; doi: [https://dx.doi.org/10.1038/s41395-018-0024-9 10.1038/s41395-018-0024-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29531307 112].
#Deeke SA, Starr AE, Ning Z, Ahmadi S, Zhang X, Mayne J, Chiang CK, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D,  (2018) &quot;Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.&quot; <i>Am J Gastroenterol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29531307 29531307]; doi: [https://dx.doi.org/10.1038/s41395-018-0024-9 10.1038/s41395-018-0024-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29531307 112].
 +
#Costanza B, Turtoi A, Bellahc&egrave;ne A, Hirano T, Peulen O, Blomme A, Hennequi&egrave;re V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V,  (2018) &quot;Innovative methodology for the identification of soluble biomarkers in fresh tissues.&quot; <i>Oncotarget</i> <b>9</b>(12):10665&ndash;10680; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29535834 29535834]; doi: [https://dx.doi.org/10.18632/oncotarget.24366 10.18632/oncotarget.24366]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29535834 15].
#Zila N, Bileck A, Muqaku B, Janker L, Eichhoff OM, Cheng PF, Dummer R, Levesque MP, Gerner C, Paulitschke V,  (2018) &quot;Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases.&quot; <i>Clin Proteomics</i> <b>15</b>:13; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29541007 29541007]; doi: [https://dx.doi.org/10.1186/s12014-018-9189-x 10.1186/s12014-018-9189-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29541007 36].
#Zila N, Bileck A, Muqaku B, Janker L, Eichhoff OM, Cheng PF, Dummer R, Levesque MP, Gerner C, Paulitschke V,  (2018) &quot;Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases.&quot; <i>Clin Proteomics</i> <b>15</b>:13; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29541007 29541007]; doi: [https://dx.doi.org/10.1186/s12014-018-9189-x 10.1186/s12014-018-9189-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29541007 36].
 +
#Huang X, Zhu H, Gao Z, Li J, Zhuang J, Dong Y, Shen B, Li M, Zhou H, Guo H, Huang R, Yan J,  (2018) &quot;Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p.&quot; <i>J Biol Chem</i> <b>293</b>(18):6693&ndash;6706; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29549123 29549123]; doi: [https://dx.doi.org/10.1074/jbc.RA118.001689 10.1074/jbc.RA118.001689]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29549123 1].
#Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, Muelbaier M, Wagner AJ, Strohmer K, Werner T, Melchert S, Petretich M, Rutkowska A, Vappiani J, Franken H, Steidel M, Sweetman GM, Gilan O, Lam EYN, Dawson MA, Prinjha RK, Grandi P, Bergamini G, Bantscheff M,  (2018) &quot;Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis.&quot; <i>Cell</i> <b>173</b>(1):260&ndash;274.e25; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29551266 29551266]; doi: [https://dx.doi.org/10.1016/j.cell.2018.02.030 10.1016/j.cell.2018.02.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29551266 5].
#Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S, Becher I, Muelbaier M, Wagner AJ, Strohmer K, Werner T, Melchert S, Petretich M, Rutkowska A, Vappiani J, Franken H, Steidel M, Sweetman GM, Gilan O, Lam EYN, Dawson MA, Prinjha RK, Grandi P, Bergamini G, Bantscheff M,  (2018) &quot;Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis.&quot; <i>Cell</i> <b>173</b>(1):260&ndash;274.e25; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29551266 29551266]; doi: [https://dx.doi.org/10.1016/j.cell.2018.02.030 10.1016/j.cell.2018.02.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29551266 5].
#Salunkhe V, De Cuyper IM, Papadopoulos P, van der Meer PF, Daal BB, Villa-Fajardo M, de Korte D, van den Berg TK, Guti&eacute;rrez L,  (2018) &quot;A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.&quot; <i>Platelets</i> <b></b>:1&ndash;12; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29553857 29553857]; doi: [https://dx.doi.org/10.1080/09537104.2018.1447658 10.1080/09537104.2018.1447658]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29553857 27].
#Salunkhe V, De Cuyper IM, Papadopoulos P, van der Meer PF, Daal BB, Villa-Fajardo M, de Korte D, van den Berg TK, Guti&eacute;rrez L,  (2018) &quot;A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.&quot; <i>Platelets</i> <b></b>:1&ndash;12; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29553857 29553857]; doi: [https://dx.doi.org/10.1080/09537104.2018.1447658 10.1080/09537104.2018.1447658]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29553857 27].
#Liang P, Zhu W, Lan T, Tao Q,  (2018) &quot;Detection of salivary protein biomarkers of saliva secretion disorder in a primary Sj&ouml;gren syndrome murine model.&quot; <i>J Pharm Biomed Anal</i> <b>154</b>:252&ndash;262; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29558726 29558726]; doi: [https://dx.doi.org/10.1016/j.jpba.2018.03.023 10.1016/j.jpba.2018.03.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29558726 2].
#Liang P, Zhu W, Lan T, Tao Q,  (2018) &quot;Detection of salivary protein biomarkers of saliva secretion disorder in a primary Sj&ouml;gren syndrome murine model.&quot; <i>J Pharm Biomed Anal</i> <b>154</b>:252&ndash;262; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29558726 29558726]; doi: [https://dx.doi.org/10.1016/j.jpba.2018.03.023 10.1016/j.jpba.2018.03.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29558726 2].
#Saei AA, Sabatier P, G&uuml;ler Tokat &Uuml;, Chernobrovkin A, Pirmoradian M, Zubarev RA,  (2018) &quot;Comparative proteomics of dying and surviving cancer cells improves&nbsp;the identification of drug targets and sheds light on cell life/death decisions.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29572246 29572246]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000610 10.1074/mcp.RA118.000610]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29572246 90].
#Saei AA, Sabatier P, G&uuml;ler Tokat &Uuml;, Chernobrovkin A, Pirmoradian M, Zubarev RA,  (2018) &quot;Comparative proteomics of dying and surviving cancer cells improves&nbsp;the identification of drug targets and sheds light on cell life/death decisions.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29572246 29572246]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000610 10.1074/mcp.RA118.000610]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29572246 90].
 +
#Zhang C, Leng W, Sun C, Lu T, Chen Z, Men X, Wang Y, Wang G, Zhen B, Qin J,  (2018) &quot;Urine Proteome Profiling Predicts Lung Cancer from Control Cases and Other Tumors.&quot; <i>EBioMedicine</i> <b>30</b>:120&ndash;128; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29576497 29576497]; doi: [https://dx.doi.org/10.1016/j.ebiom.2018.03.009 10.1016/j.ebiom.2018.03.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29576497 557].
#Haller C, Chaskar P, Piccand J, Cominetti O, Macron C, Dayon L, Kraus MR,  (2018) &quot;Insights into islet differentiation and maturation through proteomic characterization of a human iPSC-derived pancreatic endocrine model.&quot; <i>Proteomics Clin Appl</i> <b></b>:e1600173; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29578310 29578310]; doi: [https://dx.doi.org/10.1002/prca.201600173 10.1002/prca.201600173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29578310 218].
#Haller C, Chaskar P, Piccand J, Cominetti O, Macron C, Dayon L, Kraus MR,  (2018) &quot;Insights into islet differentiation and maturation through proteomic characterization of a human iPSC-derived pancreatic endocrine model.&quot; <i>Proteomics Clin Appl</i> <b></b>:e1600173; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29578310 29578310]; doi: [https://dx.doi.org/10.1002/prca.201600173 10.1002/prca.201600173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29578310 218].
#Tucher C, Bode K, Schiller P, Cla&szlig;en L, Birr C, Souto-Carneiro MM, Blank N, Lorenz HM, Schiller M,  (2018) &quot;Extracellular Vesicle Subtypes Released From Activated or Apoptotic T-Lymphocytes Carry a Specific and Stimulus-Dependent Protein Cargo.&quot; <i>Front Immunol</i> <b>9</b>:534; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29599781 29599781]; doi: [https://dx.doi.org/10.3389/fimmu.2018.00534 10.3389/fimmu.2018.00534]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29599781 24].
#Tucher C, Bode K, Schiller P, Cla&szlig;en L, Birr C, Souto-Carneiro MM, Blank N, Lorenz HM, Schiller M,  (2018) &quot;Extracellular Vesicle Subtypes Released From Activated or Apoptotic T-Lymphocytes Carry a Specific and Stimulus-Dependent Protein Cargo.&quot; <i>Front Immunol</i> <b>9</b>:534; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29599781 29599781]; doi: [https://dx.doi.org/10.3389/fimmu.2018.00534 10.3389/fimmu.2018.00534]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29599781 24].
Line 1,844: Line 1,882:
#Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, &Ouml;zturk V&Ouml;, Afacan B, Emingil G, Belibasakis GN,  (2018) &quot;Targeted proteomics guided by label-free global proteome analysis in saliva reveal transition signatures from health to periodontal disease.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29610270 29610270]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000718 10.1074/mcp.RA118.000718]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29610270 54].
#Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, &Ouml;zturk V&Ouml;, Afacan B, Emingil G, Belibasakis GN,  (2018) &quot;Targeted proteomics guided by label-free global proteome analysis in saliva reveal transition signatures from health to periodontal disease.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29610270 29610270]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000718 10.1074/mcp.RA118.000718]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29610270 54].
#Sipil&auml; KH, Drushinin K, Rappu P, Jokinen J, Salminen TA, Salo AM, K&auml;pyl&auml; J, Myllyharju J, Heino J,  (2018) &quot;Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms.&quot; <i>J Biol Chem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29615493 29615493]; doi: [https://dx.doi.org/10.1074/jbc.RA118.002200 10.1074/jbc.RA118.002200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29615493 54].
#Sipil&auml; KH, Drushinin K, Rappu P, Jokinen J, Salminen TA, Salo AM, K&auml;pyl&auml; J, Myllyharju J, Heino J,  (2018) &quot;Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms.&quot; <i>J Biol Chem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29615493 29615493]; doi: [https://dx.doi.org/10.1074/jbc.RA118.002200 10.1074/jbc.RA118.002200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29615493 54].
 +
#Lobas AA, Pyatnitskiy MA, Chernobrovkin AL, Ilina IY, Karpov DS, Solovyeva EM, Kuznetsova KG, Ivanov MV, Lyssuk EY, Kliuchnikova AA, Voronko OE, Larin SS, Zubarev RA, Gorshkov MV, Moshkovskii SA,  (2018) &quot;Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(5):1801&ndash;1811; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29619825 29619825]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00841 10.1021/acs.jproteome.7b00841]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29619825 48].
#Lim S, Kim D, Ju S, Shin S, Cho IJ, Park SH, Grailhe R, Lee C, Kim YK,  (2018) &quot;Glioblastoma-secreted soluble CD44 activates tau pathology in the brain.&quot; <i>Exp Mol Med</i> <b>50</b>(4):5; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29622771 29622771]; doi: [https://dx.doi.org/10.1038/s12276-017-0008-7 10.1038/s12276-017-0008-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29622771 2].
#Lim S, Kim D, Ju S, Shin S, Cho IJ, Park SH, Grailhe R, Lee C, Kim YK,  (2018) &quot;Glioblastoma-secreted soluble CD44 activates tau pathology in the brain.&quot; <i>Exp Mol Med</i> <b>50</b>(4):5; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29622771 29622771]; doi: [https://dx.doi.org/10.1038/s12276-017-0008-7 10.1038/s12276-017-0008-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29622771 2].
#Sanz-Bravo A, Alvarez-Navarro C, Mart&iacute;n-Esteban A, Barnea E, Admon A, L&oacute;pez de Castro JA,  (2018) &quot;Ranking the contribution of ankylosing spondylitis-associated ERAP1 polymorphisms to shaping the HLA-B*27 peptidome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29632046 29632046]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000565 10.1074/mcp.RA117.000565]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29632046 15].
#Sanz-Bravo A, Alvarez-Navarro C, Mart&iacute;n-Esteban A, Barnea E, Admon A, L&oacute;pez de Castro JA,  (2018) &quot;Ranking the contribution of ankylosing spondylitis-associated ERAP1 polymorphisms to shaping the HLA-B*27 peptidome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29632046 29632046]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000565 10.1074/mcp.RA117.000565]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29632046 15].
 +
#Azimi A, Kaufman KL, Ali M, Arthur J, Kossard S, Fernandez-Penas P,  (2018) &quot;Differential proteomic analysis of actinic keratosis, Bowen&#39;s disease and cutaneous squamous cell carcinoma by label-free LC-MS/MS.&quot; <i>J Dermatol Sci</i> <b>91</b>(1):69&ndash;78; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29665991 29665991]; doi: [https://dx.doi.org/10.1016/j.jdermsci.2018.04.006 10.1016/j.jdermsci.2018.04.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29665991 31].
#Wu W, Zaal EA, Berkers CR, Lemeer S, Heck AJR,  (2018) &quot;CTGF/VEGFA-activated fibroblasts promote tumor migration through micro-environmental modulation.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29669735 29669735]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000708 10.1074/mcp.RA118.000708]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29669735 57].
#Wu W, Zaal EA, Berkers CR, Lemeer S, Heck AJR,  (2018) &quot;CTGF/VEGFA-activated fibroblasts promote tumor migration through micro-environmental modulation.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29669735 29669735]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000708 10.1074/mcp.RA118.000708]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29669735 57].
 +
#Mao F, Lei J, Enoch O, Wei M, Zhao C, Quan Y, Yu W,  (2018) &quot;Quantitative proteomics of Bombyx mori after BmNPV challenge.&quot; <i>J Proteomics</i> <b>181</b>:142&ndash;151; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29674014 29674014]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.04.010 10.1016/j.jprot.2018.04.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29674014 18].
#Johnston D, Malo Estepa I, Ebhardt HA, Crowe MA, Diskin MG,  (2018) &quot;Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle.&quot; <i>Theriogenology</i> <b>114</b>:301&ndash;307; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29677633 29677633]; doi: [https://dx.doi.org/10.1016/j.theriogenology.2018.04.008 10.1016/j.theriogenology.2018.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29677633 63].
#Johnston D, Malo Estepa I, Ebhardt HA, Crowe MA, Diskin MG,  (2018) &quot;Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle.&quot; <i>Theriogenology</i> <b>114</b>:301&ndash;307; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29677633 29677633]; doi: [https://dx.doi.org/10.1016/j.theriogenology.2018.04.008 10.1016/j.theriogenology.2018.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29677633 63].
 +
#Zhang X, Chang H, Dong Z, Zhang Y, Zhao D, Ye L, Xia Q, Zhao P,  (2018) &quot;Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage.&quot; <i>Proteomics</i> <b>18</b>(19):e1700389; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29687606 29687606]; doi: [https://dx.doi.org/10.1002/pmic.201700389 10.1002/pmic.201700389]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29687606 6].
#Komov L, Kadosh DM, Barnea E, Milner E, Hendler A, Admon A,  (2018) &quot;Cell Surface MHC Class I Expression is Limited by the Availability of Peptide-Receptive &#39;Empty&#39; Molecules Rather than by the Supply of Peptide Ligands.&quot; <i>Proteomics</i> <b></b>:e1700248; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29707912 29707912]; doi: [https://dx.doi.org/10.1002/pmic.201700248 10.1002/pmic.201700248]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707912 35].
#Komov L, Kadosh DM, Barnea E, Milner E, Hendler A, Admon A,  (2018) &quot;Cell Surface MHC Class I Expression is Limited by the Availability of Peptide-Receptive &#39;Empty&#39; Molecules Rather than by the Supply of Peptide Ligands.&quot; <i>Proteomics</i> <b></b>:e1700248; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29707912 29707912]; doi: [https://dx.doi.org/10.1002/pmic.201700248 10.1002/pmic.201700248]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707912 35].
#Rosting C, Yu J, Cooper HJ,  (2018) &quot;High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29707944 29707944]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00746 10.1021/acs.jproteome.7b00746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707944 42].
#Rosting C, Yu J, Cooper HJ,  (2018) &quot;High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29707944 29707944]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00746 10.1021/acs.jproteome.7b00746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707944 42].
Line 1,855: Line 1,897:
#Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M,  (2018) &quot;BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.&quot; <i>Nat Methods</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29735998 29735998]; doi: [https://dx.doi.org/10.1038/s41592-018-0003-5 10.1038/s41592-018-0003-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29735998 60].
#Meier F, Geyer PE, Virreira Winter S, Cox J, Mann M,  (2018) &quot;BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.&quot; <i>Nat Methods</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29735998 29735998]; doi: [https://dx.doi.org/10.1038/s41592-018-0003-5 10.1038/s41592-018-0003-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29735998 60].
#Seltmann K, Meyer M, Sulcova J, Kockmann T, Wehkamp U, Weidinger S, Auf dem Keller U, Werner S,  (2018) &quot;Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress.&quot; <i>Sci Transl Med</i> <b>10</b>(440):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29743348 29743348]; doi: [https://dx.doi.org/10.1126/scitranslmed.aao4650 10.1126/scitranslmed.aao4650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29743348 24].
#Seltmann K, Meyer M, Sulcova J, Kockmann T, Wehkamp U, Weidinger S, Auf dem Keller U, Werner S,  (2018) &quot;Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress.&quot; <i>Sci Transl Med</i> <b>10</b>(440):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29743348 29743348]; doi: [https://dx.doi.org/10.1126/scitranslmed.aao4650 10.1126/scitranslmed.aao4650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29743348 24].
 +
#Malet JK, Impens F, Carvalho F, Hamon MA, Cossart P, Ribet D,  (2018) &quot;Rapid Remodeling of the Host Epithelial Cell Proteome by the Listeriolysin O (LLO) Pore-forming Toxin.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(8):1627&ndash;1636; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29752379 29752379]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000767 10.1074/mcp.RA118.000767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29752379 4].
#Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC,  (2018) &quot;Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer.&quot; <i>Electrophoresis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29756217 29756217]; doi: [https://dx.doi.org/10.1002/elps.201800025 10.1002/elps.201800025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29756217 62].
#Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC,  (2018) &quot;Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer.&quot; <i>Electrophoresis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29756217 29756217]; doi: [https://dx.doi.org/10.1002/elps.201800025 10.1002/elps.201800025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29756217 62].
#Gaviard C, Broutin I, Cosette P, De E, Jouenne T, Hardouin J,  (2018) &quot;Lysine succinylation and acetylation in Pseudomonas aeruginosa.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29770699 29770699]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00210 10.1021/acs.jproteome.8b00210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29770699 24].
#Gaviard C, Broutin I, Cosette P, De E, Jouenne T, Hardouin J,  (2018) &quot;Lysine succinylation and acetylation in Pseudomonas aeruginosa.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29770699 29770699]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00210 10.1021/acs.jproteome.8b00210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29770699 24].
#Di Lorenzo G, Voltolini Velho R, Winter D, Thelen M, Ahmadi S, Schweizer M, De Pace R, Cornils K, Yorgan TA, Gr&uuml;b S, Hermans-Borgmeyer I, Schinke T, M&uuml;ller-Loennies S, Braulke T, Pohl S,  (2018) &quot;Lysosomal proteome and secretome analysis identifies missorted enzymes and their non-degraded substrates in mucolipidosis III mouse cells.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29773673 29773673]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000720 10.1074/mcp.RA118.000720]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29773673 30].
#Di Lorenzo G, Voltolini Velho R, Winter D, Thelen M, Ahmadi S, Schweizer M, De Pace R, Cornils K, Yorgan TA, Gr&uuml;b S, Hermans-Borgmeyer I, Schinke T, M&uuml;ller-Loennies S, Braulke T, Pohl S,  (2018) &quot;Lysosomal proteome and secretome analysis identifies missorted enzymes and their non-degraded substrates in mucolipidosis III mouse cells.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29773673 29773673]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000720 10.1074/mcp.RA118.000720]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29773673 30].
#Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, Li L, Ge J, Ying X, Guo X, Wang Q,  (2018) &quot;Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29776966 29776966]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000620 10.1074/mcp.RA118.000620]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29776966 9].
#Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, Li L, Ge J, Ying X, Guo X, Wang Q,  (2018) &quot;Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29776966 29776966]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000620 10.1074/mcp.RA118.000620]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29776966 9].
 +
#Guo J, Zhang T, Guo Y, Sun T, Li H, Zhang X, Yin H, Cao G, Yin Y, Wang H, Shi L, Guo X, Sha J, Eppig JJ, Su YQ,  (2018) &quot;Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice.&quot; <i>Proc Natl Acad Sci U S A</i> <b>115</b>(23):E5326&ndash;E5333; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29784807 29784807]; doi: [https://dx.doi.org/10.1073/pnas.1800352115 10.1073/pnas.1800352115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29784807 30].
#Ternette N, Olde Nordkamp MJM, M&uuml;ller J, Anderson AP, Nicastri A, Hill AVS, Kessler BM, Li D,  (2018) &quot;Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens.&quot; <i>Proteomics</i> <b>18</b>(12):e1700465; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29786170 29786170]; doi: [https://dx.doi.org/10.1002/pmic.201700465 10.1002/pmic.201700465]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29786170 66].
#Ternette N, Olde Nordkamp MJM, M&uuml;ller J, Anderson AP, Nicastri A, Hill AVS, Kessler BM, Li D,  (2018) &quot;Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens.&quot; <i>Proteomics</i> <b>18</b>(12):e1700465; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29786170 29786170]; doi: [https://dx.doi.org/10.1002/pmic.201700465 10.1002/pmic.201700465]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29786170 66].
#L&ouml;ffler MW, Kowalewski DJ, Backert L, Bernhardt J, Adam P, Schuster H, Dengler F, Backes D, Kopp HG, Beckert S, Wagner S, K&ouml;nigsrainer I, Kohlbacher O, Kanz L, K&ouml;nigsrainer A, Rammensee HG, Stevanovic S, Haen SP,  (2018) &quot;Mapping the HLA ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation.&quot; <i>Cancer Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29789417 29789417]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-17-1745 10.1158/0008-5472.CAN-17-1745]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29789417 530].
#L&ouml;ffler MW, Kowalewski DJ, Backert L, Bernhardt J, Adam P, Schuster H, Dengler F, Backes D, Kopp HG, Beckert S, Wagner S, K&ouml;nigsrainer I, Kohlbacher O, Kanz L, K&ouml;nigsrainer A, Rammensee HG, Stevanovic S, Haen SP,  (2018) &quot;Mapping the HLA ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation.&quot; <i>Cancer Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29789417 29789417]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-17-1745 10.1158/0008-5472.CAN-17-1745]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29789417 530].
Line 1,879: Line 1,923:
#Pietras Z, Wojcik MA, Borowski LS, Szewczyk M, Kulinski TM, Cysewski D, Stepien PP, Dziembowski A, Szczesny RJ,  (2018) &quot;Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria.&quot; <i>Nat Commun</i> <b>9</b>(1):2558; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29967381 29967381]; doi: [https://dx.doi.org/10.1038/s41467-018-05007-9 10.1038/s41467-018-05007-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967381 18].
#Pietras Z, Wojcik MA, Borowski LS, Szewczyk M, Kulinski TM, Cysewski D, Stepien PP, Dziembowski A, Szczesny RJ,  (2018) &quot;Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria.&quot; <i>Nat Commun</i> <b>9</b>(1):2558; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29967381 29967381]; doi: [https://dx.doi.org/10.1038/s41467-018-05007-9 10.1038/s41467-018-05007-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967381 18].
#Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, Puglia M, Christensen SDK, Vanselow JT, Nielsen MM, Kratchmarova I, Kelstrup CD, Olsen JV, Blagoev B,  (2018) &quot;UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites.&quot; <i>Nat Struct Mol Biol</i> <b>25</b>(7):631&ndash;640; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29967540 29967540]; doi: [https://dx.doi.org/10.1038/s41594-018-0084-y 10.1038/s41594-018-0084-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967540 136].
#Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, Puglia M, Christensen SDK, Vanselow JT, Nielsen MM, Kratchmarova I, Kelstrup CD, Olsen JV, Blagoev B,  (2018) &quot;UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites.&quot; <i>Nat Struct Mol Biol</i> <b>25</b>(7):631&ndash;640; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29967540 29967540]; doi: [https://dx.doi.org/10.1038/s41594-018-0084-y 10.1038/s41594-018-0084-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967540 136].
 +
#T&ouml;lle RC, Gaggioli C, Dengjel J,  (2018) &quot;Three-Dimensional Cell Culture Conditions Affect the Proteome of Cancer-Associated Fibroblasts.&quot; <i>J Proteome Res</i> <b>17</b>(8):2780&ndash;2789; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29989826 29989826]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00237 10.1021/acs.jproteome.8b00237]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29989826 318].
#Sureka R, Wadhwa R, Thakur SS, Pathak RU, Mishra RK,  (2018) &quot;Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold proteins in Drosophila S2 cells - Transmission of hallmarks of nuclear organization through mitosis.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29991507 29991507]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000591 10.1074/mcp.RA118.000591]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29991507 6].
#Sureka R, Wadhwa R, Thakur SS, Pathak RU, Mishra RK,  (2018) &quot;Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold proteins in Drosophila S2 cells - Transmission of hallmarks of nuclear organization through mitosis.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/29991507 29991507]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000591 10.1074/mcp.RA118.000591]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29991507 6].
#Kim D, Liu Y, Oberly S, Freire R, Smolka MB,  (2018) &quot;ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells.&quot; <i>Nucleic Acids Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30010936 30010936]; doi: [https://dx.doi.org/10.1093/nar/gky625 10.1093/nar/gky625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30010936 2].
#Kim D, Liu Y, Oberly S, Freire R, Smolka MB,  (2018) &quot;ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells.&quot; <i>Nucleic Acids Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30010936 30010936]; doi: [https://dx.doi.org/10.1093/nar/gky625 10.1093/nar/gky625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30010936 2].
Line 1,884: Line 1,929:
#Duda P, W&oacute;jcicka O, Wi&#x15B;niewski JR, Rakus D,  (2018) &quot;Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging.&quot; <i>Aging (Albany NY)</i> <b>10</b>(7):1682&ndash;1697; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30026405 30026405]; doi: [https://dx.doi.org/10.18632/aginh.101501 10.18632/aginh.101501]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30026405 59].
#Duda P, W&oacute;jcicka O, Wi&#x15B;niewski JR, Rakus D,  (2018) &quot;Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging.&quot; <i>Aging (Albany NY)</i> <b>10</b>(7):1682&ndash;1697; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30026405 30026405]; doi: [https://dx.doi.org/10.18632/aginh.101501 10.18632/aginh.101501]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30026405 59].
#Evans J, Infusini G, McGovern J, Cuttle L, Webb A, Nebl T, Milla L, Kimble R, Kempf M, Andrews CJ, Leavesley D, Salamonsen LA,  (2018) &quot;Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.&quot; <i>FASEB J</i> <b></b>:fj201800086R; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30036086 30036086]; doi: [https://dx.doi.org/10.1096/fj.201800086R 10.1096/fj.201800086R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30036086 46].
#Evans J, Infusini G, McGovern J, Cuttle L, Webb A, Nebl T, Milla L, Kimble R, Kempf M, Andrews CJ, Leavesley D, Salamonsen LA,  (2018) &quot;Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.&quot; <i>FASEB J</i> <b></b>:fj201800086R; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30036086 30036086]; doi: [https://dx.doi.org/10.1096/fj.201800086R 10.1096/fj.201800086R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30036086 46].
 +
#Iglesias-Gato D, Thysell E, Tyanova S, Crnalic S, Santos A, Lima TS, Geiger T, Cox J, Widmark A, Bergh A, Mann M, Flores-Morales A, Wikstr&ouml;m P,  (2018) &quot;The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications.&quot; <i>Clin Cancer Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30042207 30042207]; doi: [https://dx.doi.org/10.1158/1078-0432.CCR-18-1229 10.1158/1078-0432.CCR-18-1229]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30042207 21].
#Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, Bonham S, Kessler BM, Rottenberg S, Cornall RJ, Green CM, Chapman JR,  (2018) &quot;53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ.&quot; <i>Nature</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30046110 30046110]; doi: [https://dx.doi.org/10.1038/s41586-018-0362-1 10.1038/s41586-018-0362-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30046110 8].
#Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, Bonham S, Kessler BM, Rottenberg S, Cornall RJ, Green CM, Chapman JR,  (2018) &quot;53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ.&quot; <i>Nature</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30046110 30046110]; doi: [https://dx.doi.org/10.1038/s41586-018-0362-1 10.1038/s41586-018-0362-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30046110 8].
#Nilsen BW, Simon-Santamaria J, &Ouml;rtengren U, Jensen E, Bruun JA, Michelsen VB, S&oslash;rensen KK,  (2018) &quot;Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes.&quot; <i>Eur J Oral Sci</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30051916 30051916]; doi: [https://dx.doi.org/10.1111/eos.12559 10.1111/eos.12559]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30051916 92].
#Nilsen BW, Simon-Santamaria J, &Ouml;rtengren U, Jensen E, Bruun JA, Michelsen VB, S&oslash;rensen KK,  (2018) &quot;Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes.&quot; <i>Eur J Oral Sci</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30051916 30051916]; doi: [https://dx.doi.org/10.1111/eos.12559 10.1111/eos.12559]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30051916 92].
Line 1,889: Line 1,935:
#Shraibman B, Barnea E, Melamed Kadosh D, Haimovich Y, Slobodin G, Rosner I, L&oacute;pez-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, Von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A,  (2018) &quot;Identification of tumor antigens among the HLA peptidomes of Glioblastoma tumors and plasma.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30072578 30072578]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000792 10.1074/mcp.RA118.000792]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30072578 75].
#Shraibman B, Barnea E, Melamed Kadosh D, Haimovich Y, Slobodin G, Rosner I, L&oacute;pez-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, Von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A,  (2018) &quot;Identification of tumor antigens among the HLA peptidomes of Glioblastoma tumors and plasma.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30072578 30072578]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000792 10.1074/mcp.RA118.000792]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30072578 75].
#Park S, Park JH, Jung HJ, Jang JH, Ahn S, Kim Y, Suh PG, Chae S, Yoon JH, Ryu SH, Hwang D,  (2018) &quot;A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells.&quot; <i>Exp Mol Med</i> <b>50</b>(8):93; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30076294 30076294]; doi: [https://dx.doi.org/10.1038/s12276-018-0120-3 10.1038/s12276-018-0120-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30076294 24].
#Park S, Park JH, Jung HJ, Jang JH, Ahn S, Kim Y, Suh PG, Chae S, Yoon JH, Ryu SH, Hwang D,  (2018) &quot;A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells.&quot; <i>Exp Mol Med</i> <b>50</b>(8):93; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30076294 30076294]; doi: [https://dx.doi.org/10.1038/s12276-018-0120-3 10.1038/s12276-018-0120-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30076294 24].
 +
#de la Parra C, Ernlund A, Alard A, Ruggles K, Ueberheide B, Schneider RJ,  (2018) &quot;A widespread alternate form of cap-dependent mRNA translation initiation.&quot; <i>Nat Commun</i> <b>9</b>(1):3068; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30076308 30076308]; doi: [https://dx.doi.org/10.1038/s41467-018-05539-0 10.1038/s41467-018-05539-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30076308 21].
 +
#Kozono S, Lin YM, Seo HS, Pinch B, Lian X, Qiu C, Herbert MK, Chen CH, Tan L, Gao ZJ, Massefski W, Doctor ZM, Jackson BP, Chen Y, Dhe-Paganon S, Lu KP, Zhou XZ,  (2018) &quot;Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells.&quot; <i>Nat Commun</i> <b>9</b>(1):3069; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30093655 30093655]; doi: [https://dx.doi.org/10.1038/s41467-018-05402-2 10.1038/s41467-018-05402-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30093655 12].
 +
#Kumar G, Hummel K, Razzazi-Fazeli E, El-Matbouli M,  (2018) &quot;Proteome Profiles of Head Kidney and Spleen of Rainbow Trout (Oncorhynchus Mykiss).&quot; <i>Proteomics</i> <b></b>:e1800101; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30094954 30094954]; doi: [https://dx.doi.org/10.1002/pmic.201800101 10.1002/pmic.201800101]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30094954 54].
 +
#Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP,  (2018) &quot;Discovery of a human testis-specific protein complex TEX101-DPEP3 and selection of its disrupting antibodies.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30097533 30097533]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000749 10.1074/mcp.RA118.000749]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30097533 44].
 +
#Hwang H, Jeong JE, Lee HK, Yun KN, An HJ, Lee B, Paik YK, Jeong TS, Yee GT, Kim JY, Yoo JS,  (2018) &quot;Identification of Missing Proteins in Human Olfactory Epithelial Tissue by Liquid Chromatography-Tandem Mass Spectrometry.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30113170 30113170]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00408 10.1021/acs.jproteome.8b00408]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30113170 23].
 +
#Simunovic F, Winninger O, Strassburg S, Koch HG, Finkenzeller G, Stark GB, Lampert FM,  (2019) &quot;Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: A quantitative proteomics approach.&quot; <i>J Cell Biochem</i> <b>120</b>(1):396&ndash;404; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30126049 30126049]; doi: [https://dx.doi.org/10.1002/jcb.27394 10.1002/jcb.27394]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30126049 20].
 +
#Shen ZQ, Shi B, Wang TR, Jiao J, Shang X, Wu QJ, Zhou YM, Cao TF, Du Q, Wang XX, Li D,  (2018) &quot;Characterization of the Sperm Proteome and Reproductive Outcomes with <i>in Vitro</i> Fertilization after a Reduction in Male Ejaculatory Abstinence Period.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30126978 30126978]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000541 10.1074/mcp.RA117.000541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30126978 18].
 +
#Locatelli G, Theodorou D, Kendirli A, Jord&atilde;o MJC, Staszewski O, Phulphagar K, Cantuti-Castelvetri L, Dagkalis A, Bessis A, Simons M, Meissner F, Prinz M, Kerschensteiner M,  (2018) &quot;Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model.&quot; <i>Nat Neurosci</i> <b>21</b>(9):1196&ndash;1208; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30127427 30127427]; doi: [https://dx.doi.org/10.1038/s41593-018-0212-3 10.1038/s41593-018-0212-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30127427 78].
 +
#DeLeon-Pennell KY, Mouton AJ, Ero OK, Ma Y, Padmanabhan Iyer R, Flynn ER, Espinoza I, Musani SK, Vasan RS, Hall ME, Fox ER, Lindsey ML,  (2018) &quot;LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling.&quot; <i>Basic Res Cardiol</i> <b>113</b>(5):40; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30132266 30132266]; doi: [https://dx.doi.org/10.1007/s00395-018-0699-5 10.1007/s00395-018-0699-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30132266 120].
 +
#We&szlig;becher IM, Hinrichsen I, Funke S, Oellerich T, Plotz G, Zeuzem S, Grus FH, Biondi RM, Brieger A,  (2018) &quot;DNA mismatch repair activity of MutL&alpha; is regulated by CK2-dependent phosphorylation of MLH1 (S477).&quot; <i>Mol Carcinog</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30136313 30136313]; doi: [https://dx.doi.org/10.1002/mc.22892 10.1002/mc.22892]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30136313 2].
 +
#Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K, Conradi LC, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF, Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A, Ghesqui&egrave;re B, Schoonjans L, Li X, Mazzone M, Carmeliet P,  (2018) &quot;Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation.&quot; <i>Cell Metab</i> <b>28</b>(6):866&ndash;880.e15; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30146486 30146486]; doi: [https://dx.doi.org/10.1016/j.cmet.2018.07.019 10.1016/j.cmet.2018.07.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30146486 2].
 +
#Varland S, Aksnes H, Kryuchkov F, Impens F, Van Haver D, Jonckheere V, Ziegler M, Gevaert K, Van Damme P, Arnesen T,  (2018) &quot;N-terminal acetylation levels are maintained during acetyl-CoA deficiency in Saccharomyces cerevisiae.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30150368 30150368]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000982 10.1074/mcp.RA118.000982]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30150368 17].
 +
#B&eacute;guin EP, van den Eshof BL, Hoogendijk AJ, Nota B, Mertens K, Meijer AB, van den Biggelaar M,  (2018) &quot;Integrated proteomic analysis of tumor necrosis factor &alpha; and interleukin 1&beta;-induced endothelial inflammation.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30153514 30153514]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.08.011 10.1016/j.jprot.2018.08.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30153514 51].
 +
#Yanovich G, Agmon H, Harel M, Sonnenblick A, Peretz T, Geiger T,  (2018) &quot;Clinical Proteomics of Breast Cancer Reveals a Novel Layer of Breast Cancer Classification.&quot; <i>Cancer Res</i> <b>78</b>(20):6001&ndash;6010; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30154156 30154156]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-18-1079 10.1158/0008-5472.CAN-18-1079]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30154156 30].
 +
#Ten-Dom&eacute;nech I, Sim&oacute;-Alfonso EF, Herrero-Mart&iacute;nez JM,  (2018) &quot;Improving Fractionation of Human Milk Proteins through Calcium Phosphate Coprecipitation and Their Rapid Characterization by Capillary Electrophoresis.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30156851 30156851]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00526 10.1021/acs.jproteome.8b00526]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30156851 26].
 +
#Carnielli CM, Macedo CCS, De Rossi T, Granato DC, Rivera C, Domingues RR, Pauletti BA, Yokoo S, Heberle H, Busso-Lopes AF, Cervigne NK, Sawazaki-Calone I, Meirelles GV, Marchi FA, Telles GP, Minghim R, Ribeiro ACP, Brand&atilde;o TB, de Castro G Jr, Gonz&aacute;lez-Arriagada WA, Gomes A, Penteado F, Santos-Silva AR, Lopes MA, Rodrigues PC, Sundquist E, Salo T, da Silva SD, Alaoui-Jamali MA, Graner E, Fox JW, Coletta RD, Paes Leme AF,  (2018) &quot;Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer.&quot; <i>Nat Commun</i> <b>9</b>(1):3598; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30185791 30185791]; doi: [https://dx.doi.org/10.1038/s41467-018-05696-2 10.1038/s41467-018-05696-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30185791 122].
 +
#Abreha MH, Dammer EB, Ping L, Zhang T, Duong DM, Gearing M, Lah JJ, Levey AI, Seyfried NT,  (2018) &quot;Quantitative Analysis of the Brain Ubiquitylome in Alzheimer&#39;s Disease.&quot; <i>Proteomics</i> <b>18</b>(20):e1800108; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30230243 30230243]; doi: [https://dx.doi.org/10.1002/pmic.201800108 10.1002/pmic.201800108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30230243 29].
 +
#Finamore F, Reny JL, Malacarne S, Fontana P, Sanchez JC,  (2018) &quot;A high glucose level is associated with decreased aspirin-mediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: A pilot study.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30240925 30240925]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.09.007 10.1016/j.jprot.2018.09.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30240925 18].
 +
#Ohta S, Taniguchi T, Sato N, Hamada M, Taniguchi H, Rappsilber J,  (2019) &quot;Quantitative Proteomics of the Mitotic Chromosome Scaffold Reveals the Association of BAZ1B with Chromosomal Axes.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(2):169&ndash;181; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30266865 30266865]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000923 10.1074/mcp.RA118.000923]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30266865 3].
 +
#Sun J, Shi J, Wang Y, Chen Y, Li Y, Kong D, Chang L, Liu F, Lv Z, Zhou Y, He F, Zhang Y, Xu P,  (2018) &quot;Multiproteases Combined with High-pH Reverse-Phase Separation Strategy Verified Fourteen Missing Proteins in Human Testis Tissue.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30280576 30280576]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00397 10.1021/acs.jproteome.8b00397]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30280576 108].
 +
#Sepil I, Hopkins BR, Dean R, Th&eacute;z&eacute;nas ML, Charles PD, Konietzny R, Fischer R, Kessler B, Wigby S,  (2018) &quot;Quantitative proteomics identification of seminal fluid proteins in male <i>Drosophila melanogaster</i>.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30287546 30287546]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000831 10.1074/mcp.RA118.000831]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30287546 87].
 +
#Erdmann J, Preusse M, Khaledi A, Pich A, H&auml;ussler S,  (2018) &quot;Environment-driven changes of mRNA and protein levels in Pseudomonas aeruginosa.&quot; <i>Environ Microbiol</i> <b>20</b>(11):3952&ndash;3963; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30346651 30346651]; doi: [https://dx.doi.org/10.1111/1462-2920.14419 10.1111/1462-2920.14419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30346651 253].
 +
#Krahmer N, Najafi B, Schueder F, Quagliarini F, Steger M, Seitz S, Kasper R, Salinas F, Cox J, Uhlenhaut NH, Walther TC, Jungmann R, Zeigerer A, Borner GHH, Mann M,  (2018) &quot;Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis.&quot; <i>Dev Cell</i> <b>47</b>(2):205&ndash;221.e7; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30352176 30352176]; doi: [https://dx.doi.org/10.1016/j.devcel.2018.09.017 10.1016/j.devcel.2018.09.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352176 134].
 +
#van Mierlo G, Wester RA, Marks H,  (2018) &quot;Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state.&quot; <i>Stem Cell Res</i> <b>33</b>:135&ndash;145; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30352361 30352361]; doi: [https://dx.doi.org/10.1016/j.scr.2018.09.017 10.1016/j.scr.2018.09.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352361 6].
 +
#El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M,  (2018) &quot;Quantitative proteomics of the 2016 WHO&nbsp;<i>Neisseria gonorrhoeae</i>&nbsp;reference strains surveys vaccine candidates and antimicrobial resistance determinants.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30352803 30352803]; doi: [https://dx.doi.org/10.1074/mcp.RA118.001125 10.1074/mcp.RA118.001125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352803 8].
 +
#Serra A, Gallart-Palau X, Park JE, Lim GGY, Lim KL, Ho HH, Tam JP, Sze SK,  (2018) &quot;Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo.&quot; <i>Arterioscler Thromb Vasc Biol</i> <b>38</b>(10):2396&ndash;2409; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30354219 30354219]; doi: [https://dx.doi.org/10.1161/ATVBAHA.118.311552 10.1161/ATVBAHA.118.311552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30354219 16].
 +
#Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A,  (2019) &quot;Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers.&quot; <i>Exp Eye Res</i> <b>179</b>:32&ndash;46; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30359574 30359574]; doi: [https://dx.doi.org/10.1016/j.exer.2018.10.011 10.1016/j.exer.2018.10.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30359574 3].
 +
#Magagnotti C, Zerbini G, Fermo I, Carletti RM, Bonfanti R, Vallone F, Andolfo A,  (2018) &quot;Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30366120 30366120]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.10.010 10.1016/j.jprot.2018.10.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30366120 51].
 +
#Del Gaudio F, Pollastro F, Mozzicafreddo M, Riccio R, Minassi A, Monti MC,  (2018) &quot;Chemoproteomic fishing identifies arzanol as a positive modulator of brain glycogen phosphorylase.&quot; <i>Chem Commun (Camb)</i> <b>54</b>(91):12863&ndash;12866; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30375590 30375590]; doi: [https://dx.doi.org/10.1039/c8cc07692h 10.1039/c8cc07692h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30375590 82].
 +
#Tamminen M, Betz A, Pereira AL, Thali M, Matthews B, Suter MJ, Narwani A,  (2018) &quot;Proteome evolution under non-substitutable resource limitation.&quot; <i>Nat Commun</i> <b>9</b>(1):4650; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30405128 30405128]; doi: [https://dx.doi.org/10.1038/s41467-018-07106-z 10.1038/s41467-018-07106-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30405128 32].
 +
#Wang L, Dong Z, Wang J, Yin Y, Liu H, Hu W, Peng Z, Liu C, Li M, Banno Y, Shimada T, Xia Q, Zhao P,  (2018) &quot;Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant.&quot; <i>J Insect Sci</i> <b>18</b>(6):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30412263 30412263]; doi: [https://dx.doi.org/10.1093/jisesa/iey098 10.1093/jisesa/iey098]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30412263 6].
 +
#Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Gedeao V, Ndung&#39;u J, Boudot C, Bisser S, Courtioux B,  (2018) &quot;Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30414516 30414516]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.11.005 10.1016/j.jprot.2018.11.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30414516 40].
 +
#Gontan C, Mira-Bontenbal H, Magaraki A, Dupont C, Barakat TS, Rentmeester E, Demmers J, Gribnau J,  (2018) &quot;REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice.&quot; <i>Nat Commun</i> <b>9</b>(1):4752; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30420655 30420655]; doi: [https://dx.doi.org/10.1038/s41467-018-07060-w 10.1038/s41467-018-07060-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30420655 120].
 +
#Gfeller D, Guillaume P, Michaux J, Pak HS, Daniel RT, Racle J, Coukos G, Bassani-Sternberg M,  (2018) &quot;The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands.&quot; <i>J Immunol</i> <b>201</b>(12):3705&ndash;3716; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30429286 30429286]; doi: [https://dx.doi.org/10.4049/jimmunol.1800914 10.4049/jimmunol.1800914]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30429286 11].
 +
#Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A, Rebsamen M, Parapatics K, Blomen VA, M&uuml;ller AC, Winter GE, Kralovics R, Brummelkamp TR, Mlodzik M, Superti-Furga G,  (2018) &quot;LZTR1 is a regulator of RAS ubiquitination and signaling.&quot; <i>Science</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30442766 30442766]; doi: [https://dx.doi.org/10.1126/science.aap8210 10.1126/science.aap8210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30442766 20].
 +
#Cominetti O, N&uacute;&ntilde;ez Galindo A, Corth&eacute;sy J, Valsesia A, Irincheeva I, Kussmann M, Saris WHM, Astrup A, McPherson R, Harper ME, Dent R, Hager J, Dayon L,  (2018) &quot;Obesity shows preserved plasma proteome in large independent clinical cohorts.&quot; <i>Sci Rep</i> <b>8</b>(1):16981; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30451909 30451909]; doi: [https://dx.doi.org/10.1038/s41598-018-35321-7 10.1038/s41598-018-35321-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30451909 318].
 +
#Narzt MS, Nagelreiter IM, Oskolkova O, Bochkov VN, Latreille J, Fedorova M, Ni Z, Sialana FJ, Lubec G, Filzwieser M, Laggner M, Bilban M, Mildner M, Tschachler E, Grillari J, Gruber F,  (2019) &quot;A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.&quot; <i>Redox Biol</i> <b>20</b>:467&ndash;482; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30466060 30466060]; doi: [https://dx.doi.org/10.1016/j.redox.2018.11.006 10.1016/j.redox.2018.11.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30466060 18].
 +
#Cavanagh JP, Pain M, Askarian F, Bruun JA, Urbarova I, Wai SN, Schmidt F, Johannessen M,  (2018) &quot;Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate.&quot; <i>J Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30472255 30472255]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.11.013 10.1016/j.jprot.2018.11.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30472255 12].
 +
#Zhu J, Garrigues L, Van den Toorn H, Stahl B, Heck AJR,  (2018) &quot;Discovery and quantification of non-human proteins in human milk.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30489082 30489082]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00550 10.1021/acs.jproteome.8b00550]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30489082 37].
 +
#Back S, Gorman AW, Vogel C, Silva GM,  (2018) &quot;Site-specific K63 ubiquitinomics provides insights into translation regulation under stress.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30489083 30489083]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00623 10.1021/acs.jproteome.8b00623]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30489083 20].
 +
#Novo D, Heath N, Mitchell L, Caligiuri G, MacFarlane A, Reijmer D, Charlton L, Knight J, Calka M, McGhee E, Dornier E, Sumpton D, Mason S, Echard A, Klinkert K, Secklehner J, Kruiswijk F, Vousden K, Macpherson IR, Blyth K, Bailey P, Yin H, Carlin LM, Morton J, Zanivan S, Norman JC,  (2018) &quot;Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels.&quot; <i>Nat Commun</i> <b>9</b>(1):5069; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30498210 30498210]; doi: [https://dx.doi.org/10.1038/s41467-018-07339-y 10.1038/s41467-018-07339-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30498210 2].
 +
#Giovani PA, Salmon CR, Martins L, Leme AFP, Puppin-Rontani RM, Mofatto LS, Nociti FH Jr, Kantovitz KR,  (2018) &quot;Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth.&quot; <i>J Periodontol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30499115 30499115]; doi: [https://dx.doi.org/10.1002/JPER.18-0217 10.1002/JPER.18-0217]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30499115 6].
 +
#Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ,  (2018) &quot;The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects.&quot; <i>Free Radic Biol Med</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30500420 30500420]; doi: [https://dx.doi.org/10.1016/j.freeradbiomed.2018.11.022 10.1016/j.freeradbiomed.2018.11.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30500420 24].
 +
#Wolf A, Liesinger L, Spoerk S, Schittmayer M, Lang-Loidolt D, Birner-Gruenberger R, Tomazic PV,  (2018) &quot;Olfactory cleft proteome does not reflect olfactory performance in patients with idiopathic and postinfectious olfactory disorder: A pilot study.&quot; <i>Sci Rep</i> <b>8</b>(1):17554; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30510230 30510230]; doi: [https://dx.doi.org/10.1038/s41598-018-35776-8 10.1038/s41598-018-35776-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30510230 21].
 +
#Tascher G, Gerbaix M, Maes P, Chazarin B, Ghislin S, Antropova E, Vassilieva G, Ouzren-Zarhloul N, Gauquelin-Koch G, Vico L, Frippiat JP, Bertile F,  (2018) &quot;Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth.&quot; <i>FASEB J</i> <b></b>:fj201801463R; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30521760 30521760]; doi: [https://dx.doi.org/10.1096/fj.201801463R 10.1096/fj.201801463R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30521760 36].
 +
#Cann ML, Herring LE, Haar L, Gilbert TSK, Goldfarb D, Richards KL, Graves LM, Lawrence DS,  (2018) &quot;Dasatinib is preferentially active in the activated B-cell subtype of diffuse large B-cell lymphoma.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30540191 30540191]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00841 10.1021/acs.jproteome.8b00841]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30540191 24].
 +
#Khodadoust MS, Olsson N, Chen B, Sworder B, Shree T, Liu CL, Zhang L, Czerwinski DK, Davis MM, Levy R, Elias JE, Alizadeh AA,  (2018) &quot;B cell lymphomas present immunoglobulin neoantigens.&quot; <i>Blood</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30545830 30545830]; doi: [https://dx.doi.org/10.1182/blood-2018-06-845156 10.1182/blood-2018-06-845156]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30545830 52].
 +
#Roustan V, Weckwerth W,  (2018) &quot;Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in <i>Chlamydomonas reinhardtii</i>.&quot; <i>Front Plant Sci</i> <b>9</b>:1590; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30546371 30546371]; doi: [https://dx.doi.org/10.3389/fpls.2018.01590 10.3389/fpls.2018.01590]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30546371 54].
 +
#Yao Z, Jia X, Megger DA, Chen J, Liu Y, Li J, Sitek B, Yuan Z,  (2018) &quot;Label-free Proteomic Analysis of Exosomes Secreted from THP-1-derived Macrophages Treated with IFN-&alpha; Identifies Antiviral Proteins Enriched in Exosomes.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30550287 30550287]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00514 10.1021/acs.jproteome.8b00514]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30550287 23].
 +
#Alves Feliciano C, Douch&eacute; T, Giai Gianetto Q, Matondo M, Martin-Verstraete I, Dupuy B,  (2019) &quot;CotL, a new morphogenetic spore coat protein of Clostridium difficile.&quot; <i>Environ Microbiol</i> <b>21</b>(3):984&ndash;1003; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30556639 30556639]; doi: [https://dx.doi.org/10.1111/1462-2920.14505 10.1111/1462-2920.14505]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30556639 6].
 +
#Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, Advani J, Madugundu AK, Dey G, Datta KK, Rajyalakshmi M, Sahasrabuddhe NA, Chaturvedi A, Kumar A, Das AA, Ghosh D, Jogdand GM, Nair HH, Saini K, Panchal M, Sarvaiya MA, Mohanraj SS, Sengupta N, Saxena P, Subramani PA, Kumar P, Akkali R, Reshma SV, Santhosh RS, Rastogi S, Kumar S, Ghosh SK, Irlapati VK, Srinivasan A, Radotra BD, Mathur PP, Wong GW, Satishchandra P, Chatterjee A, Gowda H, Bhansali A, Pandey A, Shankar SK, Mahadevan A, Prasad TSK,  (2018) &quot;Proteomic Analysis of the Human Anterior Pituitary Gland.&quot; <i>OMICS</i> <b>22</b>(12):759&ndash;769; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30571610 30571610]; doi: [https://dx.doi.org/10.1089/omi.2018.0160 10.1089/omi.2018.0160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30571610 3].
 +
#Nanaware PP, Jurewicz MM, Leszyk J, Shaffer SA, Stern LJ,  (2018) &quot;HLA-DO modulates the diversity of the MHC-II self-peptidome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30573663 30573663]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000956 10.1074/mcp.RA118.000956]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30573663 26].
 +
#Aloui C, Barlier C, Claverol S, Fagan J, Awounou D, Tavernier E, Guyotat D, Hamzeh-Cognasse H, Cognasse F, Garraud O, Laradi S,  (2019) &quot;Differential protein expression of blood platelet components associated with adverse transfusion reactions.&quot; <i>J Proteomics</i> <b>194</b>:25&ndash;36; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30590131 30590131]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.12.019 10.1016/j.jprot.2018.12.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30590131 48].
 +
#Zhou Z, Chen Y, Jin M, He J, Guli A, Yan C, Ding S,  (2018) &quot;Comprehensive analysis of lysine acetylome reveals a site-specific pattern in rapamycin-induced autophagy.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30592415 30592415]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00533 10.1021/acs.jproteome.8b00533]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30592415 6].
 +
#Merlos Rodrigo MA, Buchtelova H, de Los Rios V, Casal JI, Eckschlager T, Hrabeta J, Belhajova M, Heger Z, Adam V,  (2019) &quot;Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin.&quot; <i>J Proteome Res</i> <b>18</b>(3):1255&ndash;1263; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30592607 30592607]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00867 10.1021/acs.jproteome.8b00867]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30592607 9].
 +
#Dunn J, Ferluga S, Sharma V, Futschik M, Hilton DA, Adams CL, Lasonder E, Hannemann OC,  (2018) &quot;Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism.&quot; <i>EBioMedicine</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30594554 30594554]; doi: [https://dx.doi.org/10.1016/j.ebiom.2018.12.048 10.1016/j.ebiom.2018.12.048]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30594554 78].
 +
#&#x17B;ylicz JJ, Bousard A, &#x17D;umer K, Dossin F, Mohammad E, da Rocha ST, Schwalb B, Syx L, Dingli F, Loew D, Cramer P, Heard E,  (2019) &quot;The Implication of Early Chromatin Changes in X Chromosome Inactivation.&quot; <i>Cell</i> <b>176</b>(1-2):182&ndash;197.e23; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30595450 30595450]; doi: [https://dx.doi.org/10.1016/j.cell.2018.11.041 10.1016/j.cell.2018.11.041]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30595450 10].
 +
#Liebelt F, Sebastian RM, Moore CL, Mulder MPC, Ovaa H, Shoulders MD, Vertegaal ACO,  (2019) &quot;SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.&quot; <i>Cell Rep</i> <b>26</b>(1):236&ndash;249.e4; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30605679 30605679]; doi: [https://dx.doi.org/10.1016/j.celrep.2018.12.027 10.1016/j.celrep.2018.12.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30605679 57].
 +
#Queiroz RML, Smith T, Villanueva E, Marti-Solano M, Monti M, Pizzinga M, Mirea DM, Ramakrishna M, Harvey RF, Dezi V, Thomas GH, Willis AE, Lilley KS,  (2019) &quot;Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS).&quot; <i>Nat Biotechnol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30607034 30607034]; doi: [https://dx.doi.org/10.1038/s41587-018-0001-2 10.1038/s41587-018-0001-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30607034 106].
 +
#Orre LM, Vesterlund M, Pan Y, Arslan T, Zhu Y, Fernandez Woodbridge A, Frings O, Fredlund E, Lehti&ouml; J,  (2019) &quot;SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.&quot; <i>Mol Cell</i> <b>73</b>(1):166&ndash;182.e7; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30609389 30609389]; doi: [https://dx.doi.org/10.1016/j.molcel.2018.11.035 10.1016/j.molcel.2018.11.035]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30609389 18].
 +
#Landsberg CD, Megger DA, Hotter D, R&uuml;ckborn MU, Eilbrecht M, Rashidi-Alavijeh J, Howe S, Heinrichs S, Sauter D, Sitek B, Le-Trilling VTK, Trilling M,  (2018) &quot;A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-&kappa;B Inhibitory Activity of the HIV-2-Encoded Vpx.&quot; <i>Front Immunol</i> <b>9</b>:2978; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30619335 30619335]; doi: [https://dx.doi.org/10.3389/fimmu.2018.02978 10.3389/fimmu.2018.02978]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30619335 48].
 +
#Yang H, Li Y, Zhao M, Wu F, Wang X, Xiao W, Wang Y, Zhang J, Wang F, Xu F, Zeng WF, Overall CM, He SM, Chi H, Xu P,  (2019) &quot;Precision <i>de novo</i> peptide sequencing using mirror proteases of Ac-LysargiNase and trypsin for large-scale proteomics.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30622160 30622160]; doi: [https://dx.doi.org/10.1074/mcp.TIR118.000918 10.1074/mcp.TIR118.000918]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30622160 2].
 +
#Chen D, Ludwig K, Krokhin OV, Spicer V, Yang Z, Shen X, Hummon AB, Sun L,  (2019) &quot;Capillary zone electrophoresis-tandem mass spectrometry for large-scale phosphoproteomics with the production of over 11000 phosphopeptides from the colon carcinoma HCT116 cell line.&quot; <i>Anal Chem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30624053 30624053]; doi: [https://dx.doi.org/10.1021/acs.analchem.8b04770 10.1021/acs.analchem.8b04770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30624053 40].
 +
#Chen Z, Lei C, Wang C, Li N, Srivastava M, Tang M, Zhang H, Choi JM, Jung SY, Qin J, Chen J,  (2019) &quot;Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics.&quot; <i>Nat Commun</i> <b>10</b>(1):104; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30631047 30631047]; doi: [https://dx.doi.org/10.1038/s41467-018-08004-0 10.1038/s41467-018-08004-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30631047 30].
 +
#Hansen M, Peltier J, Killy B, Amin B, Bodendorfer B, H&auml;rtlova A, Uebel S, Bosmann M, Hofmann J, B&uuml;ttner C, Ekici AB, Kuttke M, Franzyk H, Foged C, Beer-Hammer S, Schabbauer G, Trost M, Lang R,  (2019) &quot;Macrophage phosphoproteome analysis reveals MINCLE-dependent and -independent mycobacterial cord factor signaling.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30635358 30635358]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000929 10.1074/mcp.RA118.000929]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30635358 72].
 +
#Tripathi SK, V&auml;likangas T, Shetty A, Khan MM, Moulder R, Bhosale SD, Komsi E, Salo V, De Albuquerque RS, Rasool O, Galande S, Elo LL, Lahesmaa R,  (2019) &quot;Quantitative Proteomics Reveals the Dynamic Protein Landscape during Initiation of Human Th17 Cell Polarization.&quot; <i>iScience</i> <b>11</b>:334&ndash;355; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30641411 30641411]; doi: [https://dx.doi.org/10.1016/j.isci.2018.12.020 10.1016/j.isci.2018.12.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30641411 75].
 +
#Pfaff F, H&auml;gglund S, Zoli M, Blaise-Boisseau S, Laloy E, Koethe S, Z&uuml;hlke D, Riedel K, Zientara S, Bakkali-Kassimi L, Valarcher JF, H&ouml;per D, Beer M, Eschbaumer M,  (2019) &quot;Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus.&quot; <i>Viruses</i> <b>11</b>(1):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30642035 30642035]; doi: [https://dx.doi.org/10.3390/v11010053 10.3390/v11010053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30642035 110].
 +
#Kosack L, Wingelhofer B, Popa A, Orlova A, Agerer B, Vilagos B, Majek P, Parapatics K, Lercher A, Ringler A, Klughammer J, Smyth M, Khamina K, Baazim H, de Araujo ED, Rosa DA, Park J, Tin G, Ahmar S, Gunning PT, Bock C, Siddle HV, Woods GM, Kubicek S, Murchison EP, Bennett KL, Moriggl R, Bergthaler A,  (2019) &quot;The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease.&quot; <i>Cancer Cell</i> <b>35</b>(1):125&ndash;139.e9; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30645971 30645971]; doi: [https://dx.doi.org/10.1016/j.ccell.2018.11.018 10.1016/j.ccell.2018.11.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30645971 20].
 +
#Liu Z, Lv J, Zhang Z, Li H, Yang B, Chen W, Dai X, Li X, Yang S, Liu L, Ou L, Ma Y, Zou X,  (2019) &quot;Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development.&quot; <i>J Proteome Res</i> <b>18</b>(3):982&ndash;994; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30650966 30650966]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00673 10.1021/acs.jproteome.8b00673]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30650966 24].
 +
#van Oorschot R, Hansen M, Koornneef JM, Marneth AE, Bergevoet SM, van Bergen MGJM, van Alphen FPJ, van der Zwaan C, Martens JHA, Vermeulen M, Jansen PWTC, Baltissen MPA, Laros-van Gorkom BAP, Janssen H, Jansen JH, von Lindern M, Meijer AB, van den Akker E, van der Reijden BA,  (2019) &quot;Molecular mechanisms of bleeding disorder-associated GFI1BQ287* mutation and its affected pathways in megakaryocytes and platelets.&quot; <i>Haematologica</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30655368 30655368]; doi: [https://dx.doi.org/10.3324/haematol.2018.194555 10.3324/haematol.2018.194555]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30655368 63].
 +
#Tsukada T, Isowa Y, Kito K, Yoshida S, Toneri S, Horiguchi K, Fujiwara K, Yashiro T, Kato T, Kato Y,  (2019) &quot;Identification of TGF&beta;-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry.&quot; <i>Cell Tissue Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30666536 30666536]; doi: [https://dx.doi.org/10.1007/s00441-018-02989-2 10.1007/s00441-018-02989-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30666536 11].
 +
#G&auml;rtner SMK, Hundertmark T, Nolte H, Theofel I, Eren-Ghiani Z, Tetzner C, Duchow TB, Rathke C, Kr&uuml;ger M, Renkawitz-Pohl R,  (2019) &quot;Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility.&quot; <i>Eur J Cell Biol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30679029 30679029]; doi: [https://dx.doi.org/10.1016/j.ejcb.2019.01.001 10.1016/j.ejcb.2019.01.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30679029 180].
 +
#Fornecker LM, Muller L, Bertrand F, Paul N, Pichot A, Herbrecht R, Chenard MP, Mauvieux L, Vallat L, Bahram S, Cianf&eacute;rani S, Carapito R, Carapito C,  (2019) &quot;Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma.&quot; <i>Sci Rep</i> <b>9</b>(1):895; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30696890 30696890]; doi: [https://dx.doi.org/10.1038/s41598-018-37273-4 10.1038/s41598-018-37273-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30696890 20].
 +
#McKetney J, Runde RM, Hebert AS, Salamat S, Roy S, Coon JJ,  (2019) &quot;Proteomic Atlas of the Human Brain in Alzheimer&#39;s Disease.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30735395 30735395]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00004 10.1021/acs.jproteome.9b00004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30735395 22].
 +
#Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, Vethe H, Paulo JA, Joosten AM, Berney T, Bosco D, Dorrell C, Grompe M, R&aelig;der H, Roep BO, Thorel F, Herrera PL,  (2019) &quot;Diabetes relief in mice by glucose-sensing insulin-secreting human &alpha;-cells.&quot; <i>Nature</i> <b>567</b>(7746):43&ndash;48; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30760930 30760930]; doi: [https://dx.doi.org/10.1038/s41586-019-0942-8 10.1038/s41586-019-0942-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30760930 1].
 +
#Mohanty V, Subbannayya Y, Najar MA, Pinto SM, Kasaragod S, Karuppiah H, Sreeramulu B, Singh KK, Dalal S, Manikkoth S, Arunachalam C, Prasad TSK, Murthy KR,  (2019) &quot;Proteomics and Visual Health Research: Proteome of the Human Sclera Using High-Resolution Mass Spectrometry.&quot; <i>OMICS</i> <b>23</b>(2):98&ndash;110; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30767726 30767726]; doi: [https://dx.doi.org/10.1089/omi.2018.0185 10.1089/omi.2018.0185]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30767726 2].
 +
#Patil S, Subbannayya T, Mohan SV, Babu N, Advani J, Sathe G, Rajagopalan P, Patel K, Bhandi S, Solanki H, Sidransky D, Gowda H, Chatterjee A, Ferrari M,  (2019) &quot;Proteomic Changes in Oral Keratinocytes Chronically Exposed to Shisha (Water Pipe).&quot; <i>OMICS</i> <b>23</b>(2):86&ndash;97; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30767727 30767727]; doi: [https://dx.doi.org/10.1089/omi.2018.0173 10.1089/omi.2018.0173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30767727 18].
 +
#Eraslan B, Wang D, Gusic M, Prokisch H, Hallstr&ouml;m BM, Uhl&eacute;n M, Asplund A, Pont&eacute;n F, Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J,  (2019) &quot;Quantification and discovery of sequence determinants of protein-per-mRNA amount in&nbsp;29&nbsp;human tissues.&quot; <i>Mol Syst Biol</i> <b>15</b>(2):e8513; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30777893 30777893]; doi: [https://dx.doi.org/10.15252/msb.20188513 10.15252/msb.20188513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30777893 28].
 +
#Pauwels AM, H&auml;rtlova A, Peltier J, Driege Y, Baudelet G, Brodin P, Trost M, Beyaert R, Hoffmann E,  (2019) &quot;Spatiotemporal changes of the phagosomal proteome in dendritic cells in response to LPS stimulation.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30808727 30808727]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001316 10.1074/mcp.RA119.001316]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30808727 20].
 +
#Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM, Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB,  (2019) &quot;An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics.&quot; <i>Nat Commun</i> <b>10</b>(1):963; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30814501 30814501]; doi: [https://dx.doi.org/10.1038/s41467-019-08831-9 10.1038/s41467-019-08831-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814501 32].
 +
#Yang W, Zhao X, Tao Y, Wu Y, He F, Tang L,  (2019) &quot;Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair.&quot; <i>Sci Rep</i> <b>9</b>(1):2953; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30814596 30814596]; doi: [https://dx.doi.org/10.1038/s41598-019-39007-6 10.1038/s41598-019-39007-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814596 40].
 +
#Parker BL, Calkin AC, Seldin MM, Keating MF, Tarling EJ, Yang P, Moody SC, Liu Y, Zerenturk EJ, Needham EJ, Miller ML, Clifford BL, Morand P, Watt MJ, Meex RCR, Peng KY, Lee R, Jayawardana K, Pan C, Mellett NA, Weir JM, Lazarus R, Lusis AJ, Meikle PJ, James DE, de Aguiar Vallim TQ, Drew BG,  (2019) &quot;An integrative systems genetic analysis of mammalian lipid metabolism.&quot; <i>Nature</i> <b>567</b>(7747):187&ndash;193; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30814737 30814737]; doi: [https://dx.doi.org/10.1038/s41586-019-0984-y 10.1038/s41586-019-0984-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814737 78].
 +
#Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Xing B, Sun W, Ren L, Hu B, Li C, Zhang L, Qin G, Zhang M, Chen N, Zhang M, Huang Y, Zhou J, Zhao Y, Liu M, Zhu X, Qiu Y, Sun Y, Huang C, Yan M, Wang M, Liu W, Tian F, Xu H, Zhou J, Wu Z, Shi T, Zhu W, Qin J, Xie L, Fan J, Qian X, He F, Chinese Human Proteome Project (CNHPP) Consortium.,  (2019) &quot;Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.&quot; <i>Nature</i> <b>567</b>(7747):257&ndash;261; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30814741 30814741]; doi: [https://dx.doi.org/10.1038/s41586-019-0987-8 10.1038/s41586-019-0987-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814741 688].
 +
#Brummer T, M&uuml;ller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF,  (2019) &quot;NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer&#39;s disease.&quot; <i>EMBO Mol Med</i> <b>11</b>(4):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30833305 30833305]; doi: [https://dx.doi.org/10.15252/emmm.201809695 10.15252/emmm.201809695]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30833305 72].
 +
#Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT,  (2019) &quot;Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation.&quot; <i>Nat Commun</i> <b>10</b>(1):1055; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30837475 30837475]; doi: [https://dx.doi.org/10.1038/s41467-019-09024-0 10.1038/s41467-019-09024-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30837475 123].
 +
#Marei WFA, Van Raemdonck G, Baggerman G, Bols PEJ, Leroy JLMR,  (2019) &quot;Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells.&quot; <i>Sci Rep</i> <b>9</b>(1):3673; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30842615 30842615]; doi: [https://dx.doi.org/10.1038/s41598-019-40122-7 10.1038/s41598-019-40122-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30842615 2].
 +
#Yi L, Tsai CF, Dirice E, Swensen AC, Chen J, Shi T, Gritsenko MA, Chu RK, Piehowski PD, Smith RD, Rodland KD, Atkinson MA, Mathews CE, Kulkarni RN, Liu T, Qian WJ,  (2019) &quot;Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells.&quot; <i>Anal Chem</i> <b>91</b>(9):5794&ndash;5801; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30843680 30843680]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b00024 10.1021/acs.analchem.9b00024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30843680 20].
 +
#Lin YH, Eguez RV, Torralba MG, Singh H, Golusinski P, Golusinski W, Masternak M, Nelson KE, Freire M, Yu Y,  (2019) &quot;Self-Assembled STrap for Global Proteomics and Salivary Biomarker Discovery.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30848925 30848925]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00037 10.1021/acs.jproteome.9b00037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30848925 51].
 +
#Herbst FA, Gon&ccedil;alves SCL, Behr T, McIlroy SJ, Nielsen PH,  (2019) &quot;Proteogenomic Refinement of the Neomegalonema perideroedes<sup>T</sup> Genome Annotation.&quot; <i>Proteomics</i> <b></b>:e1800330; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30865376 30865376]; doi: [https://dx.doi.org/10.1002/pmic.201800330 10.1002/pmic.201800330]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30865376 9].
 +
#Liu F, Liu XX, Liu X, Li T, Zhu P, Liu Z, Xue H, Wang W Jr, Yang X, Liu J, Han W,  (2019) &quot;Integrated analyses of phenotype and quantitative proteome of CMTM4&nbsp;deficient mice reveal its association with male fertility.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30867229 30867229]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001416 10.1074/mcp.RA119.001416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867229 1].
 +
#Gallud A, Kl&ouml;ditz K, Ytterberg J, &Ouml;stberg N, Katayama S, Skoog T, Gogvadze V, Chen YZ, Xue D, Moya S, Ruiz J, Astruc D, Zubarev R, Kere J, Fadeel B,  (2019) &quot;Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study.&quot; <i>Sci Rep</i> <b>9</b>(1):4366; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30867451 30867451]; doi: [https://dx.doi.org/10.1038/s41598-019-40579-6 10.1038/s41598-019-40579-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867451 45].
 +
#Obradovi&#x107; MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM, M&uuml;nst S, Okamoto R, Kohler H, Schmidt A, Bentires-Alj M,  (2019) &quot;Glucocorticoids promote breast cancer metastasis.&quot; <i>Nature</i> <b>567</b>(7749):540&ndash;544; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30867597 30867597]; doi: [https://dx.doi.org/10.1038/s41586-019-1019-4 10.1038/s41586-019-1019-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867597 23].
 +
#Berg P, McConnell EW, Hicks LM, Popescu SC, Popescu GV,  (2019) &quot;Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics.&quot; <i>BMC Bioinformatics</i> <b>20</b>(Suppl 2):102; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30871482 30871482]; doi: [https://dx.doi.org/10.1186/s12859-019-2619-6 10.1186/s12859-019-2619-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30871482 1].
 +
#Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS,  (2019) &quot;Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics.&quot; <i>Brain</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30879067 30879067]; doi: [https://dx.doi.org/10.1093/brain/awz045 10.1093/brain/awz045]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30879067 14].
 +
#Sacco F, Seelig A, Humphrey SJ, Krahmer N, Volta F, Reggio A, Marchetti P, Gerdes J, Mann M,  (2019) &quot;Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets.&quot; <i>Cell Metab</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30879985 30879985]; doi: [https://dx.doi.org/10.1016/j.cmet.2019.02.012 10.1016/j.cmet.2019.02.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30879985 24].
 +
#Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N, Ignatchenko V, Fritsch K, Donmez N, Heisler LE, Shiah YJ, Yao CQ, Alfaro JA, Volik S, Lapuk A, Fraser M, Kron K, Murison A, Lupien M, Sahinalp C, Collins CC, Tetu B, Masoomian M, Berman DM, van der Kwast T, Bristow RG, Kislinger T, Boutros PC,  (2019) &quot;The Proteogenomic Landscape of Curable Prostate Cancer.&quot; <i>Cancer Cell</i> <b>35</b>(3):414&ndash;427.e6; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30889379 30889379]; doi: [https://dx.doi.org/10.1016/j.ccell.2019.02.005 10.1016/j.ccell.2019.02.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30889379 108].
 +
#Xu B, Zheng C, Chen X, Zhang Z, Liu J, Spencer P, Yang X,  (2019) &quot;Dysregulation of Myosin Complex and Striated Muscle Contraction Pathway in the Brain of ALS-SOD1 mouse model.&quot; <i>ACS Chem Neurosci</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30889949 30889949]; doi: [https://dx.doi.org/10.1021/acschemneuro.8b00704 10.1021/acschemneuro.8b00704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30889949 1].
 +
#Schmitt M, Sinnberg T, Nalpas NC, Maass A, Schittek B, Macek B,  (2019) &quot;Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30890564 30890564]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001302 10.1074/mcp.RA119.001302]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30890564 51].
 +
#Borgermann N, Ackermann L, Schwertman P, Hendriks IA, Thijssen K, Liu JC, Lans H, Nielsen ML, Mailand N,  (2019) &quot;SUMOylation promotes protective responses to DNA-protein crosslinks.&quot; <i>EMBO J</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30914427 30914427]; doi: [https://dx.doi.org/10.15252/embj.2019101496 10.15252/embj.2019101496]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30914427 52].
 +
#Betancourt LH, Paw&#x142;owski K, Eriksson J, Szasz AM, Mitra S, Pla I, Welinder C, Ekedahl H, Broberg P, Appelqvist R, Yakovleva M, Sugihara Y, Miharada K, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Wieslander E, Horvatovich P, Malm J, J&ouml;nsson G, Marko-Varga G,  (2019) &quot;Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data.&quot; <i>Sci Rep</i> <b>9</b>(1):5154; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30914758 30914758]; doi: [https://dx.doi.org/10.1038/s41598-019-41625-z 10.1038/s41598-019-41625-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30914758 111].
 +
#Sinclair LV, Howden AJ, Brenes A, Spinelli L, Hukelmann JL, Macintyre AN, Liu X, Thomson S, Taylor PM, Rathmell JC, Locasale JW, Lamond AI, Cantrell DA,  (2019) &quot;Antigen receptor control of methionine metabolism in T cells.&quot; <i>Elife</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30916644 30916644]; doi: [https://dx.doi.org/10.7554/eLife.44210 10.7554/eLife.44210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30916644 7].
 +
#Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G,  (2019) &quot;Hypoxia-induced changes in SUMO conjugation affect transcriptional regulation under low oxygen.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30926672 30926672]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001401 10.1074/mcp.RA119.001401]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30926672 69].
 +
#Musiani D, Bok J, Massignani E, Wu L, Tabaglio T, Ippolito MR, Cuomo A, Ozbek U, Zorgati H, Ghoshdastider U, Robinson RC, Guccione E, Bonaldi T,  (2019) &quot;Proteomics profiling of arginine methylation defines PRMT5 substrate specificity.&quot; <i>Sci Signal</i> <b>12</b>(575):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30940768 30940768]; doi: [https://dx.doi.org/10.1126/scisignal.aat8388 10.1126/scisignal.aat8388]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30940768 76].
 +
#Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T, Jafari R, Lilljebj&ouml;rn H, Odom DT, Olsson L, Ravi N, Woodward EL, Harewood L, Lehti&ouml; J, Paulsson K,  (2019) &quot;Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia.&quot; <i>Nat Commun</i> <b>10</b>(1):1519; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30944321 30944321]; doi: [https://dx.doi.org/10.1038/s41467-019-09469-3 10.1038/s41467-019-09469-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30944321 3].
 +
#Johansson HJ, Socciarelli F, Vacanti NM, Haugen MH, Zhu Y, Siavelis I, Fernandez-Woodbridge A, Aure MR, Sennblad B, Vesterlund M, Branca RM, Orre LM, Huss M, Fredlund E, Beraki E, Garred &Oslash;, Boekel J, Sauer T, Zhao W, Nord S, H&ouml;glander EK, Jans DC, Brismar H, Haukaas TH, Bathen TF, Schlichting E, Naume B, Consortia Oslo Breast Cancer Research Consortium (OSBREAC)., Luders T, Borgen E, Kristensen VN, Russnes HG, Lingj&aelig;rde OC, Mills GB, Sahlberg KK, B&oslash;rresen-Dale AL, Lehti&ouml; J,  (2019) &quot;Breast cancer quantitative proteome and proteogenomic landscape.&quot; <i>Nat Commun</i> <b>10</b>(1):1600; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30962452 30962452]; doi: [https://dx.doi.org/10.1038/s41467-019-09018-y 10.1038/s41467-019-09018-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30962452 12].
 +
#Erhart F, Weiss T, Klingenbrunner S, Fischhuber K, Reitermaier R, Halfmann A, Blauensteiner B, L&ouml;tsch D, Spiegl-Kreinecker S, Berger W, Sialana FJ, Lubec G, Felzmann T, Dohnal A, Visus C,  (2019) &quot;Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon &gamma; production.&quot; <i>Cytotherapy</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30975602 30975602]; doi: [https://dx.doi.org/10.1016/j.jcyt.2019.03.002 10.1016/j.jcyt.2019.03.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30975602 8].
 +
#Karim N, Durbin-Johnson B, Rocke DM, Salemi M, Phinney BS, Naeem M, Rice RH,  (2019) &quot;Proteomic manifestations of genetic defects in autosomal recessive congenital ichthyosis.&quot; <i>J Proteomics</i> <b>201</b>:104&ndash;109; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30978464 30978464]; doi: [https://dx.doi.org/10.1016/j.jprot.2019.04.007 10.1016/j.jprot.2019.04.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30978464 96].
 +
#Na CH, Sharma N, Madugundu AK, Chen R, Atalar Aksit M, Rosson GD, Cutting GR, Pandey A,  (2019) &quot;Integrated transcriptomic and proteomic analysis of human eccrine sweat glands identifies missing and novel proteins.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30979791 30979791]; doi: [https://dx.doi.org/10.1074/mcp.RA118.001101 10.1074/mcp.RA118.001101]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30979791 3].
 +
#Guergues J, Zhang P, Liu B, Stevens SM Jr,  (2019) &quot;Improved Methodology for Sensitive and Rapid Quantitative Proteomic Analysis of Adult-Derived Mouse Microglia: Application to a Novel In Vitro Mouse Microglial Cell Model.&quot; <i>Proteomics</i> <b></b>:e1800469; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30980500 30980500]; doi: [https://dx.doi.org/10.1002/pmic.201800469 10.1002/pmic.201800469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30980500 6].
 +
#Madugundu AK, Na CH, Nirujogi RS, Renuse S, Kim KP, Burns KH, Wilks C, Langmead B, Ellis SE, Collado-Torres L, Halushka MK, Kim MS, Pandey A,  (2019) &quot;Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells.&quot; <i>Proteomics</i> <b></b>:e1800315; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/30983154 30983154]; doi: [https://dx.doi.org/10.1002/pmic.201800315 10.1002/pmic.201800315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30983154 2].
 +
#Zhou B, Yan Y, Wang Y, You S, Freeman MR, Yang W,  (2019) &quot;Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer.&quot; <i>Clin Proteomics</i> <b>16</b>:15; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31011308 31011308]; doi: [https://dx.doi.org/10.1186/s12014-019-9236-2 10.1186/s12014-019-9236-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31011308 2].
 +
#Trzeciecka A, Bhattacharya SK,  (2019) &quot;Dataset of growth cone-enriched lipidome and proteome of embryonic to early postnatal mouse brain.&quot; <i>Data Brief</i> <b>24</b>:103865; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31016214 31016214]; doi: [https://dx.doi.org/10.1016/j.dib.2019.103865 10.1016/j.dib.2019.103865]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31016214 120].
 +
#Masoumi Z, Maes GE, Herten K, Cort&eacute;s-Calabuig &Aacute;, Alattar AG, Hanson E, Erlandsson L, Mezey E, Magnusson M, Vermeesch JR, Familari M, Hansson SR,  (2019) &quot;Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells.&quot; <i>Int J Mol Sci</i> <b>20</b>(8):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31027199 31027199]; doi: [https://dx.doi.org/10.3390/ijms20082038 10.3390/ijms20082038]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31027199 20].
 +
#Quintieri L, Z&uuml;hlke D, Fanelli F, Caputo L, Liuzzi VC, Logrieco AF, Hirschfeld C, Becher D, Riedel K,  (2019) &quot;Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin.&quot; <i>Food Microbiol</i> <b>82</b>:177&ndash;193; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31027772 31027772]; doi: [https://dx.doi.org/10.1016/j.fm.2019.02.003 10.1016/j.fm.2019.02.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31027772 110].
 +
#L&ouml;ffler MW, Mohr C, Bichmann L, Freudenmann LK, Walzer M, Schroeder CM, Trautwein N, Hilke FJ, Zinser RS, M&uuml;hlenbruch L, Kowalewski DJ, Schuster H, Sturm M, Matthes J, Riess O, Czemmel S, Nahnsen S, K&ouml;nigsrainer I, Thiel K, Nadalin S, Beckert S, B&ouml;sm&uuml;ller H, Fend F, Velic A, Ma&#x10D;ek B, Haen SP, Buonaguro L, Kohlbacher O, Stevanovi&#x107; S, K&ouml;nigsrainer A, HEPAVAC Consortium., Rammensee HG,  (2019) &quot;Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma.&quot; <i>Genome Med</i> <b>11</b>(1):28; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31039795 31039795]; doi: [https://dx.doi.org/10.1186/s13073-019-0636-8 10.1186/s13073-019-0636-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31039795 178].
 +
#Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Bla&#x17E;enovi&#x107; I, Lastra RR, Curtis M, Yamada SD, Perets R, McGregor SM, Andrade J, Fiehn O, Moellering RE, Mann M, Lengyel E,  (2019) &quot;Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts.&quot; <i>Nature</i> <b>569</b>(7758):723&ndash;728; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31043742 31043742]; doi: [https://dx.doi.org/10.1038/s41586-019-1173-8 10.1038/s41586-019-1173-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31043742 107].
 +
#Chen F, Welker F, Shen CC, Bailey SE, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline SE, Yu TL, Skinner MM, Stelzer S, Dong G, Fu Q, Dong G, Wang J, Zhang D, Hublin JJ,  (2019) &quot;A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau.&quot; <i>Nature</i> <b>569</b>(7756):409&ndash;412; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31043746 31043746]; doi: [https://dx.doi.org/10.1038/s41586-019-1139-x 10.1038/s41586-019-1139-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31043746 8].
 +
#Dybas JM, O&#39;Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM,  (2019) &quot;Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4<sup>+</sup> T cells.&quot; <i>Nat Immunol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31061531 31061531]; doi: [https://dx.doi.org/10.1038/s41590-019-0381-6 10.1038/s41590-019-0381-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31061531 118].
 +
#Papaioannou MD, Djuric U, Kao J, Karimi S, Zadeh G, Aldape K, Diamandis P,  (2019) &quot;Proteomic analysis of meningiomas reveals clinically-distinct molecular patterns.&quot; <i>Neuro Oncol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31077268 31077268]; doi: [https://dx.doi.org/10.1093/neuonc/noz084 10.1093/neuonc/noz084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31077268 78].
 +
#Wang H, Sheehan RP, Palmer AC, Everley RA, Boswell SA, Ron-Harel N, Ringel AE, Holton KM, Jacobson CA, Erickson AR, Maliszewski L, Haigis MC, Sorger PK,  (2019) &quot;Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.&quot; <i>Cell Syst</i> <b>8</b>(5):412&ndash;426.e7; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31078528 31078528]; doi: [https://dx.doi.org/10.1016/j.cels.2019.03.009 10.1016/j.cels.2019.03.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31078528 24].
 +
#Murphy JP, Kim Y, Clements DR, Konda P, Schuster H, Kowalewski DJ, Paulo JA, Cohen AM, Stevanovic S, Gygi SP, Gujar S,  (2019) &quot;Therapy-Induced MHC I Ligands Shape Neo-Antitumor CD8 T Cell Responses during Oncolytic Virus-Based Cancer Immunotherapy.&quot; <i>J Proteome Res</i> <b>18</b>(6):2666&ndash;2675; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31095916 31095916]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00173 10.1021/acs.jproteome.9b00173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31095916 11].
 +
#Ott E, Kawaguchi Y, &Ouml;zgen N, Yamagishi A, Rabbow E, Rettberg P, Weckwerth W, Milojevic T,  (2019) &quot;Proteomic and Metabolomic Profiling of <i>Deinococcus radiodurans</i> Recovering After Exposure to Simulated Low Earth Orbit Vacuum Conditions.&quot; <i>Front Microbiol</i> <b>10</b>:909; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31110498 31110498]; doi: [https://dx.doi.org/10.3389/fmicb.2019.00909 10.3389/fmicb.2019.00909]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31110498 17].
 +
#Chu F, Mason KE, Anex DS, Jones AD, Hart BR,  (2019) &quot;Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification.&quot; <i>Sci Rep</i> <b>9</b>(1):7641; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31113963 31113963]; doi: [https://dx.doi.org/10.1038/s41598-019-44007-7 10.1038/s41598-019-44007-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31113963 36].
 +
#Sap KA, Guler AT, Bezstarosti K, Bury AE, Juenemann K, Demmers J, Reits E,  (2019) &quot;Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31138642 31138642]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001486 10.1074/mcp.RA119.001486]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31138642 64].
 +
#Pladevall-Morera D, Munk S, Ingham A, Garribba L, Albers E, Liu Y, Olsen JV, Lopez-Contreras AJ,  (2019) &quot;Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability.&quot; <i>Nucleic Acids Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31180492 31180492]; doi: [https://dx.doi.org/10.1093/nar/gkz510 10.1093/nar/gkz510]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31180492 32].
 +
#Wang Y, Tatham MH, Schmidt-Heck W, Swann C, Singh-Dolt K, Meseguer-Ripolles J, Lucendo-Villarin B, Kunath T, Rudd TR, Smith AJH, Hengstler JG, Godoy P, Hay RT, Hay DC,  (2019) &quot;Multiomics Analyses of HNF4&alpha; Protein Domain Function during Human Pluripotent Stem Cell Differentiation.&quot; <i>iScience</i> <b>16</b>:206&ndash;217; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31185456 31185456]; doi: [https://dx.doi.org/10.1016/j.isci.2019.05.028 10.1016/j.isci.2019.05.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31185456 96].
 +
#Ma F, Tremmel DM, Li Z, Lietz CB, Sackett SD, Odorico JS, Li L,  (2019) &quot;In-depth quantification of extracellular matrix proteins from human pancreas.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31200599 31200599]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00241 10.1021/acs.jproteome.9b00241]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31200599 30].
 +
#Mendon&ccedil;a CF, Kuras M, Nogueira FCS, Pl&aacute; I, Hortob&aacute;gyi T, Csiba L, Palkovits M, Renner &Eacute;, D&ouml;me P, Marko-Varga G, Domont GB, Rezeli M,  (2019) &quot;Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer&#39;s disease.&quot; <i>Neurobiol Dis</i> <b>130</b>:104509; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31207390 31207390]; doi: [https://dx.doi.org/10.1016/j.nbd.2019.104509 10.1016/j.nbd.2019.104509]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31207390 367].
 +
#Abdelhamed S, Butler JT, Doron B, Halse A, Nemecek E, Wilmarth PA, Marks DL, Chang BH, Horton T, Kurre P,  (2019) &quot;Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche.&quot; <i>EMBO Rep</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31208969 31208969]; doi: [https://dx.doi.org/10.15252/embr.201847546 10.15252/embr.201847546]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31208969 26].
 +
#Panhale A, Richter FM, Ram&iacute;rez F, Shvedunova M, Manke T, Mittler G, Akhtar A,  (2019) &quot;CAPRI enables comparison of evolutionarily conserved RNA interacting regions.&quot; <i>Nat Commun</i> <b>10</b>(1):2682; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31213602 31213602]; doi: [https://dx.doi.org/10.1038/s41467-019-10585-3 10.1038/s41467-019-10585-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31213602 175].
 +
#Schoor C, Brocke-Ahmadinejad N, Gieselmann V, Winter D,  (2019) &quot;Investigation of Oligodendrocyte Precursor Cell Differentiation by Quantitative Proteomics.&quot; <i>Proteomics</i> <b></b>:e1900057; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31216117 31216117]; doi: [https://dx.doi.org/10.1002/pmic.201900057 10.1002/pmic.201900057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31216117 5].
 +
#Alriquet M, Mart&iacute;nez-Lim&oacute;n A, Hanspach G, Hengesbach M, Tartaglia GG, Calloni G, Vabulas RM,  (2019) &quot;Assembly of Proteins by Free RNA during the Early Phase of Proteostasis Stress.&quot; <i>J Proteome Res</i> <b>18</b>(7):2835&ndash;2847; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31244213 31244213]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00143 10.1021/acs.jproteome.9b00143]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31244213 12].
 +
#Drabovich AP, Saraon P, Drabovich M, Karakosta T, Dimitromanolakis A, Hyndman ME, Jarvi K, Diamandis EP,  (2019) &quot;Multi-omics biomarker pipeline reveals elevated levels of protein-glutamine gamma-glutamyltransferase 4 in seminal plasma of prostate cancer patients.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31249104 31249104]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001612 10.1074/mcp.RA119.001612]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31249104 10].
 +
#Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M,  (2019) &quot;Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1.&quot; <i>Cell</i> <b>178</b>(2):316&ndash;329.e18; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31257023 31257023]; doi: [https://dx.doi.org/10.1016/j.cell.2019.06.003 10.1016/j.cell.2019.06.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31257023 1].
 +
#Holthenrich A, Drexler HCA, Chehab T, Na&szlig; J, Gerke V,  (2019) &quot;Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von-Willebrand factor secretion.&quot; <i>Blood</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31262780 31262780]; doi: [https://dx.doi.org/10.1182/blood.2019000786 10.1182/blood.2019000786]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31262780 12].
 +
#Pierre N, Sal&eacute;e C, Massot C, Bl&eacute;tard N, Mazzucchelli G, Smargiasso N, Morsa D, Baiwir D, De Pauw E, Reenaers C, Van Kemseke C, Loly JP, Delvenne P, Meuwis MA, Louis E,  (2019) &quot;Proteomics highlights common and distinct pathophysiological processes associated to ileal and colonic ulcers in Crohn&#39;s disease.&quot; <i>J Crohns Colitis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31282946 31282946]; doi: [https://dx.doi.org/10.1093/ecco-jcc/jjz130 10.1093/ecco-jcc/jjz130]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31282946 96].
 +
#Narayan R, Olsson N, Wagar LE, Medeiros BC, Meyer E, Czerwinski D, Khodadoust MS, Zhang L, Schultz L, Davis MM, Elias JE, Levy R,  (2019) &quot;Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin.&quot; <i>PLoS One</i> <b>14</b>(7):e0219547; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31291378 31291378]; doi: [https://dx.doi.org/10.1371/journal.pone.0219547 10.1371/journal.pone.0219547]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31291378 86].
 +
#Gomig THB, Cavalli IJ, Souza RLR, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, Urban CA, Cavalli LR, Ribeiro EMSF,  (2019) &quot;High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data.&quot; <i>Data Brief</i> <b>25</b>:104125; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31294064 31294064]; doi: [https://dx.doi.org/10.1016/j.dib.2019.104125 10.1016/j.dib.2019.104125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31294064 69].
 +
#McDermott BT, Peffers MJ, McDonagh B, Tew SR,  (2019) &quot;Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1&beta;.&quot; <i>J Biol Chem</i> <b>294</b>(35):13027&ndash;13039; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31300557 31300557]; doi: [https://dx.doi.org/10.1074/jbc.RA118.006865 10.1074/jbc.RA118.006865]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31300557 12].
 +
#Christakopoulos C, Cehofski LJ, Christensen SR, Vorum H, Honor&eacute; B,  (2019) &quot;Proteomics reveals a set of highly enriched proteins in epiretinal membrane compared with inner limiting membrane.&quot; <i>Exp Eye Res</i> <b>186</b>:107722; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31302158 31302158]; doi: [https://dx.doi.org/10.1016/j.exer.2019.107722 10.1016/j.exer.2019.107722]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31302158 142].
 +
#Hsu CW, Chang KP, Huang Y, Liu HP, Hsueh PC, Gu PW, Yen WC, Wu CC,  (2019) &quot;Proteomic profiling of paired interstitial fluids reveals dysregulated pathways and salivary NID1 as a biomarker of oral cavity squamous cell carcinoma.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31315917 31315917]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001654 10.1074/mcp.RA119.001654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31315917 975].
 +
#Kang T, Boland BB, Alarcon C, Grimsby JS, Rhodes CJ, Larsen MR,  (2019) &quot;Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse Pancreatic Islets Following Euglycemia.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31317746 31317746]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00160 10.1021/acs.jproteome.9b00160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31317746 66].
 +
#Patil S, Rajagopalan P, Patel K, Subbannayya T, Babu N, Mohan SV, Advani J, Sathe G, Bhandi S, Solanki HS, Sidransky D, Chatterjee A, Gowda H, Ferrari M,  (2019) &quot;Chronic shisha exposure alters phosphoproteome of oral keratinocytes.&quot; <i>J Cell Commun Signal</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31321732 31321732]; doi: [https://dx.doi.org/10.1007/s12079-019-00528-4 10.1007/s12079-019-00528-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31321732 6].
 +
#Buser DP, Ritz MF, Moes S, Tostado C, Frank S, Spiess M, Mariani L, Jen&ouml; P, Boulay JL, Hutter G,  (2019) &quot;Quantitative proteomics reveals reduction of endocytic machinery components in gliomas.&quot; <i>EBioMedicine</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31331834 31331834]; doi: [https://dx.doi.org/10.1016/j.ebiom.2019.07.039 10.1016/j.ebiom.2019.07.039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31331834 51].
 +
#Hollin T, De Witte C, Fr&eacute;ville A, Guerrera IC, Chhuon C, Saliou JM, Herbert F, Pierrot C, Khalife J,  (2019) &quot;Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission.&quot; <i>PLoS Pathog</i> <b>15</b>(7):e1007973; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31348803 31348803]; doi: [https://dx.doi.org/10.1371/journal.ppat.1007973 10.1371/journal.ppat.1007973]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31348803 58].
 +
#Hillier C, Pardo M, Yu L, Bushell E, Sanderson T, Metcalf T, Herd C, Anar B, Rayner JC, Billker O, Choudhary JS,  (2019) &quot;Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality.&quot; <i>Cell Rep</i> <b>28</b>(6):1635&ndash;1647.e5; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31390575 31390575]; doi: [https://dx.doi.org/10.1016/j.celrep.2019.07.019 10.1016/j.celrep.2019.07.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31390575 723].
 +
#Stewart PA, Welsh EA, Slebos RJC, Fang B, Izumi V, Chambers M, Zhang G, Cen L, Pettersson F, Zhang Y, Chen Z, Cheng CH, Thapa R, Thompson Z, Fellows KM, Francis JM, Saller JJ, Mesa T, Zhang C, Yoder S, DeNicola GM, Beg AA, Boyle TA, Teer JK, Ann Chen Y, Koomen JM, Eschrich SA, Haura EB,  (2019) &quot;Proteogenomic landscape of squamous cell lung cancer.&quot; <i>Nat Commun</i> <b>10</b>(1):3578; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31395880 31395880]; doi: [https://dx.doi.org/10.1038/s41467-019-11452-x 10.1038/s41467-019-11452-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31395880 58].
 +
#Olson MG, Widner RE, Jorgenson LM, Lawrence A, Lagundzin D, Woods NT, Ouellette SP, Rucks EA,  (2019) &quot;Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.&quot; <i>Infect Immun</i> <b>87</b>(11):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31405957 31405957]; doi: [https://dx.doi.org/10.1128/IAI.00537-19 10.1128/IAI.00537-19]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31405957 117].
 +
#Brophy RH, Cai L, Duan X, Zhang Q, Townsend RR, Nunley RM, Guilak F, Rai MF,  (2019) &quot;Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury.&quot; <i>Osteoarthritis Cartilage</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31430535 31430535]; doi: [https://dx.doi.org/10.1016/j.joca.2019.08.002 10.1016/j.joca.2019.08.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31430535 11].
 +
#Ong JWJ, Tan KS, Ler SG, Gunaratne J, Choi H, Seet JE, Chow VT,  (2019) &quot;Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics.&quot; <i>Cells</i> <b>8</b>(9):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31455003 31455003]; doi: [https://dx.doi.org/10.3390/cells8090975 10.3390/cells8090975]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31455003 1].
 +
#Denes BJ, Bolton C, Illsley CS, Kok WL, Walker JV, Poetsch A, Tredwin C, Kiliaridis S, Hu B,  (2019) &quot;Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A.&quot; <i>J Dent Res</i> <b></b>:22034519871448; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31461625 31461625]; doi: [https://dx.doi.org/10.1177/0022034519871448 10.1177/0022034519871448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31461625 1].
 +
#Schulte F, Hasturk H, Hardt M,  (2019) &quot;Mapping Relative Differences in Human Salivary Gland Secretions by Dried Saliva Spot Sampling and nanoLC-MS/MS.&quot; <i>Proteomics</i> <b></b>:e1900023; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31476108 31476108]; doi: [https://dx.doi.org/10.1002/pmic.201900023 10.1002/pmic.201900023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31476108 36].
 +
#Defenouill&egrave;re Q, Verraes A, Laussel C, Friedrich A, Schacherer J, L&eacute;on S,  (2019) &quot;The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose.&quot; <i>Sci Signal</i> <b>12</b>(597):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31481524 31481524]; doi: [https://dx.doi.org/10.1126/scisignal.aaw8000 10.1126/scisignal.aaw8000]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31481524 6].
 +
#Gao Y, Lee H, Kwon OK, Tan M, Kim KT, Lee S,  (2019) &quot;Global Proteomic Analysis of Lysine Succinylation in Zebrafish (<i>Danio rerio</i>).&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31483678 31483678]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00462 10.1021/acs.jproteome.9b00462]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31483678 4].
 +
#Al Ahmad A, Paffrath V, Clima R, Busch JF, Rabien A, Kilic E, Villegas S, Timmermann B, Attimonelli M, Jung K, Meierhofer D,  (2019) &quot;Papillary Renal Cell Carcinomas Rewire Glutathione Metabolism and Are Deficient in Both Anabolic Glucose Synthesis and Oxidative Phosphorylation.&quot; <i>Cancers (Basel)</i> <b>11</b>(9):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31484429 31484429]; doi: [https://dx.doi.org/10.3390/cancers11091298 10.3390/cancers11091298]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31484429 33].
 +
#Liebelt F, Jansen NS, Kumar S, Gracheva E, Claessens LA, Verlaan-de Vries M, Willemstein E, Vertegaal ACO,  (2019) &quot;The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation.&quot; <i>Nat Commun</i> <b>10</b>(1):3987; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31485003 31485003]; doi: [https://dx.doi.org/10.1038/s41467-019-11773-x 10.1038/s41467-019-11773-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31485003 46].
 +
#Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P,  (2019) &quot;Analysis of brain and cerebrospinal fluid from mouse models of the three major forms of neuronal ceroid lipofuscinosis reveals changes in the lysosomal proteome.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31501224 31501224]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001587 10.1074/mcp.RA119.001587]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31501224 132].
 +
#Wilson R, Gundamaraju R, Vemuri R, Angelucci C, Geraghty D, Gueven N, Eri RD,  (2019) &quot;Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis.&quot; <i>Inflamm Bowel Dis</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31504521 31504521]; doi: [https://dx.doi.org/10.1093/ibd/izz179 10.1093/ibd/izz179]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31504521 6].
 +
#Piano D, Cocco E, Guadalupi G, Kalaji HM, Kirkpatrick J, Farci D,  (2019) &quot;Characterization under quasi-native conditions of the capsanthin/capsorubin synthase from Capsicum annuum L.&quot; <i>Plant Physiol Biochem</i> <b>143</b>:165&ndash;175; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31505449 31505449]; doi: [https://dx.doi.org/10.1016/j.plaphy.2019.09.007 10.1016/j.plaphy.2019.09.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31505449 4].
 +
#Dou M, Clair G, Tsai CF, Xu K, Chrisler WB, Sontag RL, Zhao R, Moore RJ, Liu T, Pasa-Tolic L, Smith RD, Shi T, Adkins JN, Qian WJ, Kelly RT, Ansong C, Zhu Y,  (2019) &quot;High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform.&quot; <i>Anal Chem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31509397 31509397]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b03349 10.1021/acs.analchem.9b03349]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31509397 20].
 +
#Lugli F, Di Rocco G, Vazzana A, Genovese F, Pinetti D, Cilli E, Carile MC, Silvestrini S, Gabanini G, Arrighi S, Buti L, Bortolini E, Cipriani A, Figus C, Marciani G, Oxilia G, Romandini M, Sorrentino R, Sola M, Benazzi S,  (2019) &quot;Enamel peptides reveal the sex of the Late Antique &#39;Lovers of Modena&#39;.&quot; <i>Sci Rep</i> <b>9</b>(1):13130; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31511583 31511583]; doi: [https://dx.doi.org/10.1038/s41598-019-49562-7 10.1038/s41598-019-49562-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31511583 16].
 +
#Gnanasundram SV, Kos-Braun IC, Ko&scaron; M,  (2019) &quot;At least two molecules of the RNA helicase Has1 are simultaneously present in pre-ribosomes during ribosome biogenesis.&quot; <i>Nucleic Acids Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31511893 31511893]; doi: [https://dx.doi.org/10.1093/nar/gkz767 10.1093/nar/gkz767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31511893 17].
 +
#Kampstra ASB, van Heemst J, Janssen GM, de Ru AH, van Lummel M, van Veelen PA, Toes REM,  (2019) &quot;Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft.&quot; <i>Immunogenetics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31520135 31520135]; doi: [https://dx.doi.org/10.1007/s00251-019-01129-6 10.1007/s00251-019-01129-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31520135 77].
 +
#Sj&ouml;din S, Brinkmalm G, &Ouml;hrfelt A, Parnetti L, Paciotti S, Hansson O, Hardy J, Blennow K, Zetterberg H, Brinkmalm A,  (2019) &quot;Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer&#39;s and Parkinson&#39;s disease.&quot; <i>Alzheimers Res Ther</i> <b>11</b>(1):82; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31521194 31521194]; doi: [https://dx.doi.org/10.1186/s13195-019-0533-9 10.1186/s13195-019-0533-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31521194 27].
 +
#Israel S, Ernst M, Psathaki OE, Drexler HCA, Casser E, Suzuki Y, Makalowski W, Boiani M, Fuellen G, Taher L,  (2019) &quot;An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo.&quot; <i>Sci Rep</i> <b>9</b>(1):13356; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31527703 31527703]; doi: [https://dx.doi.org/10.1038/s41598-019-49817-3 10.1038/s41598-019-49817-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31527703 14].
 +
#Uckeley ZM, Moeller R, K&uuml;hn LI, Nilsson E, Robens C, Lasswitz L, Lindqvist R, Lenman A, Passos V, Voss Y, Sommerauer C, Kampmann M, Goffinet C, Meissner F, &Ouml;verby AK, Lozach PY, Gerold G,  (2019) &quot;Quantitative proteomics of Uukuniemi virus - host cell interactions reveals GBF1 as proviral host factor for phleboviruses.&quot; <i>Mol Cell Proteomics</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31570497 31570497]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001631 10.1074/mcp.RA119.001631]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31570497 20].
 +
#Kawahara R, Recuero S, Nogueira FCS, Domont GB, Leite KRM, Srougi M, Thaysen-Andersen M, Palmisano G,  (2019) &quot;Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia.&quot; <i>Proteomics</i> <b></b>:e1900174; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31576646 31576646]; doi: [https://dx.doi.org/10.1002/pmic.201900174 10.1002/pmic.201900174]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31576646 5].
 +
#Vel&aacute;squez E, Martins de Souza D, Vel&aacute;squez I, Carneiro GRA, Schmitt A, Falkai P, Domont GB, Nogueira FCS,  (2019) &quot;QUANTITATIVE SUBCELLULAR PROTEOMICS OF THE ORBITOFRONTAL CORTEX OF SCHIZOPHRENIA PATIENTS.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31581776 31581776]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00398 10.1021/acs.jproteome.9b00398]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31581776 46].
 +
#Lundby A, Franciosa G, Emdal KB, Refsgaard JC, Gnosa SP, Bekker-Jensen DB, Secher A, Maurya SR, Paul I, Mendez BL, Kelstrup CD, Francavilla C, Kveiborg M, Montoya G, Jensen LJ, Olsen JV,  (2019) &quot;Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites.&quot; <i>Cell</i> <b>179</b>(2):543&ndash;560.e26; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31585087 31585087]; doi: [https://dx.doi.org/10.1016/j.cell.2019.09.008 10.1016/j.cell.2019.09.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31585087 255].
 +
#Bichmann L, Nelde A, Ghosh M, Heumos L, Mohr C, Peltzer A, Kuchenbecker L, Sachsenberg T, Walz JS, Stevanovi&#x107; S, Rammensee HG, Kohlbacher O,  (2019) &quot;MHCquant: Automated and reproducible data analysis for immunopeptidomics.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31589052 31589052]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00313 10.1021/acs.jproteome.9b00313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31589052 38].
 +
#Lin Z, Zhang Y, Pan H, Hao P, Li S, He Y, Yang H, Liu S, Ren Y,  (2019) &quot;An alternative strategy to explore missing proteins with low molecular weight.&quot; <i>J Proteome Res</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31592669 31592669]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00353 10.1021/acs.jproteome.9b00353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31592669 3].
 +
#Noya SB, Colameo D, Br&uuml;ning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA,  (2019) &quot;The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep.&quot; <i>Science</i> <b>366</b>(6462):; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31601739 31601739]; doi: [https://dx.doi.org/10.1126/science.aav2642 10.1126/science.aav2642]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31601739 96].
 +
#Racle J, Michaux J, Rockinger GA, Arnaud M, Bobisse S, Chong C, Guillaume P, Coukos G, Harari A, Jandus C, Bassani-Sternberg M, Gfeller D,  (2019) &quot;Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes.&quot; <i>Nat Biotechnol</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31611696 31611696]; doi: [https://dx.doi.org/10.1038/s41587-019-0289-6 10.1038/s41587-019-0289-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31611696 131].
 +
#Stadlmann J, Hudecz O, Kr&scaron;&scaron;&aacute;kov&aacute; G, Ctortecka C, Van Raemdonck G, Op De Beeck J, Desmet G, Penninger JM, Jacobs P, Mechtler K,  (2019) &quot;Improved Sensitivity in Low-Input Proteomics using Micro-Pillar Array-based Chromatography.&quot; <i>Anal Chem</i>; PMID: [http://www.ncbi.nlm.nih.gov/pubmed/31612716 31612716]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b02899 10.1021/acs.analchem.9b02899]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31612716 68].

Latest revision as of 20:24, 3 November 2019

GPMDB was originally constructed to serve as a reference work for all publicly available proteomics generated using tandem mass spectrometry. Public data is downloaded and reanalyzed using the current version of X! Tandem. The result files generated by the reanalysis and the relevant metadata are imported into the database and made available through the associated web site, ftp site and REST interfaces.

Contents

Current Public Data Sources

The following public data repositories are checked daily for new suitable raw data for reanalysis:

  1. ProteomeXchange/PRIDE;
  2. JPOST;
  3. MASSIVE;
  4. PeptideAtlas/PASSEL;
  5. ProteomicsDB;
  6. The Chorus Project; and
  7. iProX.

Data made available from specific large projects, such as CPTAC or the Human Proteome Atlas, are also included when they are made available. Every effort is made so that reanalyzed results from all data sources are made available within 48 hours of their being released. In addition, data from lab web sites, ftp sites and direct contributions through the GPM sites made available to researchers are imported into GPMDB as part of a daily incremental update process.

Previous Data Sources

GPMDB has been in operation since Jan. 1, 2004. Several large data source repositories have come into existence and ceased activity in the period since that time. All of the data from those repositories (e.g., TRANCHE, Peptidome) were reanalyzed and stored in GPMDB and they are still available even though the source repository sites are no longer active.

Review process

Simply because data is made available does not mean that it will be included in GPMDB. The data must be approved our quality control AI for its initial acceptance and it may be rejected subsequently because of either quality or originality concerns.

CAUTION: Many papers contain serious errors in their Methods sections. When using data from the literature, it is important to be skeptical of any experimental parameter (cell line, tissue type, modification reagents, quantitation methoods, etc.) that may impact on your use of the data. We have tried to correct any obvious errors, but there is no way to guarantee that we found them all. When attempting to analyze or reproduce results, keep in mind the likelyhood that even key parts of the experiment methods may have been recorded incorrectly in the associated manuscript, as methods are rarely reviewed properly in the current journal publication process.

Data from publications

The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of November 3, 2019.

  1. Lipton MS, Pasa-Tolic' L, Anderson GA, Anderson DJ, Auberry DL, Battista JR, Daly MJ, Fredrickson J, Hixson KK, Kostandarithes H, Masselon C, Markillie LM, Moore RJ, Romine MF, Shen Y, Stritmatter E, Tolic' N, Udseth HR, Venkateswaran A, Wong KK, Zhao R, Smith RD, (2002) "Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags." Proc Natl Acad Sci U S A 99(17):11049–54; PMID: 12177431; doi: 10.1073/pnas.172170199; GPMDB: 498.
  2. Liu T, Qian WJ, Strittmatter EF, Camp DG 2nd, Anderson GA, Thrall BD, Smith RD, (2004) "High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology." Anal Chem 76(18):5345–53; PMID: 15362891; doi: 10.1021/ac049485q; GPMDB: 6.
  3. Sauer G, Körner R, Hanisch A, Ries A, Nigg EA, Silljé HH, (2005) "Proteome analysis of the human mitotic spindle." Mol Cell Proteomics 4(1):35–43; PMID: 15561729; doi: 10.1074/mcp.M400158-MCP200; GPMDB: 1.
  4. Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D, (2005) "The membrane proteome of Halobacterium salinarum." Proteomics 5(1):180–97; PMID: 15619294; doi: 10.1002/pmic.200400943; GPMDB: 37.
  5. Searle BC, Dasari S, Wilmarth PA, Turner M, Reddy AP, David LL, Nagalla SR, (2005) "Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm." J Proteome Res 4(2):546–54; PMID: 15822933; doi: 10.1021/pr049781j; GPMDB: 4.
  6. Elias JE, Haas W, Faherty BK, Gygi SP, (2005) "Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations." Nat Methods 2(9):667–75; PMID: 16118637; doi: 10.1038/nmeth785; GPMDB: 30.
  7. Lee YJ, Rice RH, Lee YM, (2006) "Proteome analysis of human hair shaft: from protein identification to posttranslational modification." Mol Cell Proteomics 5(5):789–800; PMID: 16446289; doi: 10.1074/mcp.M500278-MCP200; GPMDB: 75.
  8. Gatlin CL, Pieper R, Huang ST, Mongodin E, Gebregeorgis E, Parmar PP, Clark DJ, Alami H, Papazisi L, Fleischmann RD, Gill SR, Peterson SN, (2006) "Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus." Proteomics 6(5):1530–49; PMID: 16470658; doi: 10.1002/pmic.200500253; GPMDB: 1603.
  9. Keshamouni VG, Michailidis G, Grasso CS, Anthwal S, Strahler JR, Walker A, Arenberg DA, Reddy RC, Akulapalli S, Thannickal VJ, Standiford TJ, Andrews PC, Omenn GS, (2006) "Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype." J Proteome Res 5(5):1143–54; PMID: 16674103; doi: 10.1021/pr050455t; GPMDB: 3.
  10. Bisle B, Schmidt A, Scheibe B, Klein C, Tebbe A, Kellermann J, Siedler F, Pfeiffer F, Lottspeich F, Oesterhelt D, (2006) "Quantitative profiling of the membrane proteome in a halophilic archaeon." Mol Cell Proteomics 5(9):1543–58; PMID: 16804162; doi: 10.1074/mcp.M600106-MCP200; GPMDB: 32.
  11. Hamacher M, Apweiler R, Arnold G, Becker A, Blüggel M, Carrette O, Colvis C, Dunn MJ, Fröhlich T, Fountoulakis M, van Hall A, Herberg F, Ji J, Kretzschmar H, Lewczuk P, Lubec G, Marcus K, Martens L, Palacios Bustamante N, Park YM, Pennington SR, Robben J, Stühler K, Reidegeld KA, Riederer P, Rossier J, Sanchez JC, Schrader M, Stephan C, Tagle D, Thiele H, Wang J, Wiltfang J, Yoo JS, Zhang C, Klose J, Meyer HE, (2006) "HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy." Proteomics 6(18):4890–8; PMID: 16927433; doi: 10.1002/pmic.200600295; GPMDB: 296.
  12. Beausoleil SA, Villén J, Gerber SA, Rush J, Gygi SP, (2006) "A probability-based approach for high-throughput protein phosphorylation analysis and site localization." Nat Biotechnol 24(10):1285–92; PMID: 16964243; doi: 10.1038/nbt1240; GPMDB: 31.
  13. Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, King N, Hohmann L, DiRuggiero J, Baliga NS, (2006) "An integrated systems approach for understanding cellular responses to gamma radiation." Mol Syst Biol 2:47; PMID: 16969339; doi: 10.1038/msb4100091; GPMDB: 27.
  14. Price TS, Lucitt MB, Wu W, Austin DJ, Pizarro A, Yocum AK, Blair IA, FitzGerald GA, Grosser T, (2007) "EBP, a program for protein identification using multiple tandem mass spectrometry datasets." Mol Cell Proteomics 6(3):527–36; PMID: 17164401; doi: 10.1074/mcp.T600049-MCP200; GPMDB: 314.
  15. Tanner S, Shen Z, Ng J, Florea L, Guigó R, Briggs SP, Bafna V, (2007) "Improving gene annotation using peptide mass spectrometry." Genome Res 17(2):231–9; PMID: 17189379; doi: 10.1101/gr.5646507; GPMDB: 1.
  16. Konstantinidis K, Tebbe A, Klein C, Scheffer B, Aivaliotis M, Bisle B, Falb M, Pfeiffer F, Siedler F, Oesterhelt D, (2007) "Genome-wide proteomics of Natronomonas pharaonis." J Proteome Res 6(1):185–93; PMID: 17203963; doi: 10.1021/pr060352q; GPMDB: 176.
  17. Villén J, Beausoleil SA, Gerber SA, Gygi SP, (2007) "Large-scale phosphorylation analysis of mouse liver." Proc Natl Acad Sci U S A 104(5):1488–93; PMID: 17242355; doi: 10.1073/pnas.0609836104; GPMDB: 1.
  18. Klein C, Aivaliotis M, Olsen JV, Falb M, Besir H, Scheffer B, Bisle B, Tebbe A, Konstantinidis K, Siedler F, Pfeiffer F, Mann M, Oesterhelt D, (2007) "The low molecular weight proteome of Halobacterium salinarum." J Proteome Res 6(4):1510–8; PMID: 17326674; doi: 10.1021/pr060634q; GPMDB: 10.
  19. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC, (2007) "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry." Science 316(5822):280–5; PMID: 17431180; doi: 10.1126/science.1137614; GPMDB: 2.
  20. Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K, Ong SE, Gammeltoft S, Carr SA, Yaffe MB, (2007) "Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate." EMBO J 26(9):2262–73; PMID: 17446864; doi: 10.1038/sj.emboj.7601683; GPMDB: 24.
  21. Brunner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast F, Deutsch EW, Panse C, de Lichtenberg U, Rinner O, Lee H, Pedrioli PG, Malmstrom J, Koehler K, Schrimpf S, Krijgsveld J, Kregenow F, Heck AJ, Hafen E, Schlapbach R, Aebersold R, (2007) "A high-quality catalog of the Drosophila melanogaster proteome." Nat Biotechnol 25(5):576–83; PMID: 17450130; doi: 10.1038/nbt1300; GPMDB: 1907.
  22. Wu L, Hwang SI, Rezaul K, Lu LJ, Mayya V, Gerstein M, Eng JK, Lundgren DH, Han DK, (2007) "Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling." Mol Cell Proteomics 6(8):1343–53; PMID: 17519225; doi: 10.1074/mcp.M700017-MCP200; GPMDB: 2299.
  23. Au CE, Bell AW, Gilchrist A, Hiding J, Nilsson T, Bergeron JJ, (2007) "Organellar proteomics to create the cell map." Curr Opin Cell Biol 19(4):376–85; PMID: 17689063; doi: 10.1016/j.ceb.2007.05.004; GPMDB: 4090.
  24. Whiteaker JR, Zhang H, Zhao L, Wang P, Kelly-Spratt KS, Ivey RG, Piening BD, Feng LC, Kasarda E, Gurley KE, Eng JK, Chodosh LA, Kemp CJ, McIntosh MW, Paulovich AG, (2007) "Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer." J Proteome Res 6(10):3962–75; PMID: 17711321; doi: 10.1021/pr070202v; GPMDB: 84.
  25. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G, (2007) "Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors." Nat Biotechnol 25(9):1035–44; PMID: 17721511; doi: 10.1038/nbt1328; GPMDB: 729.
  26. Padliya ND, Garrett WM, Campbell KB, Tabb DL, Cooper B, (2007) "Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences." Proteomics 7(21):3932–42; PMID: 17922518; doi: 10.1002/pmic.200700419; GPMDB: 1.
  27. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, Hu Y, Tan Z, Stokes M, Sullivan L, Mitchell J, Wetzel R, Macneill J, Ren JM, Yuan J, Bakalarski CE, Villen J, Kornhauser JM, Smith B, Li D, Zhou X, Gygi SP, Gu TL, Polakiewicz RD, Rush J, Comb MJ, (2007) "Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer." Cell 131(6):1190–203; PMID: 18083107; doi: 10.1016/j.cell.2007.11.025; GPMDB: 104.
  28. Ansong C, Yoon H, Norbeck AD, Gustin JK, McDermott JE, Mottaz HM, Rue J, Adkins JN, Heffron F, Smith RD, (2008) "Proteomics analysis of the causative agent of typhoid fever." J Proteome Res 7(2):546–57; PMID: 18166006; doi: 10.1021/pr070434u; GPMDB: 313.
  29. Finney GL, Blackler AR, Hoopmann MR, Canterbury JD, Wu CC, MacCoss MJ, (2008) "Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution muLC-MS data." Anal Chem 80(4):961–71; PMID: 18189369; doi: 10.1021/ac701649e; GPMDB: 12.
  30. Stevens SM Jr, Duncan RS, Koulen P, Prokai L, (2008) "Proteomic analysis of mouse brain microsomes: identification and bioinformatic characterization of endoplasmic reticulum proteins in the mammalian central nervous system." J Proteome Res 7(3):1046–54; PMID: 18271522; doi: 10.1021/pr7006279; GPMDB: 4.
  31. Yocum AK, Gratsch TE, Leff N, Strahler JR, Hunter CL, Walker AK, Michailidis G, Omenn GS, O'Shea KS, Andrews PC, (2008) "Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation." Mol Cell Proteomics 7(4):750–67; PMID: 18304949; doi: 10.1074/mcp.M700399-MCP200; GPMDB: 18.
  32. Lemeer S, Pinkse MW, Mohammed S, van Breukelen B, den Hertog J, Slijper M, Heck AJ, (2008) "Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo." J Proteome Res 7(4):1555–64; PMID: 18307296; doi: 10.1021/pr700667w; GPMDB: 148.
  33. Zhai B, Villén J, Beausoleil SA, Mintseris J, Gygi SP, (2008) "Phosphoproteome analysis of Drosophila melanogaster embryos." J Proteome Res 7(4):1675–82; PMID: 18327897; doi: 10.1021/pr700696a; GPMDB: 24.
  34. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, Bassilian S, Bedi GS, Boontheung P, Cociorva D, Delahunty CM, Denny T, Dunsmore J, Faull KF, Gilligan J, Gonzalez-Begne M, Halgand F, Hall SC, Han X, Henson B, Hewel J, Hu S, Jeffrey S, Jiang J, Loo JA, Ogorzalek Loo RR, Malamud D, Melvin JE, Miroshnychenko O, Navazesh M, Niles R, Park SK, Prakobphol A, Ramachandran P, Richert M, Robinson S, Sondej M, Souda P, Sullivan MA, Takashima J, Than S, Wang J, Whitelegge JP, Witkowska HE, Wolinsky L, Xie Y, Xu T, Yu W, Ytterberg J, Wong DT, Yates JR 3rd, Fisher SJ, (2008) "The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions." J Proteome Res 7(5):1994–2006; PMID: 18361515; doi: 10.1021/pr700764j; GPMDB: 102.
  35. Simó C, Bachi A, Cattaneo A, Guerrier L, Fortis F, Boschetti E, Podtelejnikov A, Righetti PG, (2008) "Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 1. Behavior of mono- to hexapeptides." Anal Chem 80(10):3547–56; PMID: 18399644; doi: 10.1021/ac702635v; GPMDB: 19.
  36. Bachi A, Simó C, Restuccia U, Guerrier L, Fortis F, Boschetti E, Masseroli M, Righetti PG, (2008) "Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids." Anal Chem 80(10):3557–65; PMID: 18410134; doi: 10.1021/ac8001353; GPMDB: 2.
  37. Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S, (2008) "Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics." Science 320(5878):938–41; PMID: 18436743; doi: 10.1126/science.1157956; GPMDB: 28.
  38. Ji H, Erfani N, Tauro BJ, Kapp EA, Zhu HJ, Moritz RL, Lim JW, Simpson RJ, (2008) "Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes." Electrophoresis 29(12):2660–71; PMID: 18494037; doi: 10.1002/elps.200800015; GPMDB: 26.
  39. Cao Z, Li C, Higginbotham JN, Franklin JL, Tabb DL, Graves-Deal R, Hill S, Cheek K, Jerome WG, Lapierre LA, Goldenring JR, Ham AJ, Coffey RJ, (2008) "Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis." Mol Cell Proteomics 7(9):1651–67; PMID: 18504258; doi: 10.1074/mcp.M700155-MCP200; GPMDB: 6.
  40. Lemeer S, Jopling C, Gouw J, Mohammed S, Heck AJ, Slijper M, den Hertog J, (2008) "Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos." Mol Cell Proteomics 7(11):2176–87; PMID: 18550893; doi: 10.1074/mcp.M800081-MCP200; GPMDB: 31.
  41. Sodek KL, Evangelou AI, Ignatchenko A, Agochiya M, Brown TJ, Ringuette MJ, Jurisica I, Kislinger T, (2008) "Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT)." Mol Biosyst 4(7):762–73; PMID: 18563251; doi: 10.1039/b717542f; GPMDB: 252.
  42. Schimmel J, Larsen KM, Matic I, van Hagen M, Cox J, Mann M, Andersen JS, Vertegaal AC, (2008) "The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle." Mol Cell Proteomics 7(11):2107–22; PMID: 18565875; doi: 10.1074/mcp.M800025-MCP200; GPMDB: 5.
  43. Yu MJ, Pisitkun T, Wang G, Aranda JF, Gonzales PA, Tchapyjnikov D, Shen RF, Alonso MA, Knepper MA, (2008) "Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct." Am J Physiol Cell Physiol 295(3):C661–78; PMID: 18596208; doi: 10.1152/ajpcell.90650.2007; GPMDB: 137.
  44. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK, (2008) "A mitochondrial protein compendium elucidates complex I disease biology." Cell 134(1):112–23; PMID: 18614015; doi: 10.1016/j.cell.2008.06.016; GPMDB: 274.
  45. Merrihew GE, Davis C, Ewing B, Williams G, Käll L, Frewen BE, Noble WS, Green P, Thomas JH, MacCoss MJ, (2008) "Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations." Genome Res 18(10):1660–9; PMID: 18653799; doi: 10.1101/gr.077644.108; GPMDB: 369.
  46. Dix MM, Simon GM, Cravatt BF, (2008) "Global mapping of the topography and magnitude of proteolytic events in apoptosis." Cell 134(4):679–91; PMID: 18724940; doi: 10.1016/j.cell.2008.06.038; GPMDB: 178.
  47. Kline KG, Frewen B, Bristow MR, Maccoss MJ, Wu CC, (2008) "High quality catalog of proteotypic peptides from human heart." J Proteome Res 7(11):5055–61; PMID: 18803417; doi: 10.1021/pr800239e; GPMDB: 96.
  48. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M, (2008) "Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast." Nature 455(7217):1251–4; PMID: 18820680; doi: 10.1038/nature07341; GPMDB: 505.
  49. Liao L, Park SK, Xu T, Vanderklish P, Yates JR 3rd, (2008) "Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice." Proc Natl Acad Sci U S A 105(40):15281–6; PMID: 18829439; doi: 10.1073/pnas.0804678105; GPMDB: 15.
  50. Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ, (2009) "Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function." Mol Cell Proteomics 8(2):343–56; PMID: 18936055; doi: 10.1074/mcp.M800420-MCP200; GPMDB: 346.
  51. Slebos RJ, Brock JW, Winters NF, Stuart SR, Martinez MA, Li M, Chambers MC, Zimmerman LJ, Ham AJ, Tabb DL, Liebler DC, (2008) "Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry." J Proteome Res 7(12):5286–94; PMID: 18939861; doi: 10.1021/pr8004666; GPMDB: 346.
  52. Mittler G, Butter F, Mann M, (2009) "A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements." Genome Res 19(2):284–93; PMID: 19015324; doi: 10.1101/gr.081711.108; GPMDB: 7.
  53. Codreanu SG, Zhang B, Sobecki SM, Billheimer DD, Liebler DC, (2009) "Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal." Mol Cell Proteomics 8(4):670–80; PMID: 19054759; doi: 10.1074/mcp.M800070-MCP200; GPMDB: 168.
  54. Ulintz PJ, Yocum AK, Bodenmiller B, Aebersold R, Andrews PC, Nesvizhskii AI, (2009) "Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification." J Proteome Res 8(2):887–99; PMID: 19072539; doi: 10.1021/pr800535h; GPMDB: 18.
  55. Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR, (2009) "Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy." Nat Biotechnol 27(1):77–83; PMID: 19098899; doi: 10.1038/nbt.1513; GPMDB: 36.
  56. Glatter T, Wepf A, Aebersold R, Gstaiger M, (2009) "An integrated workflow for charting the human interaction proteome: insights into the PP2A system." Mol Syst Biol 5:237; PMID: 19156129; doi: 10.1038/msb.2008.75; GPMDB: 62.
  57. Bivi N, Bereszczak JZ, Romanello M, Zeef LA, Delneri D, Quadrifoglio F, Moro L, Brancia FL, Tell G, (2009) "Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates." J Proteome Res 8(3):1131–42; PMID: 19226166; doi: 10.1021/pr8005606; GPMDB: 10.
  58. Pieper R, Huang ST, Clark DJ, Robinson JM, Alami H, Parmar PP, Suh MJ, Kuntumalla S, Bunai CL, Perry RD, Fleischmann RD, Peterson SN, (2009) "Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes." Proteome Sci 7:5; PMID: 19228400; doi: 10.1186/1477-5956-7-5; GPMDB: 376.
  59. de Sousa Abreu R, Sanchez-Diaz PC, Vogel C, Burns SC, Ko D, Burton TL, Vo DT, Chennasamudaram S, Le SY, Shapiro BA, Penalva LO, (2009) "Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes." J Biol Chem 284(18):12125–35; PMID: 19258308; doi: 10.1074/jbc.M809605200; GPMDB: 14.
  60. Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ, (2009) "Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition." J Proteome Res 8(6):2827–37; PMID: 19296674; doi: 10.1021/pr8010974; GPMDB: 98.
  61. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ, (2009) "Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics." Nat Protoc 4(4):484–94; PMID: 19300442; doi: 10.1038/nprot.2009.21; GPMDB: 3.
  62. Ramakrishnan SR, Vogel C, Prince JT, Li Z, Penalva LO, Myers M, Marcotte EM, Miranker DP, Wang R, (2009) "Integrating shotgun proteomics and mRNA expression data to improve protein identification." Bioinformatics 25(11):1397–403; PMID: 19318424; doi: 10.1093/bioinformatics/btp168; GPMDB: 8.
  63. Rudomin EL, Carr SA, Jaffe JD, (2009) "Directed sample interrogation utilizing an accurate mass exclusion-based data-dependent acquisition strategy (AMEx)." J Proteome Res 8(6):3154–60; PMID: 19344186; doi: 10.1021/pr801017a; GPMDB: 11.
  64. Steiling K, Kadar AY, Bergerat A, Flanigon J, Sridhar S, Shah V, Ahmad QR, Brody JS, Lenburg ME, Steffen M, Spira A, (2009) "Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers." PLoS One 4(4):e5043; PMID: 19357784; doi: 10.1371/journal.pone.0005043; GPMDB: 589.
  65. Hjelmervik TO, Jonsson R, Bolstad AI, (2009) "The minor salivary gland proteome in Sjögren's syndrome." Oral Dis 15(5):342–53; PMID: 19364392; doi: 10.1111/j.1601-0825.2009.01531.x; GPMDB: 2.
  66. Zanivan S, Gnad F, Wickström SA, Geiger T, Macek B, Cox J, Fässler R, Mann M, (2008) "Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry." J Proteome Res 7(12):5314–26; PMID: 19367708; GPMDB: 20.
  67. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S, (2009) "Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks." Plant Physiol 150(2):889–903; PMID: 19376835; doi: 10.1104/pp.109.138677; GPMDB: 13.
  68. Parker KC, Walsh RJ, Salajegheh M, Amato AA, Krastins B, Sarracino DA, Greenberg SA, (2009) "Characterization of human skeletal muscle biopsy samples using shotgun proteomics." J Proteome Res 8(7):3265–77; PMID: 19382779; doi: 10.1021/pr800873q; GPMDB: 36.
  69. Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJ, HUPO Test Sample Working Group., (2009) "A HUPO test sample study reveals common problems in mass spectrometry-based proteomics." Nat Methods 6(6):423–30; PMID: 19448641; doi: 10.1038/nmeth.1333; GPMDB: 14.
  70. Fernández E, Collins MO, Uren RT, Kopanitsa MV, Komiyama NH, Croning MD, Zografos L, Armstrong JD, Choudhary JS, Grant SG, (2009) "Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins." Mol Syst Biol 5:269; PMID: 19455133; doi: 10.1038/msb.2009.27; GPMDB: 70.
  71. Sprung RW Jr, Brock JW, Tanksley JP, Li M, Washington MK, Slebos RJ, Liebler DC, (2009) "Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis." Mol Cell Proteomics 8(8):1988–98; PMID: 19467989; doi: 10.1074/mcp.M800518-MCP200; GPMDB: 230.
  72. Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV, (2009) "Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells." PLoS Biol 7(5):e1000111; PMID: 19468302; doi: 10.1371/journal.pbio.1000111; GPMDB: 1.
  73. Samaee SM, Lahnsteiner F, Giménez G, Estévez A, Sarg B, Lindner H, (2009) "Quantitative composition of vitellogenin-derived yolk proteins and their effects on viability of embryos and larvae of common dentex (Dentex dentex), a marine pelagophil teleost." J Exp Zool A Ecol Genet Physiol 311(7):504–20; PMID: 19492308; doi: 10.1002/jez.548; GPMDB: 4.
  74. Ma ZQ, Dasari S, Chambers MC, Litton MD, Sobecki SM, Zimmerman LJ, Halvey PJ, Schilling B, Drake PM, Gibson BW, Tabb DL, (2009) "IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering." J Proteome Res 8(8):3872–81; PMID: 19522537; doi: 10.1021/pr900360j; GPMDB: 18.
  75. Shi L, Chowdhury SM, Smallwood HS, Yoon H, Mottaz-Brewer HM, Norbeck AD, McDermott JE, Clauss TR, Heffron F, Smith RD, Adkins JN, (2009) "Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica." Infect Immun 77(8):3227–33; PMID: 19528222; doi: 10.1128/IAI.00063-09; GPMDB: 29.
  76. Cox B, Kotlyar M, Evangelou AI, Ignatchenko V, Ignatchenko A, Whiteley K, Jurisica I, Adamson SL, Rossant J, Kislinger T, (2009) "Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology." Mol Syst Biol 5:279; PMID: 19536202; doi: 10.1038/msb.2009.37; GPMDB: 166.
  77. Kentsis A, Lin YY, Kurek K, Calicchio M, Wang YY, Monigatti F, Campagne F, Lee R, Horwitz B, Steen H, Bachur R, (2010) "Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry." Ann Emerg Med 55(1):62–70.e4; PMID: 19556024; doi: 10.1016/j.annemergmed.2009.04.020; GPMDB: 311.
  78. Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, Heck AJ, Timmers HT, (2009) "Human Ccr4-Not complexes contain variable deadenylase subunits." Biochem J 422(3):443–53; PMID: 19558367; doi: 10.1042/BJ20090500; GPMDB: 10.
  79. Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F, (2009) "Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea." Genome Biol 10(6):R70; PMID: 19558674; doi: 10.1186/gb-2009-10-6-r70; GPMDB: 7.
  80. Alev C, Shinmyozu K, McIntyre BA, Sheng G, (2009) "Genomic organization of zebra finch alpha and beta globin genes and their expression in primitive and definitive blood in comparison with globins in chicken." Dev Genes Evol 219(7):353–60; PMID: 19609557; doi: 10.1007/s00427-009-0294-8; GPMDB: 8.
  81. Izquierdo L, Schulz BL, Rodrigues JA, Güther ML, Procter JB, Barton GJ, Aebi M, Ferguson MA, (2009) "Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases." EMBO J 28(17):2650–61; PMID: 19629045; doi: 10.1038/emboj.2009.203; GPMDB: 1.
  82. Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J, (2009) "Phosphorylation dynamics during early differentiation of human embryonic stem cells." Cell Stem Cell 5(2):214–26; PMID: 19664995; doi: 10.1016/j.stem.2009.05.021; GPMDB: 12.
  83. Tebbe A, Schmidt A, Konstantinidis K, Falb M, Bisle B, Klein C, Aivaliotis M, Kellermann J, Siedler F, Pfeiffer F, Lottspeich F, Oesterhelt D, (2009) "Life-style changes of a halophilic archaeon analyzed by quantitative proteomics." Proteomics 9(15):3843–55; PMID: 19670246; doi: 10.1002/pmic.200800944; GPMDB: 43.
  84. Casado-Vela J, Rodriguez-Suarez E, Iloro I, Ametzazurra A, Alkorta N, García-Velasco JA, Matorras R, Prieto B, González S, Nagore D, Simón L, Elortza F, (2009) "Comprehensive proteomic analysis of human endometrial fluid aspirate." J Proteome Res 8(10):4622–32; PMID: 19670903; doi: 10.1021/pr9004426; GPMDB: 4.
  85. Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET, (2009) "Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium." PLoS One 4(9):e6994; PMID: 19746165; doi: 10.1371/journal.pone.0006994; GPMDB: 6.
  86. Pottiez G, Flahaut C, Cecchelli R, Karamanos Y, (2009) "Understanding the blood-brain barrier using gene and protein expression profiling technologies." Brain Res Rev 62(1):83–98; PMID: 19770003; doi: 10.1016/j.brainresrev.2009.09.004; GPMDB: 6.
  87. Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo AB, Heck AJ, (2010) "In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling." Mol Cell Proteomics 9(1):84–99; PMID: 19770167; doi: 10.1074/mcp.M900291-MCP200; GPMDB: 4.
  88. Ozlü N, Monigatti F, Renard BY, Field CM, Steen H, Mitchison TJ, Steen JJ, (2010) "Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition." Mol Cell Proteomics 9(2):336–50; PMID: 19786723; doi: 10.1074/mcp.M900308-MCP200; GPMDB: 13.
  89. Johansen E, Schilling B, Lerch M, Niles RK, Liu H, Li B, Allen S, Hall SC, Witkowska HE, Regnier FE, Gibson BW, Fisher SJ, Drake PM, (2009) "A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples." J Vis Exp (32):; PMID: 19798022; doi: 10.3791/1398; GPMDB: 83.
  90. Hahn CK, Berchuck JE, Ross KN, Kakoza RM, Clauser K, Schinzel AC, Ross L, Galinsky I, Davis TN, Silver SJ, Root DE, Stone RM, DeAngelo DJ, Carroll M, Hahn WC, Carr SA, Golub TR, Kung AL, Stegmaier K, (2009) "Proteomic and genetic approaches identify Syk as an AML target." Cancer Cell 16(4):281–94; PMID: 19800574; doi: 10.1016/j.ccr.2009.08.018; GPMDB: 8.
  91. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA, (2009) "Community proteogenomics reveals insights into the physiology of phyllosphere bacteria." Proc Natl Acad Sci U S A 106(38):16428–33; PMID: 19805315; doi: 10.1073/pnas.0905240106; GPMDB: 11.
  92. Tunica DG, Yin X, Sidibe A, Stegemann C, Nissum M, Zeng L, Brunet M, Mayr M, (2009) "Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS." Proteomics 9(21):4991–6; PMID: 19810032; doi: 10.1002/pmic.200900065; GPMDB: 1.
  93. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ, (2010) "Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature." Mol Cell Proteomics 9(2):197–208; PMID: 19837982; doi: 10.1074/mcp.M900152-MCP200; GPMDB: 84.
  94. Baudet M, Ortet P, Gaillard JC, Fernandez B, Guérin P, Enjalbal C, Subra G, de Groot A, Barakat M, Dedieu A, Armengaud J, (2010) "Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons." Mol Cell Proteomics 9(2):415–26; PMID: 19875382; doi: 10.1074/mcp.M900359-MCP200; GPMDB: 19.
  95. Pitteri SJ, JeBailey L, Faça VM, Thorpe JD, Silva MA, Ireton RC, Horton MB, Wang H, Pruitt LC, Zhang Q, Cheng KH, Urban N, Hanash SM, Dinulescu DM, (2009) "Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery." PLoS One 4(11):e7916; PMID: 19936259; doi: 10.1371/journal.pone.0007916; GPMDB: 144.
  96. Bilodeau N, Fiset A, Boulanger MC, Bhardwaj S, Winstall E, Lavoie JN, Faure RL, (2010) "Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes." J Proteome Res 9(2):708–17; PMID: 19947650; doi: 10.1021/pr900481b; GPMDB: 17.
  97. Mathias RA, Chen YS, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ, (2010) "Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration." J Proteome Res 9(2):1007–19; PMID: 19954229; doi: 10.1021/pr900907g; GPMDB: 66.
  98. Lau TY, Power KA, Dijon S, de Gardelle I, McDonnell S, Duffy MJ, Pennington SR, Gallagher WM, (2010) "Prioritization of candidate protein biomarkers from an in vitro model system of breast tumor progression toward clinical verification." J Proteome Res 9(3):1450–9; PMID: 20000743; doi: 10.1021/pr900989q; GPMDB: 5.
  99. Chalkley RJ, Medzihradszky KF, Lynn AJ, Baker PR, Burlingame AL, (2010) "Statistical analysis of Peptide electron transfer dissociation fragmentation mass spectrometry." Anal Chem 82(2):579–84; PMID: 20028093; doi: 10.1021/ac9018582; GPMDB: 2.
  100. Yin X, Cuello F, Mayr U, Hao Z, Hornshaw M, Ehler E, Avkiran M, Mayr M, (2010) "Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution." Mol Cell Proteomics 9(3):497–509; PMID: 20037178; doi: 10.1074/mcp.M900275-MCP200; GPMDB: 156.
  101. Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ, (2010) "Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly." Plant Physiol 152(3):1219–50; PMID: 20089766; doi: 10.1104/pp.109.152694; GPMDB: 301.
  102. Gant-Branum RL, Broussard JA, Mahsut A, Webb DJ, McLean JA, (2010) "Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry." J Proteome Res 9(3):1541–8; PMID: 20095645; doi: 10.1021/pr901043e; GPMDB: 8.
  103. Paweletz CP, Wiener MC, Bondarenko AY, Yates NA, Song Q, Liaw A, Lee AY, Hunt BT, Henle ES, Meng F, Sleph HF, Holahan M, Sankaranarayanan S, Simon AJ, Settlage RE, Sachs JR, Shearman M, Sachs AB, Cook JJ, Hendrickson RC, (2010) "Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry." J Proteome Res 9(3):1392–401; PMID: 20095649; doi: 10.1021/pr900925d; GPMDB: 144.
  104. Guo X, Shen J, Xia Z, Zhang R, Zhang P, Zhao C, Xing J, Chen L, Chen W, Lin M, Huo R, Su B, Zhou Z, Sha J, (2010) "Proteomic analysis of proteins involved in spermiogenesis in mouse." J Proteome Res 9(3):1246–56; PMID: 20099899; doi: 10.1021/pr900735k; GPMDB: 1.
  105. Chaerkady R, Kerr CL, Kandasamy K, Marimuthu A, Gearhart JD, Pandey A, (2010) "Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells." Proteomics 10(7):1359–73; PMID: 20104618; doi: 10.1002/pmic.200900483; GPMDB: 3.
  106. Burgess EF, Ham AJ, Tabb DL, Billheimer D, Roth BJ, Chang SS, Cookson MS, Hinton TJ, Cheek KL, Hill S, Pietenpol JA, (2008) "Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes." Proteomics Clin Appl 2(9):1223; PMID: 20107526; doi: 10.1002/prca.200780073; GPMDB: 115.
  107. Swaney DL, Wenger CD, Coon JJ, (2010) "Value of using multiple proteases for large-scale mass spectrometry-based proteomics." J Proteome Res 9(3):1323–9; PMID: 20113005; doi: 10.1021/pr900863u; GPMDB: 15.
  108. Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T, Knepper MA, (2010) "Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells." Proc Natl Acad Sci U S A 107(8):3882–7; PMID: 20139300; doi: 10.1073/pnas.0910646107; GPMDB: 117.
  109. Looso M, Borchardt T, Krüger M, Braun T, (2010) "Advanced identification of proteins in uncharacterized proteomes by pulsed in vivo stable isotope labeling-based mass spectrometry." Mol Cell Proteomics 9(6):1157–66; PMID: 20139370; doi: 10.1074/mcp.M900426-MCP200; GPMDB: 23.
  110. Tomazella GG, daSilva I, Thomé CH, Greene LJ, Koehler CJ, Thiede B, Wiker HG, de Souza GA, (2010) "Analysis of detergent-insoluble and whole cell lysate fractions of resting neutrophils using high-resolution mass spectrometry." J Proteome Res 9(4):2030–6; PMID: 20158270; doi: 10.1021/pr1000253; GPMDB: 2.
  111. Sharma K, Kumar C, Kéri G, Breitkopf SB, Oppermann FS, Daub H, (2010) "Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response." J Proteome Res 9(5):2539–49; PMID: 20222745; doi: 10.1021/pr901192p; GPMDB: 73.
  112. Baiges I, Palmfeldt J, Bladé C, Gregersen N, Arola L, (2010) "Lipogenesis is decreased by grape seed proanthocyanidins according to liver proteomics of rats fed a high fat diet." Mol Cell Proteomics 9(7):1499–513; PMID: 20332082; doi: 10.1074/mcp.M000055-MCP201; GPMDB: 2.
  113. Drake RR, Elschenbroich S, Lopez-Perez O, Kim Y, Ignatchenko V, Ignatchenko A, Nyalwidhe JO, Basu G, Wilkins CE, Gjurich B, Lance RS, Semmes OJ, Medin JA, Kislinger T, (2010) "In-depth proteomic analyses of direct expressed prostatic secretions." J Proteome Res 9(5):2109–16; PMID: 20334419; doi: 10.1021/pr1001498; GPMDB: 9.
  114. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M, (2010) "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria." Nature 464(7288):543–8; PMID: 20336137; doi: 10.1038/nature08883; GPMDB: 2.
  115. Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J, (2010) "An expanded Oct4 interaction network: implications for stem cell biology, development, and disease." Cell Stem Cell 6(4):382–95; PMID: 20362542; doi: 10.1016/j.stem.2010.03.004; GPMDB: 7.
  116. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M, (2010) "Super-SILAC mix for quantitative proteomics of human tumor tissue." Nat Methods 7(5):383–5; PMID: 20364148; doi: 10.1038/nmeth.1446; GPMDB: 116.
  117. Clair G, Roussi S, Armengaud J, Duport C, (2010) "Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions." Mol Cell Proteomics 9(7):1486–98; PMID: 20368289; doi: 10.1074/mcp.M000027-MCP201; GPMDB: 27.
  118. Aguiar M, Haas W, Beausoleil SA, Rush J, Gygi SP, (2010) "Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets." J Proteome Res 9(6):3103–7; PMID: 20377248; doi: 10.1021/pr1000225; GPMDB: 13.
  119. Vandenborre G, Van Damme EJ, Ghesquière B, Menschaert G, Hamshou M, Rao RN, Gevaert K, Smagghe G, (2010) "Glycosylation signatures in Drosophila: fishing with lectins." J Proteome Res 9(6):3235–42; PMID: 20387871; doi: 10.1021/pr1001753; GPMDB: 1.
  120. Bakthavatsalam D, Gomer RH, (2010) "The secreted proteome profile of developing Dictyostelium discoideum cells." Proteomics 10(13):2556–9; PMID: 20422638; doi: 10.1002/pmic.200900516; GPMDB: 1.
  121. Olinares PD, Ponnala L, van Wijk KJ, (2010) "Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering." Mol Cell Proteomics 9(7):1594–615; PMID: 20423899; doi: 10.1074/mcp.M000038-MCP201; GPMDB: 110.
  122. McManus CA, Polden J, Cotter DR, Dunn MJ, (2010) "Two-dimensional reference map for the basic proteome of the human dorsolateral prefrontal cortex (dlPFC) of the prefrontal lobe region of the brain." Proteomics 10(13):2551–5; PMID: 20432482; doi: 10.1002/pmic.200900705; GPMDB: 9.
  123. Renard BY, Timm W, Kirchner M, Steen JA, Hamprecht FA, Steen H, (2010) "Estimating the confidence of peptide identifications without decoy databases." Anal Chem 82(11):4314–8; PMID: 20455556; doi: 10.1021/ac902892j; GPMDB: 58.
  124. Hah N, Kolkman A, Ruhl DD, Pijnappel WW, Heck AJ, Timmers HT, Kraus WL, (2010) "A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex." Cancer Res 70(11):4402–11; PMID: 20460533; doi: 10.1158/0008-5472.CAN-09-2767; GPMDB: 2.
  125. Choudhary C, Mann M, (2010) "Decoding signalling networks by mass spectrometry-based proteomics." Nat Rev Mol Cell Biol 11(6):427–39; PMID: 20461098; doi: 10.1038/nrm2900; GPMDB: 17.
  126. Casado-Vela J, Muries B, Carvajal M, Iloro I, Elortza F, Martínez-Ballesta MC, (2010) "Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry." J Proteome Res 9(7):3479–94; PMID: 20462273; doi: 10.1021/pr901150g; GPMDB: 8.
  127. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M, (2010) "Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions." J Cell Biol 189(4):739–54; PMID: 20479470; doi: 10.1083/jcb.200911091; GPMDB: 61.
  128. Peng L, Kapp EA, Fenyö D, Kwon MS, Jiang P, Wu S, Jiang Y, Aguilar MI, Ahmed N, Baker MS, Cai Z, Chen YJ, Van Chi P, Chung MC, He F, Len AC, Liao PC, Nakamura K, Ngai SM, Paik YK, Pan TL, Poon TC, Salekdeh GH, Simpson RJ, Sirdeshmukh R, Srisomsap C, Svasti J, Tyan YC, Dreyer FS, McLauchlan D, Rawson P, Jordan TW, (2010) "The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard." Proteomics 10(22):4142–8; PMID: 20486120; doi: 10.1002/pmic.201000126; GPMDB: 2.
  129. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M, (2010) "A global protein kinase and phosphatase interaction network in yeast." Science 328(5981):1043–6; PMID: 20489023; doi: 10.1126/science.1176495; GPMDB: 571.
  130. Pelletier S, Schuurman KG, Berkers CR, Ovaa H, Heck AJ, Raijmakers R, (2010) "Quantifying cross-tissue diversity in proteasome complexes by mass spectrometry." Mol Biosyst 6(8):1450–3; PMID: 20498902; doi: 10.1039/c004989a; GPMDB: 24.
  131. Chen YS, Mathias RA, Mathivanan S, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ, (2011) "Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition." Mol Cell Proteomics 10(2):M110.001131; PMID: 20511395; doi: 10.1074/mcp.M110.001131; GPMDB: 100.
  132. Gundry RL, Tchernyshyov I, Sheng S, Tarasova Y, Raginski K, Boheler KR, Van Eyk JE, (2010) "Expanding the mouse embryonic stem cell proteome: combining three proteomic approaches." Proteomics 10(14):2728–32; PMID: 20512790; doi: 10.1002/pmic.201000039; GPMDB: 16.
  133. O'Brien RN, Shen Z, Tachikawa K, Lee PA, Briggs SP, (2010) "Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal." Mol Cell Proteomics 9(10):2238–51; PMID: 20513800; doi: 10.1074/mcp.M110.000281; GPMDB: 8.
  134. Sury MD, Chen JX, Selbach M, (2010) "The SILAC fly allows for accurate protein quantification in vivo." Mol Cell Proteomics 9(10):2173–83; PMID: 20525996; doi: 10.1074/mcp.M110.000323; GPMDB: 120.
  135. Kallappagoudar S, Varma P, Pathak RU, Senthilkumar R, Mishra RK, (2010) "Nuclear matrix proteome analysis of Drosophila melanogaster." Mol Cell Proteomics 9(9):2005–18; PMID: 20530634; doi: 10.1074/mcp.M110.001362; GPMDB: 19.
  136. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M, (2010) "Proteomics characterization of extracellular space components in the human aorta." Mol Cell Proteomics 9(9):2048–62; PMID: 20551380; doi: 10.1074/mcp.M110.001693; GPMDB: 108.
  137. Kozielski F, Riaz T, DeBonis S, Koehler CJ, Kroening M, Panse I, Strozynski M, Donaldson IM, Thiede B, (2011) "Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain." Amino Acids 41(2):363–85; PMID: 20567863; doi: 10.1007/s00726-010-0649-5; GPMDB: 15.
  138. Andrews G, Lewis D, Notey J, Kelly R, Muddiman D, (2010) "Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting." Anal Bioanal Chem 398(1):391–404; PMID: 20582400; doi: 10.1007/s00216-010-3929-8; GPMDB: 48.
  139. Li M, Gray W, Zhang H, Chung CH, Billheimer D, Yarbrough WG, Liebler DC, Shyr Y, Slebos RJ, (2010) "Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling." J Proteome Res 9(8):4295–305; PMID: 20586475; doi: 10.1021/pr100527g; GPMDB: 153.
  140. Wolschin F, Mutti NS, Amdam GV, (2011) "Insulin receptor substrate influences female caste development in honeybees." Biol Lett 7(1):112–5; PMID: 20591854; doi: 10.1098/rsbl.2010.0463; GPMDB: 23.
  141. Bezstarosti K, Ghamari A, Grosveld FG, Demmers JA, (2010) "Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome." J Proteome Res 9(9):4464–75; PMID: 20593818; doi: 10.1021/pr100217d; GPMDB: 1.
  142. Lee CP, Eubel H, Millar AH, (2010) "Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis." Mol Cell Proteomics 9(10):2125–39; PMID: 20601493; doi: 10.1074/mcp.M110.001214; GPMDB: 55.
  143. Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, Tapio S, (2010) "Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics." J Proteome Res 9(9):4710–20; PMID: 20604508; doi: 10.1021/pr1004168; GPMDB: 11.
  144. DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, Ivens AC, Berriman M, Verjovski-Almeida S, Wilson RA, (2010) "Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts." Genome Res 20(8):1112–21; PMID: 20606017; doi: 10.1101/gr.100099.109; GPMDB: 1.
  145. Magdeldin S, Li H, Yoshida Y, Enany S, Zhang Y, Xu B, Fujinaka H, Yaoita E, Yamamoto T, (2010) "Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8." J Proteomics 73(10):2031–40; PMID: 20619372; doi: 10.1016/j.jprot.2010.06.010; GPMDB: 5.
  146. Andrews G, Lewis D, Notey J, Kelly R, Muddiman D, (2010) "Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2." Anal Bioanal Chem 398(1):377–89; PMID: 20623222; doi: 10.1007/s00216-010-3955-6; GPMDB: 58.
  147. Impens F, Colaert N, Helsens K, Ghesquière B, Timmerman E, De Bock PJ, Chain BM, Vandekerckhove J, Gevaert K, (2010) "A quantitative proteomics design for systematic identification of protease cleavage events." Mol Cell Proteomics 9(10):2327–33; PMID: 20627866; doi: 10.1074/mcp.M110.001271; GPMDB: 3.
  148. Mäusbacher N, Schreiber TB, Daub H, (2010) "Glycoprotein capture and quantitative phosphoproteomics indicate coordinated regulation of cell migration upon lysophosphatidic acid stimulation." Mol Cell Proteomics 9(11):2337–53; PMID: 20639409; doi: 10.1074/mcp.M110.000737; GPMDB: 70.
  149. Xu G, Paige JS, Jaffrey SR, (2010) "Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling." Nat Biotechnol 28(8):868–73; PMID: 20639865; doi: 10.1038/nbt.1654; GPMDB: 2.
  150. Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJ, Liebler DC, (2010) "Depletion of abundant plasma proteins and limitations of plasma proteomics." J Proteome Res 9(10):4982–91; PMID: 20677825; doi: 10.1021/pr100646w; GPMDB: 207.
  151. Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M, (2010) "Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria." Mol Cell Proteomics 9(12):2642–53; PMID: 20688971; doi: 10.1074/mcp.M110.001594; GPMDB: 18.
  152. Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EA, Malik P, Zuleger N, Goncharevich A, de Las Heras J, Kelly DA, Kerr AR, Florens L, Schirmer EC, (2010) "The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture." Mol Cell Proteomics 9(12):2571–85; PMID: 20693407; doi: 10.1074/mcp.M110.002915; GPMDB: 8.
  153. Victor KJ, Fennell AY, Grimplet J, (2010) "Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines." Proteome Sci 8:44; PMID: 20704748; doi: 10.1186/1477-5956-8-44; GPMDB: 2.
  154. Gunaratne R, Braucht DW, Rinschen MM, Chou CL, Hoffert JD, Pisitkun T, Knepper MA, (2010) "Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells." Proc Natl Acad Sci U S A 107(35):15653–8; PMID: 20713729; doi: 10.1073/pnas.1007424107; GPMDB: 4.
  155. Kline KG, Barrett-Wilt GA, Sussman MR, (2010) "In planta changes in protein phosphorylation induced by the plant hormone abscisic acid." Proc Natl Acad Sci U S A 107(36):15986–91; PMID: 20733066; doi: 10.1073/pnas.1007879107; GPMDB: 48.
  156. Franklin S, Zhang MJ, Chen H, Paulsson AK, Mitchell-Jordan SA, Li Y, Ping P, Vondriska TM, (2011) "Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy." Mol Cell Proteomics 10(1):M110.000703; PMID: 20807835; doi: 10.1074/mcp.M110.000703; GPMDB: 136.
  157. Alvarado R, Tran D, Ching B, Phinney BS, (2010) "A comparative study of in-gel digestions using microwave and pressure-accelerated technologies." J Biomol Tech 21(3):148–55; PMID: 20808644; GPMDB: 85.
  158. Wei Y, Tong J, Taylor P, Strumpf D, Ignatchenko V, Pham NA, Yanagawa N, Liu G, Jurisica I, Shepherd FA, Tsao MS, Kislinger T, Moran MF, (2011) "Primary tumor xenografts of human lung adeno and squamous cell carcinoma express distinct proteomic signatures." J Proteome Res 10(1):161–74; PMID: 20815376; doi: 10.1021/pr100491e; GPMDB: 150.
  159. Patel VN, Bebek G, Mariadason JM, Wang D, Augenlicht LH, Chance MR, (2010) "Prediction and testing of biological networks underlying intestinal cancer." PLoS One 5(9):; PMID: 20824133; doi: 10.1371/journal.pone.0012497; GPMDB: 1.
  160. Kim S, Mischerikow N, Bandeira N, Navarro JD, Wich L, Mohammed S, Heck AJ, Pevzner PA, (2010) "The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search." Mol Cell Proteomics 9(12):2840–52; PMID: 20829449; doi: 10.1074/mcp.M110.003731; GPMDB: 48.
  161. Collier TS, Sarkar P, Franck WL, Rao BM, Dean RA, Muddiman DC, (2010) "Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics." Anal Chem 82(20):8696–702; PMID: 20845935; doi: 10.1021/ac101978b; GPMDB: 39.
  162. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M, (2010) "Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers." Cell 142(6):967–80; PMID: 20850016; doi: 10.1016/j.cell.2010.08.020; GPMDB: 92.
  163. Wegener KM, Singh AK, Jacobs JM, Elvitigala T, Welsh EA, Keren N, Gritsenko MA, Ghosh BK, Camp DG 2nd, Smith RD, Pakrasi HB, (2010) "Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations." Mol Cell Proteomics 9(12):2678–89; PMID: 20858728; doi: 10.1074/mcp.M110.000109; GPMDB: 278.
  164. Nagaraj N, D'Souza RC, Cox J, Olsen JV, Mann M, (2010) "Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation." J Proteome Res 9(12):6786–94; PMID: 20873877; doi: 10.1021/pr100637q; GPMDB: 25.
  165. Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM, (2010) "Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra." J Proteome Res 9(12):6354–67; PMID: 20883037; doi: 10.1021/pr100648r; GPMDB: 69.
  166. Stone MD, Odland RM, McGowan T, Onsongo G, Tang C, Rhodus NL, Jagtap P, Bandhakavi S, Griffin TJ, (2010) "Novel In Situ Collection of Tumor Interstitial Fluid from a Head and Neck Squamous Carcinoma Reveals a Unique Proteome with Diagnostic Potential." Clin Proteomics 6(3):75–82; PMID: 20930922; doi: 10.1007/s12014-010-9050-3; GPMDB: 1.
  167. Rice RH, Xia Y, Alvarado RJ, Phinney BS, (2010) "Proteomic analysis of human nail plate." J Proteome Res 9(12):6752–8; PMID: 20939611; doi: 10.1021/pr1009349; GPMDB: 40.
  168. Khositseth S, Pisitkun T, Slentz DH, Wang G, Hoffert JD, Knepper MA, Yu MJ, (2011) "Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells." Mol Cell Proteomics 10(1):M110.004036; PMID: 20940332; doi: 10.1074/mcp.M110.004036; GPMDB: 5.
  169. Bowyer PW, Simon GM, Cravatt BF, Bogyo M, (2011) "Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte." Mol Cell Proteomics 10(5):M110.001636; PMID: 20943600; doi: 10.1074/mcp.M110.001636; GPMDB: 760.
  170. Dedieu A, Gaillard JC, Pourcher T, Darrouzet E, Armengaud J, (2011) "Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy." J Biol Chem 286(1):259–69; PMID: 20978121; doi: 10.1074/jbc.M110.159483; GPMDB: 14.
  171. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T, (2010) "Nucleosome-interacting proteins regulated by DNA and histone methylation." Cell 143(3):470–84; PMID: 21029866; doi: 10.1016/j.cell.2010.10.012; GPMDB: 160.
  172. de Souza GA, Arntzen MØ, Fortuin S, Schürch AC, Målen H, McEvoy CR, van Soolingen D, Thiede B, Warren RM, Wiker HG, (2011) "Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database." Mol Cell Proteomics 10(1):M110.002527; PMID: 21030493; doi: 10.1074/mcp.M110.002527; GPMDB: 6.
  173. Murray CI, Kane LA, Uhrigshardt H, Wang SB, Van Eyk JE, (2011) "Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection." Mol Cell Proteomics 10(3):M110.004721; PMID: 21036925; doi: 10.1074/mcp.M110.004721; GPMDB: 36.
  174. Walther DM, Mann M, (2011) "Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging." Mol Cell Proteomics 10(2):M110.004523; PMID: 21048193; doi: 10.1074/mcp.M110.004523; GPMDB: 119.
  175. Murphy JP, Pinto DM, (2011) "Targeted proteomic analysis of glycolysis in cancer cells." J Proteome Res 10(2):604–13; PMID: 21058741; doi: 10.1021/pr100774f; GPMDB: 1.
  176. Li YF, Arnold RJ, Tang H, Radivojac P, (2010) "The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics." J Proteome Res 9(12):6288–97; PMID: 21067214; doi: 10.1021/pr1005586; GPMDB: 20.
  177. Vranakis I, De Bock PJ, Papadioti A, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A, (2011) "Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii." J Proteome Res 10(2):756–62; PMID: 21070068; doi: 10.1021/pr100906v; GPMDB: 1.
  178. Angel TE, Luft BJ, Yang X, Nicora CD, Camp DG 2nd, Jacobs JM, Smith RD, (2010) "Proteome analysis of Borrelia burgdorferi response to environmental change." PLoS One 5(11):e13800; PMID: 21072190; doi: 10.1371/journal.pone.0013800; GPMDB: 70.
  179. Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ, (2010) "Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize." Plant Cell 22(11):3509–42; PMID: 21081695; doi: 10.1105/tpc.110.079764; GPMDB: 453.
  180. Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R, (2010) "Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase." BMC Syst Biol 4:166; PMID: 21122111; doi: 10.1186/1752-0509-4-166; GPMDB: 22.
  181. Helbig AO, Rosati S, Pijnappel PW, van Breukelen B, Timmers MH, Mohammed S, Slijper M, Heck AJ, (2010) "Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels." BMC Genomics 11:685; PMID: 21126336; doi: 10.1186/1471-2164-11-685; GPMDB: 10.
  182. Fan C, Fu Z, Su Q, Angelini DJ, Van Eyk J, Johns RA, (2011) "S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation." Mol Cell Proteomics 10(3):M110.000901; PMID: 21139050; doi: 10.1074/mcp.M110.000901; GPMDB: 13.
  183. Skirycz A, Memmi S, De Bodt S, Maleux K, Obata T, Fernie AR, Devreese B, Inzé D, (2011) "A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions." J Proteome Res 10(3):1018–29; PMID: 21142212; doi: 10.1021/pr100785n; GPMDB: 476.
  184. Mestdagh P, Boström AK, Impens F, Fredlund E, Van Peer G, De Antonellis P, von Stedingk K, Ghesquière B, Schulte S, Dews M, Thomas-Tikhonenko A, Schulte JH, Zollo M, Schramm A, Gevaert K, Axelson H, Speleman F, Vandesompele J, (2010) "The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma." Mol Cell 40(5):762–73; PMID: 21145484; doi: 10.1016/j.molcel.2010.11.038; GPMDB: 1.
  185. Li QR, Xing XB, Chen TT, Li RX, Dai J, Sheng QH, Xin SM, Zhu LL, Jin Y, Pei G, Kang JH, Li YX, Zeng R, (2011) "Large scale phosphoproteome profiles comprehensive features of mouse embryonic stem cells." Mol Cell Proteomics 10(4):M110.001750; PMID: 21149613; doi: 10.1074/mcp.M110.001750; GPMDB: 12.
  186. Ito J, Batth TS, Petzold CJ, Redding-Johanson AM, Mukhopadhyay A, Verboom R, Meyer EH, Millar AH, Heazlewood JL, (2011) "Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism." J Proteome Res 10(4):1571–82; PMID: 21166475; doi: 10.1021/pr1009433; GPMDB: 3.
  187. Lee JE, Sweredoski MJ, Graham RL, Kolawa NJ, Smith GT, Hess S, Deshaies RJ, (2011) "The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation." Mol Cell Proteomics 10(5):M110.006460; PMID: 21169563; doi: 10.1074/mcp.M110.006460; GPMDB: 41.
  188. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villén J, Haas W, Sowa ME, Gygi SP, (2010) "A tissue-specific atlas of mouse protein phosphorylation and expression." Cell 143(7):1174–89; PMID: 21183079; doi: 10.1016/j.cell.2010.12.001; GPMDB: 313.
  189. Brockmeyer C, Paster W, Pepper D, Tan CP, Trudgian DC, McGowan S, Fu G, Gascoigne NR, Acuto O, Salek M, (2011) "T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component." J Biol Chem 286(9):7535–47; PMID: 21189249; doi: 10.1074/jbc.M110.201236; GPMDB: 4.
  190. Manes NP, Dong L, Zhou W, Du X, Reghu N, Kool AC, Choi D, Bailey CL, Petricoin EF 3rd, Liotta LA, Popov SG, (2011) "Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry." Mol Cell Proteomics 10(3):M110.000927; PMID: 21189417; doi: 10.1074/mcp.M110.000927; GPMDB: 133.
  191. Chornoguz O, Grmai L, Sinha P, Artemenko KA, Zubarev RA, Ostrand-Rosenberg S, (2011) "Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis." Mol Cell Proteomics 10(3):M110.002980; PMID: 21191032; doi: 10.1074/mcp.M110.002980; GPMDB: 6.
  192. Hansson J, Panchaud A, Favre L, Bosco N, Mansourian R, Benyacoub J, Blum S, Jensen ON, Kussmann M, (2011) "Time-resolved quantitative proteome analysis of in vivo intestinal development." Mol Cell Proteomics 10(3):M110.005231; PMID: 21191033; doi: 10.1074/mcp.M110.005231; GPMDB: 48.
  193. Singh SK, Lakshmi MG, Saxena S, Swamy CV, Idris MM, (2011) "Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis." J Sep Sci 34(2):225–32; PMID: 21246729; doi: 10.1002/jssc.201000626; GPMDB: 17.
  194. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, Boesche M, Delling M, Dümpelfeld B, Eberhard D, Huthmacher C, Mathieson T, Poeckel D, Reader V, Strunk K, Sweetman G, Kruse U, Neubauer G, Ramsden NG, Drewes G, (2011) "Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes." Nat Biotechnol 29(3):255–65; PMID: 21258344; doi: 10.1038/nbt.1759; GPMDB: 128.
  195. Baerenfaller K, Hirsch-Hoffmann M, Svozil J, Hull R, Russenberger D, Bischof S, Lu Q, Gruissem W, Baginsky S, (2011) "pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana." Integr Biol (Camb) 3(3):225–37; PMID: 21264403; doi: 10.1039/c0ib00078g; GPMDB: 64.
  196. Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst FA, Siebourg J, Mäder U, Lalk M, Hecker M, Becher D, (2010) "Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis." Nat Commun 1:137; PMID: 21266987; doi: 10.1038/ncomms1137; GPMDB: 76.
  197. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Bürckstümmer T, Bennett KL, Superti-Furga G, Colinge J, (2011) "Initial characterization of the human central proteome." BMC Syst Biol 5:17; PMID: 21269460; doi: 10.1186/1752-0509-5-17; GPMDB: 99.
  198. Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Favé MJ, Fernandes V, Gibson JD, Graur D, Gronenberg W, Grubbs KJ, Hagen DE, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Mathis KA, Munoz-Torres MC, Murphy MC, Mustard JA, Nakamura R, Niehuis O, Nigam S, Overson RP, Placek JE, Rajakumar R, Reese JT, Suen G, Tao S, Torres CW, Tsutsui ND, Viljakainen L, Wolschin F, Gadau J, (2011) "Draft genome of the red harvester ant Pogonomyrmex barbatus." Proc Natl Acad Sci U S A 108(14):5667–72; PMID: 21282651; doi: 10.1073/pnas.1007901108; GPMDB: 2.
  199. Michalski A, Cox J, Mann M, (2011) "More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS." J Proteome Res 10(4):1785–93; PMID: 21309581; doi: 10.1021/pr101060v; GPMDB: 3.
  200. Lahtvee PJ, Adamberg K, Arike L, Nahku R, Aller K, Vilu R, (2011) "Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates." Microb Cell Fact 10:12; PMID: 21349178; doi: 10.1186/1475-2859-10-12; GPMDB: 64.
  201. Paul D, Kumar R, Nanduri B, French T, Pendarvis K, Brown A, Lawrence ML, Burgess SC, (2011) "Proteome and membrane fatty acid analyses on Oligotropha carboxidovorans OM5 grown under chemolithoautotrophic and heterotrophic conditions." PLoS One 6(2):e17111; PMID: 21386900; doi: 10.1371/journal.pone.0017111; GPMDB: 1.
  202. Li J, Su Z, Ma ZQ, Slebos RJ, Halvey P, Tabb DL, Liebler DC, Pao W, Zhang B, (2011) "A bioinformatics workflow for variant peptide detection in shotgun proteomics." Mol Cell Proteomics 10(5):M110.006536; PMID: 21389108; doi: 10.1074/mcp.M110.006536; GPMDB: 59.
  203. Frese CK, Altelaar AF, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJ, Mohammed S, (2011) "Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos." J Proteome Res 10(5):2377–88; PMID: 21413819; doi: 10.1021/pr1011729; GPMDB: 73.
  204. Poliakov A, Russell CW, Ponnala L, Hoops HJ, Sun Q, Douglas AE, van Wijk KJ, (2011) "Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis." Mol Cell Proteomics 10(6):M110.007039; PMID: 21421797; doi: 10.1074/mcp.M110.007039; GPMDB: 148.
  205. Di Palma S, Boersema PJ, Heck AJ, Mohammed S, (2011) "Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis." Anal Chem 83(9):3440–7; PMID: 21443167; doi: 10.1021/ac103312e; GPMDB: 4.
  206. Jagannadham MV, Abou-Eladab EF, Kulkarni HM, (2011) "Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W." Mol Cell Proteomics 10(6):M110.004549; PMID: 21447709; doi: 10.1074/mcp.M110.004549; GPMDB: 14.
  207. Chik JK, Schriemer DC, Childs SJ, McGhee JD, (2011) "Proteome of the Caenorhabditis elegans oocyte." J Proteome Res 10(5):2300–5; PMID: 21452892; doi: 10.1021/pr101124f; GPMDB: 125.
  208. Brosch M, Saunders GI, Frankish A, Collins MO, Yu L, Wright J, Verstraten R, Adams DJ, Harrow J, Choudhary JS, Hubbard T, (2011) "Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected" pseudogenes in the mouse genome." Genome Res 21(5):756–67; PMID: 21460061; doi: 10.1101/gr.114272.110; GPMDB: 3.
  209. Elschenbroich S, Ignatchenko V, Clarke B, Kalloger SE, Boutros PC, Gramolini AO, Shaw P, Jurisica I, Kislinger T, (2011) "In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry." J Proteome Res 10(5):2286–99; PMID: 21491939; doi: 10.1021/pr1011087; GPMDB: 210.
  210. Sixt BS, Heinz C, Pichler P, Heinz E, Montanaro J, Op den Camp HJ, Ammerer G, Mechtler K, Wagner M, Horn M, (2011) "Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila." Proteomics 11(10):1868–92; PMID: 21500343; doi: 10.1002/pmic.201000510; GPMDB: 232.
  211. Farid SG, Craven RA, Peng J, Bonney GK, Perkins DN, Selby PJ, Rajendra Prasad K, Banks RE, (2011) "Shotgun proteomics of human bile in hilar cholangiocarcinoma." Proteomics 11(10):2134–8; PMID: 21500345; doi: 10.1002/pmic.201000653; GPMDB: 1.
  212. Vaudel M, Burkhart JM, Sickmann A, Martens L, Zahedi RP, (2011) "Peptide identification quality control." Proteomics 11(10):2105–14; PMID: 21500347; doi: 10.1002/pmic.201000704; GPMDB: 8.
  213. Marimuthu A, O'Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar DS, Pinto SM, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole RN, Harsha HC, Pandey A, (2011) "A comprehensive map of the human urinary proteome." J Proteome Res 10(6):2734–43; PMID: 21500864; doi: 10.1021/pr2003038; GPMDB: 28.
  214. Ma ZQ, Chambers MC, Ham AJ, Cheek KL, Whitwell CW, Aerni HR, Schilling B, Miller AW, Caprioli RM, Tabb DL, (2011) "ScanRanker: Quality assessment of tandem mass spectra via sequence tagging." J Proteome Res 10(7):2896–904; PMID: 21520941; doi: 10.1021/pr200118r; GPMDB: 9.
  215. Adamidi C, Wang Y, Gruen D, Mastrobuoni G, You X, Tolle D, Dodt M, Mackowiak SD, Gogol-Doering A, Oenal P, Rybak A, Ross E, Sánchez Alvarado A, Kempa S, Dieterich C, Rajewsky N, Chen W, (2011) "De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics." Genome Res 21(7):1193–200; PMID: 21536722; doi: 10.1101/gr.113779.110; GPMDB: 19.
  216. Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, Gygi SP, (2011) "Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes." Mol Cell Proteomics 10(8):M111.009654; PMID: 21551504; doi: 10.1074/mcp.M111.009654; GPMDB: 15.
  217. de Poot SA, Westgeest M, Hostetter DR, Van Damme P, Plasman K, Demeyer K, Broekhuizen R, Gevaert K, Craik CS, Bovenschen N, (2011) "Human and mouse granzyme M display divergent and species-specific substrate specificities." Biochem J 437(3):431–42; PMID: 21564021; doi: 10.1042/BJ20110210; GPMDB: 1.
  218. Overton IM, Graham S, Gould KA, Hinds J, Botting CH, Shirran S, Barton GJ, Coote PJ, (2011) "Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus." BMC Syst Biol 5:68; PMID: 21569391; doi: 10.1186/1752-0509-5-68; GPMDB: 10.
  219. Thakur SS, Geiger T, Chatterjee B, Bandilla P, Fröhlich F, Cox J, Mann M, (2011) "Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation." Mol Cell Proteomics 10(8):M110.003699; PMID: 21586754; doi: 10.1074/mcp.M110.003699; GPMDB: 21.
  220. Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, Jahangiri M, Mayr M, (2011) "Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach." Mol Cell Proteomics 10(8):M111.008128; PMID: 21593211; doi: 10.1074/mcp.M111.008128; GPMDB: 168.
  221. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M, (2011) "Global quantification of mammalian gene expression control." Nature 473(7347):337–42; PMID: 21593866; doi: 10.1038/nature10098; GPMDB: 61.
  222. Kim MS, Zhong J, Kandasamy K, Delanghe B, Pandey A, (2011) "Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides." Proteomics 11(12):2568–72; PMID: 21598390; doi: 10.1002/pmic.201000547; GPMDB: 28.
  223. Mühlhaus T, Weiss J, Hemme D, Sommer F, Schroda M, (2011) "Quantitative shotgun proteomics using a uniform ¹⁵N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii." Mol Cell Proteomics 10(9):M110.004739; PMID: 21610104; doi: 10.1074/mcp.M110.004739; GPMDB: 2.
  224. Shao H, Chaerkady R, Chen S, Pinto SM, Sharma R, Delanghe B, Birk DE, Pandey A, Chakravarti S, (2011) "Proteome profiling of wild type and lumican-deficient mouse corneas." J Proteomics 74(10):1895–905; PMID: 21616181; doi: 10.1016/j.jprot.2011.04.032; GPMDB: 96.
  225. Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K, (2011) "Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation." J Proteome Res 10(8):3578–89; PMID: 21619078; doi: 10.1021/pr2002325; GPMDB: 1.
  226. Dunham WH, Larsen B, Tate S, Badillo BG, Goudreault M, Tehami Y, Kislinger T, Gingras AC, (2011) "A cost-benefit analysis of multidimensional fractionation of affinity purification-mass spectrometry samples." Proteomics 11(13):2603–12; PMID: 21630450; doi: 10.1002/pmic.201000571; GPMDB: 105.
  227. Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, Kim JW, Kang JS, Park J, Hwang D, Lee KH, Park SH, Kim YK, Desiderio DM, Kim KP, Gho YS, (2011) "Proteomic analysis of microvesicles derived from human colorectal cancer ascites." Proteomics 11(13):2745–51; PMID: 21630462; doi: 10.1002/pmic.201100022; GPMDB: 3.
  228. Le Bihan T, Martin SF, Chirnside ES, van Ooijen G, Barrios-Llerena ME, O'Neill JS, Shliaha PV, Kerr LE, Millar AJ, (2011) "Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri." J Proteomics 74(10):2060–70; PMID: 21635980; doi: 10.1016/j.jprot.2011.05.028; GPMDB: 236.
  229. Chan QW, Parker R, Sun Z, Deutsch EW, Foster LJ, (2011) "A honey bee (Apis mellifera L.) PeptideAtlas crossing castes and tissues." BMC Genomics 12:290; PMID: 21639908; doi: 10.1186/1471-2164-12-290; GPMDB: 1032.
  230. Olsson N, Wingren C, Mattsson M, James P, O'Connell D, Nilsson F, Cahill DJ, Borrebaeck CA, (2011) "Proteomic analysis and discovery using affinity proteomics and mass spectrometry." Mol Cell Proteomics 10(10):M110.003962; PMID: 21673276; doi: 10.1074/mcp.M110.003962; GPMDB: 109.
  231. Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA, (2011) "A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease." Nat Biotechnol 29(7):635–43; PMID: 21685905; doi: 10.1038/nbt.1899; GPMDB: 269.
  232. Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE, (2011) "Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves." Plant Physiol 156(4):1797–807; PMID: 21693672; doi: 10.1104/pp.111.181008; GPMDB: 8.
  233. Karn RC, Laukaitis CM, (2011) "Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes." PLoS One 6(6):e20979; PMID: 21695125; doi: 10.1371/journal.pone.0020979; GPMDB: 102.
  234. de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH, (2011) "Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose." PLoS One 6(6):e20865; PMID: 21698107; doi: 10.1371/journal.pone.0020865; GPMDB: 2.
  235. Kuntumalla S, Zhang Q, Braisted JC, Fleischmann RD, Peterson SN, Donohue-Rolfe A, Tzipori S, Pieper R, (2011) "In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism." BMC Microbiol 11:147; PMID: 21702961; doi: 10.1186/1471-2180-11-147; GPMDB: 19.
  236. Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, Pawson T, (2011) "Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor." Nat Biotechnol 29(7):653–8; PMID: 21706016; doi: 10.1038/nbt.1905; GPMDB: 5.
  237. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA, (2011) "Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells." Sci Signal 4(179):rs5; PMID: 21712546; doi: 10.1126/scisignal.2001497; GPMDB: 100.
  238. Bradel-Tretheway BG, Mattiacio JL, Krasnoselsky A, Stevenson C, Purdy D, Dewhurst S, Katze MG, (2011) "Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors." J Virol 85(17):8569–81; PMID: 21715506; doi: 10.1128/JVI.00496-11; GPMDB: 22.
  239. Freschi L, Courcelles M, Thibault P, Michnick SW, Landry CR, (2011) "Phosphorylation network rewiring by gene duplication." Mol Syst Biol 7:504; PMID: 21734643; doi: 10.1038/msb.2011.43; GPMDB: 2.
  240. Bright LA, Mujahid N, Nanduri B, McCarthy FM, Costa LR, Burgess SC, Swiderski CE, (2011) "Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences." Anim Genet 42(4):395–405; PMID: 21749422; doi: 10.1111/j.1365-2052.2010.02158.x; GPMDB: 6.
  241. Chi BK, Gronau K, Mäder U, Hessling B, Becher D, Antelmann H, (2011) "S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics." Mol Cell Proteomics 10(11):M111.009506; PMID: 21749987; doi: 10.1074/mcp.M111.009506; GPMDB: 144.
  242. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, Park SH, Kim YK, Hwang D, Gho YS, (2011) "Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa." Proteomics 11(16):3424–9; PMID: 21751344; doi: 10.1002/pmic.201000212; GPMDB: 4.
  243. Vermachova M, Purkrtova Z, Santrucek J, Jolivet P, Chardot T, Kodicek M, (2011) "New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis." Proteomics 11(16):3430–4; PMID: 21751352; doi: 10.1002/pmic.201000603; GPMDB: 19.
  244. Capriotti AL, Caracciolo G, Caruso G, Foglia P, Pozzi D, Samperi R, Laganà A, (2011) "DNA affects the composition of lipoplex protein corona: a proteomics approach." Proteomics 11(16):3349–58; PMID: 21751361; doi: 10.1002/pmic.201000803; GPMDB: 2.
  245. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW, (2011) "Selective killing of cancer cells by a small molecule targeting the stress response to ROS." Nature 475(7355):231–4; PMID: 21753854; doi: 10.1038/nature10167; GPMDB: 81.
  246. Reiland S, Finazzi G, Endler A, Willig A, Baerenfaller K, Grossmann J, Gerrits B, Rutishauser D, Gruissem W, Rochaix JD, Baginsky S, (2011) "Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF)." Proc Natl Acad Sci U S A 108(31):12955–60; PMID: 21768351; doi: 10.1073/pnas.1104734108; GPMDB: 8.
  247. Schmidt A, Beck M, Malmström J, Lam H, Claassen M, Campbell D, Aebersold R, (2011) "Absolute quantification of microbial proteomes at different states by directed mass spectrometry." Mol Syst Biol 7:510; PMID: 21772258; doi: 10.1038/msb.2011.37; GPMDB: 93.
  248. Maier T, Schmidt A, Güell M, Kühner S, Gavin AC, Aebersold R, Serrano L, (2011) "Quantification of mRNA and protein and integration with protein turnover in a bacterium." Mol Syst Biol 7:511; PMID: 21772259; doi: 10.1038/msb.2011.38; GPMDB: 42.
  249. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP, (2011) "The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy." Sci Signal 4(182):ra46; PMID: 21775285; doi: 10.1126/scisignal.2001465; GPMDB: 2.
  250. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, Garg B, Adelmant G, Webber JT, Luckey CJ, Marto JA, (2011) "Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis." Mol Cell Proteomics 10(11):O111.011064; PMID: 21788404; doi: 10.1074/mcp.O111.011064; GPMDB: 437.
  251. Vranakis I, De Bock PJ, Papadioti A, Samoilis G, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A, (2011) "Unraveling persistent host cell infection with Coxiella burnetii by quantitative proteomics." J Proteome Res 10(9):4241–51; PMID: 21790200; doi: 10.1021/pr200422f; GPMDB: 1.
  252. Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, Jensen LJ, Choudhary C, (2011) "Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation." Sci Signal 4(183):ra48; PMID: 21791702; doi: 10.1126/scisignal.2001902; GPMDB: 46.
  253. Chaerkady R, Kelkar DS, Muthusamy B, Kandasamy K, Dwivedi SB, Sahasrabuddhe NA, Kim MS, Renuse S, Pinto SM, Sharma R, Pawar H, Sekhar NR, Mohanty AK, Getnet D, Yang Y, Zhong J, Dash AP, MacCallum RM, Delanghe B, Mlambo G, Kumar A, Keshava Prasad TS, Okulate M, Kumar N, Pandey A, (2011) "A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry." Genome Res 21(11):1872–81; PMID: 21795387; doi: 10.1101/gr.127951.111; GPMDB: 341.
  254. Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J, Gevaert K, (2011) "Selecting protein N-terminal peptides by combined fractional diagonal chromatography." Nat Protoc 6(8):1130–41; PMID: 21799483; doi: 10.1038/nprot.2011.355; GPMDB: 1.
  255. Hennrich ML, Groenewold V, Kops GJ, Heck AJ, Mohammed S, (2011) "Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach." Anal Chem 83(18):7137–43; PMID: 21815630; doi: 10.1021/ac2015068; GPMDB: 119.
  256. Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J, (2011) "Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery." Mol Cell 43(3):406–17; PMID: 21816347; doi: 10.1016/j.molcel.2011.05.031; GPMDB: 3.
  257. Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, Kondratov IG, Zhukova NA, Serebryakova MV, Demina IA, Govorun VM, (2011) "Core proteome of the minimal cell: comparative proteomics of three mollicute species." PLoS One 6(7):e21964; PMID: 21818284; doi: 10.1371/journal.pone.0021964; GPMDB: 1.
  258. Schilling O, auf dem Keller U, Overall CM, (2011) "Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites." Biol Chem 392(11):1031–7; PMID: 21846260; doi: 10.1515/BC.2011.158; GPMDB: 2.
  259. Blasius M, Forment JV, Thakkar N, Wagner SA, Choudhary C, Jackson SP, (2011) "A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1." Genome Biol 12(8):R78; PMID: 21851590; doi: 10.1186/gb-2011-12-8-r78; GPMDB: 2.
  260. Grosstessner-Hain K, Hegemann B, Novatchkova M, Rameseder J, Joughin BA, Hudecz O, Roitinger E, Pichler P, Kraut N, Yaffe MB, Peters JM, Mechtler K, (2011) "Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome." Mol Cell Proteomics 10(11):M111.008540; PMID: 21857030; doi: 10.1074/mcp.M111.008540; GPMDB: 27.
  261. Galli M, Muñoz J, Portegijs V, Boxem M, Grill SW, Heck AJ, van den Heuvel S, (2011) "aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division." Nat Cell Biol 13(9):1132–8; PMID: 21857670; doi: 10.1038/ncb2315; GPMDB: 57.
  262. James R, Searcy JL, Le Bihan T, Martin SF, Gliddon CM, Povey J, Deighton RF, Kerr LE, McCulloch J, Horsburgh K, (2012) "Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge." J Cereb Blood Flow Metab 32(1):164–76; PMID: 21878944; doi: 10.1038/jcbfm.2011.120; GPMDB: 29.
  263. Peng L, Kapp EA, McLauchlan D, Jordan TW, (2011) "Characterization of the Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative Standard using SDS-PAGE shotgun proteomics." Proteomics 11(22):4376–84; PMID: 21887821; doi: 10.1002/pmic.201100169; GPMDB: 6.
  264. Fischer JJ, Michaelis S, Schrey AK, Diehl A, Graebner OY, Ungewiss J, Horzowski S, Glinski M, Kroll F, Dreger M, Koester H, (2011) "SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders." Proteomics 11(20):4096–104; PMID: 21898820; doi: 10.1002/pmic.201000717; GPMDB: 18.
  265. Østergaard L, Honoré B, Thorsen LB, Baandrup J, Eskildsen-Helmond Y, Laursen BE, Vorum H, Mulvany MJ, Simonsen U, (2011) "Pulmonary pressure reduction attenuates expression of proteins identified by lung proteomic profiling in pulmonary hypertensive rats." Proteomics 11(23):4492–502; PMID: 21905223; doi: 10.1002/pmic.201100171; GPMDB: 1.
  266. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP, (2011) "Systematic and quantitative assessment of the ubiquitin-modified proteome." Mol Cell 44(2):325–40; PMID: 21906983; doi: 10.1016/j.molcel.2011.08.025; GPMDB: 90.
  267. Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y, (2011) "Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism." Proteomics 11(21):4266–73; PMID: 21928291; doi: 10.1002/pmic.201100114; GPMDB: 1.
  268. Rogers LD, Brown NF, Fang Y, Pelech S, Foster LJ, (2011) "Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events." Sci Signal 4(191):rs9; PMID: 21934108; doi: 10.1126/scisignal.2001668; GPMDB: 9.
  269. Boisvert FM, Ahmad Y, Gierliński M, Charrière F, Lamont D, Scott M, Barton G, Lamond AI, (2012) "A quantitative spatial proteomics analysis of proteome turnover in human cells." Mol Cell Proteomics 11(3):M111.011429; PMID: 21937730; doi: 10.1074/mcp.M111.011429; GPMDB: 526.
  270. Nishtala K, Phong TQ, Steil L, Sauter M, Salazar MG, Kandolf R, Kroemer HK, Felix SB, Völker U, Klingel K, Hammer E, (2011) "Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes." Proteomics 11(22):4310–20; PMID: 21954127; doi: 10.1002/pmic.201100229; GPMDB: 91.
  271. Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M, (2012) "A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines." Mol Cell Proteomics 11(3):O111.009613; PMID: 21964433; doi: 10.1074/mcp.O111.009613; GPMDB: 138.
  272. Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H, Kingsbury R, Harsha HC, Nair B, Prasad TS, Chauhan DS, Katoch K, Katoch VM, Kumar P, Chaerkady R, Ramachandran S, Dash D, Pandey A, (2011) "Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry." Mol Cell Proteomics 10(12):M111.011627; PMID: 21969609; doi: 10.1074/mcp.M111.011445; GPMDB: 52.
  273. Burgener A, Rahman S, Ahmad R, Lajoie J, Ramdahin S, Mesa C, Brunet S, Wachihi C, Kimani J, Fowke K, Carr S, Plummer F, Ball TB, (2011) "Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers." J Proteome Res 10(11):5139–49; PMID: 21973077; doi: 10.1021/pr200596r; GPMDB: 6.
  274. Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V, Stewart R, Thomson JA, Coon JJ, (2011) "Proteomic and phosphoproteomic comparison of human ES and iPS cells." Nat Methods 8(10):821–7; PMID: 21983960; doi: 10.1038/nmeth.1699; GPMDB: 88.
  275. Guan JS, Su SC, Gao J, Joseph N, Xie Z, Zhou Y, Durak O, Zhang L, Zhu JJ, Clauser KR, Carr SA, Tsai LH, (2011) "Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway." PLoS One 6(9):e25735; PMID: 21984943; doi: 10.1371/journal.pone.0025735; GPMDB: 26.
  276. Fischer R, Trudgian DC, Wright C, Thomas G, Bradbury LA, Brown MA, Bowness P, Kessler BM, (2012) "Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis." Mol Cell Proteomics 11(2):M111.013904; PMID: 21997733; doi: 10.1074/mcp.M111.013904; GPMDB: 60.
  277. Ng DW, Zhang C, Miller M, Shen Z, Briggs SP, Chen ZJ, (2012) "Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors." Heredity (Edinb) 108(4):419–30; PMID: 22009271; doi: 10.1038/hdy.2011.92; GPMDB: 111.
  278. Capuano F, Bond NJ, Gatto L, Beaudoin F, Napier JA, Benvenuto E, Lilley KS, Baschieri S, (2011) "LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies." Anal Chem 83(24):9267–72; PMID: 22017570; doi: 10.1021/ac201733m; GPMDB: 3.
  279. Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M, (2012) "System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap." Mol Cell Proteomics 11(3):M111.013722; PMID: 22021278; doi: 10.1074/mcp.M111.013722; GPMDB: 13.
  280. Bedon F, Villar E, Vincent D, Dupuy JW, Lomenech AM, Mabialangoma A, Chaumeil P, Barré A, Plomion C, Gion JM, (2012) "Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field." Plant Cell Environ 35(4):790–805; PMID: 22026815; doi: 10.1111/j.1365-3040.2011.02452.x; GPMDB: 145.
  281. Inder KL, Zheng YZ, Davis MJ, Moon H, Loo D, Nguyen H, Clements JA, Parton RG, Foster LJ, Hill MM, (2012) "Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways." Mol Cell Proteomics 11(2):M111.012245; PMID: 22030351; doi: 10.1074/mcp.M111.012245; GPMDB: 16.
  282. Dunne JC, Li D, Kelly WJ, Leahy SC, Bond JJ, Attwood GT, Jordan TW, (2012) "Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus." J Proteome Res 11(1):131–42; PMID: 22060546; doi: 10.1021/pr200864j; GPMDB: 2.
  283. Winck FV, Riaño-Pachón DM, Sommer F, Rupprecht J, Mueller-Roeber B, (2012) "The nuclear proteome of the green alga Chlamydomonas reinhardtii." Proteomics 12(1):95–100; PMID: 22065562; doi: 10.1002/pmic.201000782; GPMDB: 1.
  284. Hegemann B, Hutchins JR, Hudecz O, Novatchkova M, Rameseder J, Sykora MM, Liu S, Mazanek M, Lénárt P, Hériché JK, Poser I, Kraut N, Hyman AA, Yaffe MB, Mechtler K, Peters JM, (2011) "Systematic phosphorylation analysis of human mitotic protein complexes." Sci Signal 4(198):rs12; PMID: 22067460; doi: 10.1126/scisignal.2001993; GPMDB: 213.
  285. Glatter T, Schittenhelm RB, Rinner O, Roguska K, Wepf A, Jünger MA, Köhler K, Jevtov I, Choi H, Schmidt A, Nesvizhskii AI, Stocker H, Hafen E, Aebersold R, Gstaiger M, (2011) "Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome." Mol Syst Biol 7:547; PMID: 22068330; doi: 10.1038/msb.2011.79; GPMDB: 138.
  286. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S, Mann M, (2011) "Deep proteome and transcriptome mapping of a human cancer cell line." Mol Syst Biol 7:548; PMID: 22068331; doi: 10.1038/msb.2011.81; GPMDB: 164.
  287. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R, (2011) "The quantitative proteome of a human cell line." Mol Syst Biol 7:549; PMID: 22068332; doi: 10.1038/msb.2011.82; GPMDB: 60.
  288. Okamoto A, Yamada K, (2011) "Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome." BMC Microbiol 11:249; PMID: 22070424; doi: 10.1186/1471-2180-11-249; GPMDB: 2.
  289. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, Gat-Viks I, Tonti E, DeGrace MM, Clauser KR, Garber M, Eisenhaure TM, Yosef N, Robinson J, Sutton A, Andersen MS, Root DE, von Andrian U, Jones RB, Park H, Carr SA, Regev A, Amit I, Hacohen N, (2011) "Systematic discovery of TLR signaling components delineates viral-sensing circuits." Cell 147(4):853–67; PMID: 22078882; doi: 10.1016/j.cell.2011.10.022; GPMDB: 48.
  290. Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW, Holen SR, Collins MJ, Orlando L, Willerslev E, Gilbert MT, Olsen JV, (2012) "Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins." J Proteome Res 11(2):917–26; PMID: 22103443; doi: 10.1021/pr200721u; GPMDB: 13.
  291. Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, Portais JC, Vorholt JA, (2012) "The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate." J Biol Chem 287(1):757–66; PMID: 22105076; doi: 10.1074/jbc.M111.305219; GPMDB: 6.
  292. Rivera FE, Miller HK, Kolar SL, Stevens SM Jr, Shaw LN, (2012) "The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus." Proteomics 12(2):263–8; PMID: 22106056; doi: 10.1002/pmic.201100298; GPMDB: 6.
  293. Munoz J, Low TY, Kok YJ, Chin A, Frese CK, Ding V, Choo A, Heck AJ, (2011) "The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells." Mol Syst Biol 7:550; PMID: 22108792; doi: 10.1038/msb.2011.84; GPMDB: 220.
  294. Barbhuiya MA, Sahasrabuddhe NA, Pinto SM, Muthusamy B, Singh TD, Nanjappa V, Keerthikumar S, Delanghe B, Harsha HC, Chaerkady R, Jalaj V, Gupta S, Shrivastav BR, Tiwari PK, Pandey A, (2011) "Comprehensive proteomic analysis of human bile." Proteomics 11(23):4443–53; PMID: 22114102; doi: 10.1002/pmic.201100197; GPMDB: 37.
  295. Wright B, Stanley RG, Kaiser WJ, Mills DJ, Gibbins JM, (2011) "Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes." Proteomics 11(23):4588–92; PMID: 22114104; doi: 10.1002/pmic.201100410; GPMDB: 24.
  296. Malmström J, Karlsson C, Nordenfelt P, Ossola R, Weisser H, Quandt A, Hansson K, Aebersold R, Malmström L, Björck L, (2012) "Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics." J Biol Chem 287(2):1415–25; PMID: 22117078; doi: 10.1074/jbc.M111.267674; GPMDB: 41.
  297. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR, (2011) "Defining human ERAD networks through an integrative mapping strategy." Nat Cell Biol 14(1):93–105; PMID: 22119785; doi: 10.1038/ncb2383; GPMDB: 94.
  298. Journet A, Klein G, Brugière S, Vandenbrouck Y, Chapel A, Kieffer S, Bruley C, Masselon C, Aubry L, (2012) "Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry." Proteomics 12(2):241–5; PMID: 22120990; doi: 10.1002/pmic.201100313; GPMDB: 1.
  299. Murray CI, Uhrigshardt H, O'Meally RN, Cole RN, Van Eyk JE, (2012) "Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay." Mol Cell Proteomics 11(2):M111.013441; PMID: 22126794; doi: 10.1074/mcp.M111.013441; GPMDB: 3.
  300. Bischof S, Baerenfaller K, Wildhaber T, Troesch R, Vidi PA, Roschitzki B, Hirsch-Hoffmann M, Hennig L, Kessler F, Gruissem W, Baginsky S, (2011) "Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins." Plant Cell 23(11):3911–28; PMID: 22128122; doi: 10.1105/tpc.111.092882; GPMDB: 6.
  301. Prasad TS, Harsha HC, Keerthikumar S, Sekhar NR, Selvan LD, Kumar P, Pinto SM, Muthusamy B, Subbannayya Y, Renuse S, Chaerkady R, Mathur PP, Ravikumar R, Pandey A, (2012) "Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry." J Proteome Res 11(1):247–60; PMID: 22129275; doi: 10.1021/pr200827k; GPMDB: 70.
  302. Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, Morrissey ER, Legaie R, STREAM Consortium., Wohlleben W, Rodríguez-García A, Martín JF, Burroughs NJ, Wellington EM, Smith MC, (2012) "Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture." Mol Cell Proteomics 11(2):M111.013797; PMID: 22147733; doi: 10.1074/mcp.M111.013797; GPMDB: 64.
  303. Choi DS, Yang JS, Choi EJ, Jang SC, Park S, Kim OY, Hwang D, Kim KP, Kim YK, Kim S, Gho YS, (2012) "The protein interaction network of extracellular vesicles derived from human colorectal cancer cells." J Proteome Res 11(2):1144–51; PMID: 22149170; doi: 10.1021/pr200842h; GPMDB: 1.
  304. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO, (2012) "The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices." Mol Cell Proteomics 11(4):M111.014647; PMID: 22159717; doi: 10.1074/mcp.M111.014647; GPMDB: 98.
  305. Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A, (2012) "Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes." Mol Cell Proteomics 11(3):O111.013698; PMID: 22159718; doi: 10.1074/mcp.O111.013698; GPMDB: 22.
  306. Martins-de-Souza D, Guest PC, Guest FL, Bauder C, Rahmoune H, Pietsch S, Roeber S, Kretzschmar H, Mann D, Baborie A, Bahn S, (2012) "Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometry-data-independent analyses." Proteomics 12(3):500–4; PMID: 22162416; doi: 10.1002/pmic.201100476; GPMDB: 26.
  307. Burkhart JM, Schumbrutzki C, Wortelkamp S, Sickmann A, Zahedi RP, (2012) "Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics." J Proteomics 75(4):1454–62; PMID: 22166745; doi: 10.1016/j.jprot.2011.11.016; GPMDB: 1.
  308. Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU, (2012) "Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response." Mol Cell Proteomics 11(3):M111.014654; PMID: 22167270; doi: 10.1074/mcp.M111.014654; GPMDB: 41.
  309. Graumann J, Scheltema RA, Zhang Y, Cox J, Mann M, (2012) "A framework for intelligent data acquisition and real-time database searching for shotgun proteomics." Mol Cell Proteomics 11(3):M111.013185; PMID: 22171319; doi: 10.1074/mcp.M111.013185; GPMDB: 13.
  310. Dresang LR, Teuton JR, Feng H, Jacobs JM, Camp DG 2nd, Purvine SO, Gritsenko MA, Li Z, Smith RD, Sugden B, Moore PS, Chang Y, (2011) "Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes." BMC Genomics 12:625; PMID: 22185355; doi: 10.1186/1471-2164-12-625; GPMDB: 1.
  311. Batruch I, Smith CR, Mullen BJ, Grober E, Lo KC, Diamandis EP, Jarvi KA, (2012) "Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility." J Proteome Res 11(3):1503–11; PMID: 22188163; doi: 10.1021/pr200812p; GPMDB: 12.
  312. Altelaar AF, Navarro D, Boekhorst J, van Breukelen B, Snel B, Mohammed S, Heck AJ, (2012) "Database independent proteomics analysis of the ostrich and human proteome." Proc Natl Acad Sci U S A 109(2):407–12; PMID: 22198768; doi: 10.1073/pnas.1108399108; GPMDB: 21.
  313. Oppermann FS, Grundner-Culemann K, Kumar C, Gruss OJ, Jallepalli PV, Daub H, (2012) "Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets." Mol Cell Proteomics 11(4):O111.012351; PMID: 22199227; doi: 10.1074/mcp.O111.012351; GPMDB: 96.
  314. Mertins P, Udeshi ND, Clauser KR, Mani DR, Patel J, Ong SE, Jaffe JD, Carr SA, (2012) "iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics." Mol Cell Proteomics 11(6):M111.014423; PMID: 22210691; doi: 10.1074/mcp.M111.014423; GPMDB: 32.
  315. Elmore JM, Liu J, Smith B, Phinney B, Coaker G, (2012) "Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling." Mol Cell Proteomics 11(4):M111.014555; PMID: 22215637; doi: 10.1074/mcp.M111.014555; GPMDB: 90.
  316. König S, Nimtz M, Scheiter M, Ljunggren HG, Bryceson YT, Jänsch L, (2012) "Kinome analysis of receptor-induced phosphorylation in human natural killer cells." PLoS One 7(1):e29672; PMID: 22238634; doi: 10.1371/journal.pone.0029672; GPMDB: 3.
  317. Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L, (2012) "Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture." Mol Cell Proteomics 11(6):M111.014233; PMID: 22261722; doi: 10.1074/mcp.M111.014233; GPMDB: 18.
  318. Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y, Vondriska TM, (2012) "Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth." Mol Cell Proteomics 11(6):M111.014258; PMID: 22270000; doi: 10.1074/mcp.M111.014258; GPMDB: 75.
  319. Capriotti AL, Caracciolo G, Caruso G, Cavaliere C, Pozzi D, Samperi R, Laganà A, (2013) "Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins." Anal Bioanal Chem 405(2-3):635–45; PMID: 22274284; doi: 10.1007/s00216-011-5691-y; GPMDB: 45.
  320. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ, (2012) "The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis." Plant Physiol 158(3):1172–92; PMID: 22274653; doi: 10.1104/pp.111.193144; GPMDB: 20.
  321. Geiger T, Wehner A, Schaab C, Cox J, Mann M, (2012) "Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins." Mol Cell Proteomics 11(3):M111.014050; PMID: 22278370; doi: 10.1074/mcp.M111.014050; GPMDB: 181.
  322. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ, (2012) "Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes." Methods 56(2):293–304; PMID: 22285593; doi: 10.1016/j.ymeth.2012.01.002; GPMDB: 163.
  323. Schaab C, Geiger T, Stoehr G, Cox J, Mann M, (2012) "Analysis of high accuracy, quantitative proteomics data in the MaxQB database." Mol Cell Proteomics 11(3):M111.014068; PMID: 22301388; doi: 10.1074/mcp.M111.014068; GPMDB: 361.
  324. Stokes MP, Farnsworth CL, Moritz A, Silva JC, Jia X, Lee KA, Guo A, Polakiewicz RD, Comb MJ, (2012) "PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS." Mol Cell Proteomics 11(5):187–201; PMID: 22322096; doi: 10.1074/mcp.M111.015883; GPMDB: 24.
  325. Chen ZW, Fuchs K, Sieghart W, Townsend RR, Evers AS, (2012) "Deep amino acid sequencing of native brain GABAA receptors using high-resolution mass spectrometry." Mol Cell Proteomics 11(1):M111.011445; PMID: 22338125; GPMDB: 16.
  326. Bauer C, Kleinjung F, Rutishauser D, Panse C, Chadt A, Dreja T, Al-Hasani H, Reinert K, Schlapbach R, Schuchhardt J, (2012) "PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios." BMC Bioinformatics 13:34; PMID: 22340093; doi: 10.1186/1471-2105-13-34; GPMDB: 1.
  327. Zhong J, Kim MS, Chaerkady R, Wu X, Huang TC, Getnet D, Mitchell CJ, Palapetta SM, Sharma J, O'Meally RN, Cole RN, Yoda A, Moritz A, Loriaux MM, Rush J, Weinstock DM, Tyner JW, Pandey A, (2012) "TSLP signaling network revealed by SILAC-based phosphoproteomics." Mol Cell Proteomics 11(6):M112.017764; PMID: 22345495; doi: 10.1074/mcp.M112.017764; GPMDB: 25.
  328. Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y, (2012) "Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics." J Proteome Res 11(4):2374–85; PMID: 22360387; doi: 10.1021/pr201122w; GPMDB: 1.
  329. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K, (2012) "Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions." ISME J 6(9):1749–62; PMID: 22402400; doi: 10.1038/ismej.2012.11; GPMDB: 1.
  330. Geiger T, Madden SF, Gallagher WM, Cox J, Mann M, (2012) "Proteomic portrait of human breast cancer progression identifies novel prognostic markers." Cancer Res 72(9):2428–39; PMID: 22414580; doi: 10.1158/0008-5472.CAN-11-3711; GPMDB: 420.
  331. Orr SJ, Boutz DR, Wang R, Chronis C, Lea NC, Thayaparan T, Hamilton E, Milewicz H, Blanc E, Mufti GJ, Marcotte EM, Thomas NS, (2012) "Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry." Mol Syst Biol 8:573; PMID: 22415777; doi: 10.1038/msb.2012.5; GPMDB: 62.
  332. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R, Miriami E, Karczewski KJ, Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L, Balasubramanian S, O'Huallachain M, Dudley JT, Hillenmeyer S, Haraksingh R, Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP, Kasowski M, Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M, Blasco MA, Greenberg PL, Snyder P, Klein TE, Altman RB, Butte AJ, Ashley EA, Gerstein M, Nadeau KC, Tang H, Snyder M, (2012) "Personal omics profiling reveals dynamic molecular and medical phenotypes." Cell 148(6):1293–307; PMID: 22424236; doi: 10.1016/j.cell.2012.02.009; GPMDB: 165.
  333. Vranakis I, De Bock PJ, Papadioti A, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A, (2012) "Quantitative proteome profiling of C. burnetii under tetracycline stress conditions." PLoS One 7(3):e33599; PMID: 22438959; doi: 10.1371/journal.pone.0033599; GPMDB: 2.
  334. Deeb SJ, D'Souza RC, Cox J, Schmidt-Supprian M, Mann M, (2012) "Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles." Mol Cell Proteomics 11(5):77–89; PMID: 22442255; doi: 10.1074/mcp.M111.015362; GPMDB: 60.
  335. Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, Bakkali K, Waterschoot D, Lemaistre M, Debeir O, Decaestecker C, Hinz B, Staes A, Timmerman E, Colaert N, Gevaert K, Vandekerckhove J, Ampe C, (2012) "Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity." Mol Cell Proteomics 11(8):255–71; PMID: 22448045; doi: 10.1074/mcp.M111.015099; GPMDB: 2.
  336. Schrimpe-Rutledge AC, Jones MB, Chauhan S, Purvine SO, Sanford JA, Monroe ME, Brewer HM, Payne SH, Ansong C, Frank BC, Smith RD, Peterson SN, Motin VL, Adkins JN, (2012) "Comparative omics-driven genome annotation refinement: application across Yersiniae." PLoS One 7(3):e33903; PMID: 22479471; doi: 10.1371/journal.pone.0033903; GPMDB: 226.
  337. Wright JC, Collins MO, Yu L, Käll L, Brosch M, Choudhary JS, (2012) "Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator." Mol Cell Proteomics 11(8):478–91; PMID: 22493177; doi: 10.1074/mcp.O111.014522; GPMDB: 8.
  338. Franz-Wachtel M, Eisler SA, Krug K, Wahl S, Carpy A, Nordheim A, Pfizenmaier K, Hausser A, Macek B, (2012) "Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells." Mol Cell Proteomics 11(5):160–70; PMID: 22496350; doi: 10.1074/mcp.M111.016014; GPMDB: 18.
  339. Ferrando IM, Chaerkady R, Zhong J, Molina H, Jacob HK, Herbst-Robinson K, Dancy BM, Katju V, Bose R, Zhang J, Pandey A, Cole PA, (2012) "Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics." Mol Cell Proteomics 11(8):355–69; PMID: 22499769; doi: 10.1074/mcp.M111.015750; GPMDB: 7.
  340. Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA, (2012) "Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition." Mol Cell Proteomics 11(5):148–59; PMID: 22505724; doi: 10.1074/mcp.M111.016857; GPMDB: 113.
  341. Yao L, Lao W, Zhang Y, Tang X, Hu X, He C, Hu X, Xu LX, (2012) "Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues." J Proteome Res 11(6):3281–94; PMID: 22506683; doi: 10.1021/pr300020p; GPMDB: 12.
  342. Fonslow BR, Niessen SM, Singh M, Wong CC, Xu T, Carvalho PC, Choi J, Park SK, Yates JR 3rd, (2012) "Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT." J Proteome Res 11(5):2697–709; PMID: 22509746; doi: 10.1021/pr300200x; GPMDB: 77.
  343. Urbaniak MD, Guther ML, Ferguson MA, (2012) "Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages." PLoS One 7(5):e36619; PMID: 22574199; doi: 10.1371/journal.pone.0036619; GPMDB: 11.
  344. Ivaldi C, Martin BR, Kieffer-Jaquinod S, Chapel A, Levade T, Garin J, Journet A, (2012) "Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23." PLoS One 7(5):e37187; PMID: 22615937; doi: 10.1371/journal.pone.0037187; GPMDB: 2.
  345. Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ, (2012) "Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment." Proteomics 12(13):2107–14; PMID: 22623428; doi: 10.1002/pmic.201100487; GPMDB: 18.
  346. Pisitkun T, Gandolfo MT, Das S, Knepper MA, Bagnasco SM, (2012) "Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation." Proteomics Clin Appl 6(5-6):268–78; PMID: 22641613; doi: 10.1002/prca.201100108; GPMDB: 7.
  347. Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, Cheok CF, Vousden KH, Lane DP, Blackstock WP, Gunaratne J, (2012) "Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion." EMBO Rep 13(7):638–44; PMID: 22653443; doi: 10.1038/embor.2012.74; GPMDB: 154.
  348. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW, (2012) "Insights into RNA biology from an atlas of mammalian mRNA-binding proteins." Cell 149(6):1393–406; PMID: 22658674; doi: 10.1016/j.cell.2012.04.031; GPMDB: 6.
  349. Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané JM, Coon JJ, (2012) "Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis." Mol Cell Proteomics 11(9):724–44; PMID: 22683509; doi: 10.1074/mcp.M112.019208; GPMDB: 382.
  350. Vialás V, Perumal P, Gutierrez D, Ximénez-Embún P, Nombela C, Gil C, Chaffin WL, (2012) "Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells." Proteomics 12(14):2331–9; PMID: 22685022; doi: 10.1002/pmic.201100588; GPMDB: 1.
  351. Muñoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, Volckmann R, Kung KS, Koster J, Radulescu S, Myant K, Versteeg R, Sansom OJ, van Es JH, Barker N, van Oudenaarden A, Mohammed S, Heck AJ, Clevers H, (2012) "The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers." EMBO J 31(14):3079–91; PMID: 22692129; doi: 10.1038/emboj.2012.166; GPMDB: 106.
  352. Rashid ST, Humphries JD, Byron A, Dhar A, Askari JA, Selley JN, Knight D, Goldin RD, Thursz M, Humphries MJ, (2012) "Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver." J Proteome Res 11(8):4052–64; PMID: 22694338; doi: 10.1021/pr3000927; GPMDB: 6.
  353. Guyonnet B, Zabet-Moghaddam M, SanFrancisco S, Cornwall GA, (2012) "Isolation and proteomic characterization of the mouse sperm acrosomal matrix." Mol Cell Proteomics 11(9):758–74; PMID: 22707618; doi: 10.1074/mcp.M112.020339; GPMDB: 5.
  354. Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO, (2012) "Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation." Mol Syst Biol 8:558; PMID: 22735334; doi: 10.1038/msb.2012.21; GPMDB: 42.
  355. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, Teitell MA, Wu H, Ribas A, Lo RS, Mellinghoff IK, Mischel PS, Graeber TG, (2012) "Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death." Mol Syst Biol 8:589; PMID: 22735335; doi: 10.1038/msb.2012.20; GPMDB: 20.
  356. Lim JW, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H, Simpson RJ, (2012) "Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4." Electrophoresis 33(12):1873–80; PMID: 22740476; doi: 10.1002/elps.201100687; GPMDB: 129.
  357. Enany S, Yoshida Y, Magdeldin S, Zhang Y, Bo X, Yamamoto T, (2012) "Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone." Peptides 37(1):128–37; PMID: 22750914; doi: 10.1016/j.peptides.2012.06.011; GPMDB: 2.
  358. Miura N, Kirino A, Endo S, Morisaka H, Kuroda K, Takagi M, Ueda M, (2012) "Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion." Eukaryot Cell 11(8):1075–82; PMID: 22753847; doi: 10.1128/EC.00075-12; GPMDB: 1.
  359. Arike L, Valgepea K, Peil L, Nahku R, Adamberg K, Vilu R, (2012) "Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli." J Proteomics 75(17):5437–48; PMID: 22771841; doi: 10.1016/j.jprot.2012.06.020; GPMDB: 6.
  360. Bonhomme L, Valot B, Tardieu F, Zivy M, (2012) "Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves." Mol Cell Proteomics 11(10):957–72; PMID: 22787273; doi: 10.1074/mcp.M111.015867; GPMDB: 1598.
  361. Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL, McDonald WH, Rokas A, (2012) "The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae." Curr Biol 22(15):1403–9; PMID: 22795693; doi: 10.1016/j.cub.2012.05.033; GPMDB: 8.
  362. Goswami T, Li X, Smith AM, Luderowski EM, Vincent JJ, Rush J, Ballif BA, (2012) "Comparative phosphoproteomic analysis of neonatal and adult murine brain." Proteomics 12(13):2185–9; PMID: 22807455; doi: 10.1002/pmic.201200003; GPMDB: 3.
  363. Yuan Y, Kadiyala CS, Ching TT, Hakimi P, Saha S, Xu H, Yuan C, Mullangi V, Wang L, Fivenson E, Hanson RW, Ewing R, Hsu AL, Miyagi M, Feng Z, (2012) "Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans." J Biol Chem 287(37):31414–26; PMID: 22810224; doi: 10.1074/jbc.M112.377275; GPMDB: 40.
  364. Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF, (2012) "Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome." Cell 150(2):426–40; PMID: 22817901; doi: 10.1016/j.cell.2012.05.040; GPMDB: 234.
  365. Burgener A, Mogk K, Westmacott G, Plummer F, Ball B, Broliden K, Hasselrot K, (2012) "Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men." AIDS 26(15):1857–67; PMID: 22824632; doi: 10.1097/QAD.0b013e328357f79c; GPMDB: 2.
  366. Wejda M, Impens F, Takahashi N, Van Damme P, Gevaert K, Vandenabeele P, (2012) "Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike." J Biol Chem 287(41):33983–95; PMID: 22825847; doi: 10.1074/jbc.M112.384552; GPMDB: 1.
  367. Corthals A, Koller A, Martin DW, Rieger R, Chen EI, Bernaski M, Recagno G, Dávalos LM, (2012) "Detecting the immune system response of a 500 year-old Inca mummy." PLoS One 7(7):e41244; PMID: 22848450; doi: 10.1371/journal.pone.0041244; GPMDB: 12.
  368. Zijnge V, Kieselbach T, Oscarsson J, (2012) "Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans." PLoS One 7(7):e41662; PMID: 22848560; doi: 10.1371/journal.pone.0041662; GPMDB: 171.
  369. Wen Q, Goldenson B, Silver SJ, Schenone M, Dancik V, Huang Z, Wang LZ, Lewis TA, An WF, Li X, Bray MA, Thiollier C, Diebold L, Gilles L, Vokes MS, Moore CB, Bliss-Moreau M, Verplank L, Tolliday NJ, Mishra R, Vemula S, Shi J, Wei L, Kapur R, Lopez CK, Gerby B, Ballerini P, Pflumio F, Gilliland DG, Goldberg L, Birger Y, Izraeli S, Gamis AS, Smith FO, Woods WG, Taub J, Scherer CA, Bradner JE, Goh BC, Mercher T, Carpenter AE, Gould RJ, Clemons PA, Carr SA, Root DE, Schreiber SL, Stern AM, Crispino JD, (2012) "Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL." Cell 150(3):575–89; PMID: 22863010; doi: 10.1016/j.cell.2012.06.032; GPMDB: 24.
  370. Kohr MJ, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E, (2012) "Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication." Circ Res 111(10):1308–12; PMID: 22865876; doi: 10.1161/CIRCRESAHA.112.271320; GPMDB: 32.
  371. Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C, (2012) "Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae." Mol Cell Proteomics 11(11):1510–22; PMID: 22865919; doi: 10.1074/mcp.M112.017251; GPMDB: 64.
  372. Uhlmann T, Geoghegan VL, Thomas B, Ridlova G, Trudgian DC, Acuto O, (2012) "A method for large-scale identification of protein arginine methylation." Mol Cell Proteomics 11(11):1489–99; PMID: 22865923; doi: 10.1074/mcp.M112.020743; GPMDB: 133.
  373. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP, (2012) "The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways." Blood 120(15):e73–82; PMID: 22869793; doi: 10.1182/blood-2012-04-416594; GPMDB: 4.
  374. Vaudel M, Burkhart JM, Radau S, Zahedi RP, Martens L, Sickmann A, (2012) "Integral quantification accuracy estimation for reporter ion-based quantitative proteomics (iQuARI)." J Proteome Res 11(10):5072–80; PMID: 22874012; doi: 10.1021/pr300247u; GPMDB: 8.
  375. Veitinger M, Umlauf E, Baumgartner R, Badrnya S, Porter J, Lamont J, Gerner C, Gruber CW, Oehler R, Zellner M, (2012) "A combined proteomic and genetic analysis of the highly variable platelet proteome: from plasmatic proteins and SNPs." J Proteomics 75(18):5848–60; PMID: 22885077; doi: 10.1016/j.jprot.2012.07.042; GPMDB: 19.
  376. Brown RN, Sanford JA, Park JH, Deatherage BL, Champion BL, Smith RD, Heffron F, Adkins JN, (2012) "A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions." Int J Proteomics 2012:123076; PMID: 22900174; doi: 10.1155/2012/123076; GPMDB: 78.
  377. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC, (2012) "Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis." Cell Host Microbe 12(2):246–58; PMID: 22901544; doi: 10.1016/j.chom.2012.06.005; GPMDB: 10.
  378. Toyofuku M, Roschitzki B, Riedel K, Eberl L, (2012) "Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix." J Proteome Res 11(10):4906–15; PMID: 22909304; doi: 10.1021/pr300395j; GPMDB: 4.
  379. Jerebtsova M, Kumari N, Obuhkov Y, Nekhai S, (2012) "Adenoviral E4 gene stimulates secretion of pigmental epithelium derived factor (PEDF) that maintains long-term survival of human glomerulus-derived endothelial cells." Mol Cell Proteomics 11(11):1378–88; PMID: 22915824; doi: 10.1074/mcp.M112.020313; GPMDB: 20.
  380. Baerenfaller K, Massonnet C, Walsh S, Baginsky S, Bühlmann P, Hennig L, Hirsch-Hoffmann M, Howell KA, Kahlau S, Radziejwoski A, Russenberger D, Rutishauser D, Small I, Stekhoven D, Sulpice R, Svozil J, Wuyts N, Stitt M, Hilson P, Granier C, Gruissem W, (2012) "Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit." Mol Syst Biol 8:606; PMID: 22929616; doi: 10.1038/msb.2012.39; GPMDB: 24.
  381. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A, Marcotte EM, Emili A, (2012) "A census of human soluble protein complexes." Cell 150(5):1068–81; PMID: 22939629; doi: 10.1016/j.cell.2012.08.011; GPMDB: 2355.
  382. MacDonald ML, Ciccimaro E, Prakash A, Banerjee A, Seeholzer SH, Blair IA, Hahn CG, (2012) "Biochemical fractionation and stable isotope dilution liquid chromatography-mass spectrometry for targeted and microdomain-specific protein quantification in human postmortem brain tissue." Mol Cell Proteomics 11(12):1670–81; PMID: 22942359; doi: 10.1074/mcp.M112.021766; GPMDB: 14.
  383. Vögtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C, (2012) "Intermembrane space proteome of yeast mitochondria." Mol Cell Proteomics 11(12):1840–52; PMID: 22984289; doi: 10.1074/mcp.M112.021105; GPMDB: 30.
  384. Kim Y, Ignatchenko V, Yao CQ, Kalatskaya I, Nyalwidhe JO, Lance RS, Gramolini AO, Troyer DA, Stein LD, Boutros PC, Medin JA, Semmes OJ, Drake RR, Kislinger T, (2012) "Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer." Mol Cell Proteomics 11(12):1870–84; PMID: 22986220; doi: 10.1074/mcp.M112.017889; GPMDB: 320.
  385. Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJ, (2012) "Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans." Proteomics 12(21):3164–79; PMID: 22997008; doi: 10.1002/pmic.201200228; GPMDB: 50.
  386. Michalski A, Neuhauser N, Cox J, Mann M, (2012) "A systematic investigation into the nature of tryptic HCD spectra." J Proteome Res 11(11):5479–91; PMID: 22998608; doi: 10.1021/pr3007045; GPMDB: 35.
  387. Bleijerveld OB, Wijten P, Cappadona S, McClellan EA, Polat AN, Raijmakers R, Sels JW, Colle L, Grasso S, van den Toorn HW, van Breukelen B, Stubbs A, Pasterkamp G, Heck AJ, Hoefer IE, Scholten A, (2012) "Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis." J Proteome Res 11(11):5235–44; PMID: 23020738; doi: 10.1021/pr3004375; GPMDB: 163.
  388. Ren YR, Chaerkady R, Hu S, Wan J, Qian J, Zhu H, Pandey A, Kern SE, (2012) "Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin." J Proteome Res 11(11):5301–10; PMID: 23025254; doi: 10.1021/pr300797v; GPMDB: 67.
  389. Motohashi R, Rödiger A, Agne B, Baerenfaller K, Baginsky S, (2012) "Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level." Plant Physiol 160(4):2189–201; PMID: 23027667; doi: 10.1104/pp.112.204032; GPMDB: 4.
  390. Hu CW, Lin MH, Huang HC, Ku WC, Yi TH, Tsai CF, Chen YJ, Sugiyama N, Ishihama Y, Juan HF, Wu SH, (2012) "Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production." J Proteome Res 11(11):5362–75; PMID: 23030682; doi: 10.1021/pr300582p; GPMDB: 12.
  391. Ubaida Mohien C, Colquhoun DR, Mathias DK, Gibbons JG, Armistead JS, Rodriguez MC, Rodriguez MH, Edwards NJ, Hartler J, Thallinger GG, Graham DR, Martinez-Barnetche J, Rokas A, Dinglasan RR, (2013) "A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites." Mol Cell Proteomics 12(1):120–31; PMID: 23082028; doi: 10.1074/mcp.M112.019596; GPMDB: 97.
  392. Mathew R, Seiler MP, Scanlon ST, Mao AP, Constantinides MG, Bertozzi-Villa C, Singer JD, Bendelac A, (2012) "BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs." Nature 491(7425):618–21; PMID: 23086144; doi: 10.1038/nature11548; GPMDB: 8.
  393. Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ, (2013) "Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery." Mol Cell Proteomics 12(1):172–9; PMID: 23090971; doi: 10.1074/mcp.M112.019224; GPMDB: 94.
  394. Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J, (2012) "Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells." Cell 151(3):671–83; PMID: 23101633; doi: 10.1016/j.cell.2012.09.019; GPMDB: 33.
  395. Pointner J, Persson J, Prasad P, Norman-Axelsson U, Strålfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P, (2012) "CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe." EMBO J 31(23):4388–403; PMID: 23103765; doi: 10.1038/emboj.2012.289; GPMDB: 30.
  396. Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U, (2012) "Regulation of yeast central metabolism by enzyme phosphorylation." Mol Syst Biol 8:623; PMID: 23149688; doi: 10.1038/msb.2012.55; GPMDB: 26.
  397. Muraoka S, Kume H, Adachi J, Shiromizu T, Watanabe S, Masuda T, Ishihama Y, Tomonaga T, (2013) "In-depth membrane proteomic study of breast cancer tissues for the generation of a chromosome-based protein list." J Proteome Res 12(1):208–13; PMID: 23153008; doi: 10.1021/pr300824m; GPMDB: 36.
  398. Fonslow BR, Stein BD, Webb KJ, Xu T, Choi J, Park SK, Yates JR 3rd, (2013) "Digestion and depletion of abundant proteins improves proteomic coverage." Nat Methods 10(1):54–6; PMID: 23160281; doi: 10.1038/nmeth.2250; GPMDB: 132.
  399. Kliemt S, Lange C, Otto W, Hintze V, Möller S, von Bergen M, Hempel U, Kalkhof S, (2013) "Sulfated hyaluronan containing collagen matrices enhance cell-matrix-interaction, endocytosis, and osteogenic differentiation of human mesenchymal stromal cells." J Proteome Res 12(1):378–89; PMID: 23170904; doi: 10.1021/pr300640h; GPMDB: 30.
  400. Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Röhrig H, Weckwerth W, Conrath U, Beckers GJ, (2013) "Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography." Mol Cell Proteomics 12(2):369–80; PMID: 23172892; doi: 10.1074/mcp.M112.020560; GPMDB: 6.
  401. Yamana R, Iwasaki M, Wakabayashi M, Nakagawa M, Yamanaka S, Ishihama Y, (2013) "Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot NanoLC-MS/MS analysis with meter-scale monolithic silica columns." J Proteome Res 12(1):214–21; PMID: 23210603; doi: 10.1021/pr300837u; GPMDB: 129.
  402. Meding S, Martin K, Gustafsson OJ, Eddes JS, Hack S, Oehler MK, Hoffmann P, (2013) "Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues." J Proteome Res 12(1):308–15; PMID: 23214983; doi: 10.1021/pr300996x; GPMDB: 31.
  403. Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ, (2013) "Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids." Mol Cell Proteomics 12(3):587–98; PMID: 23230278; doi: 10.1074/mcp.M112.021303; GPMDB: 20.
  404. Segura V, Medina-Aunon JA, Guruceaga E, Gharbi SI, González-Tejedo C, Sánchez del Pino MM, Canals F, Fuentes M, Casal JI, Martínez-Bartolomé S, Elortza F, Mato JM, Arizmendi JM, Abian J, Oliveira E, Gil C, Vivanco F, Blanco F, Albar JP, Corrales FJ, (2013) "Spanish human proteome project: dissection of chromosome 16." J Proteome Res 12(1):112–22; PMID: 23234512; doi: 10.1021/pr300898u; GPMDB: 43.
  405. Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW, Koseki H, Brockdorff N, Ponting CP, Kessler BM, Klose RJ, (2012) "KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands." Elife 1:e00205; PMID: 23256043; doi: 10.7554/eLife.00205; GPMDB: 5.
  406. Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA, (2013) "Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments." Mol Cell Proteomics 12(3):825–31; PMID: 23266961; doi: 10.1074/mcp.O112.027094; GPMDB: 72.
  407. Maccarrone G, Rewerts C, Lebar M, Turck CW, Martins-de-Souza D, (2013) "Proteome profiling of peripheral mononuclear cells from human blood." Proteomics 13(5):893–7; PMID: 23281267; doi: 10.1002/pmic.201200377; GPMDB: 3.
  408. Kentsis A, Shulman A, Ahmed S, Brennan E, Monuteaux MC, Lee YH, Lipsett S, Paulo JA, Dedeoglu F, Fuhlbrigge R, Bachur R, Bradwin G, Arditi M, Sundel RP, Newburger JW, Steen H, Kim S, (2013) "Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease." EMBO Mol Med 5(2):210–20; PMID: 23281308; doi: 10.1002/emmm.201201494; GPMDB: 145.
  409. Chen JS, Broadus MR, McLean JR, Feoktistova A, Ren L, Gould KL, (2013) "Comprehensive proteomics analysis reveals new substrates and regulators of the fission yeast clp1/cdc14 phosphatase." Mol Cell Proteomics 12(5):1074–86; PMID: 23297348; doi: 10.1074/mcp.M112.025924; GPMDB: 190.
  410. Holewinski RJ, Jin Z, Powell MJ, Maust MD, Van Eyk JE, (2013) "A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid." Proteomics 13(5):743–50; PMID: 23300121; doi: 10.1002/pmic.201200192; GPMDB: 27.
  411. Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS, van Aalten DM, Agnew B, Kuster B, (2013) "Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry." J Proteome Res 12(2):927–36; PMID: 23301498; doi: 10.1021/pr300967y; GPMDB: 9.
  412. Strader MB, Hervey WJ 4th, Costantino N, Fujigaki S, Chen CY, Akal-Strader A, Ihunnah CA, Makusky AJ, Court DL, Markey SP, Kowalak JA, (2013) "A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12." J Proteome Res 12(3):1289–99; PMID: 23305560; doi: 10.1021/pr3009435; GPMDB: 209.
  413. Shiromizu T, Adachi J, Watanabe S, Murakami T, Kuga T, Muraoka S, Tomonaga T, (2013) "Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project." J Proteome Res 12(6):2414–21; PMID: 23312004; doi: 10.1021/pr300825v; GPMDB: 232.
  414. Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G, Mann M, Farese RV Jr, Walther TC, (2013) "Protein correlation profiles identify lipid droplet proteins with high confidence." Mol Cell Proteomics 12(5):1115–26; PMID: 23319140; doi: 10.1074/mcp.M112.020230; GPMDB: 18.
  415. Wenger CD, Coon JJ, (2013) "A proteomics search algorithm specifically designed for high-resolution tandem mass spectra." J Proteome Res 12(3):1377–86; PMID: 23323968; doi: 10.1021/pr301024c; GPMDB: 15.
  416. Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, Kappe SH, (2013) "Total and putative surface proteomics of malaria parasite salivary gland sporozoites." Mol Cell Proteomics 12(5):1127–43; PMID: 23325771; doi: 10.1074/mcp.M112.024505; GPMDB: 72.
  417. Zhang H, Zhou H, Berke L, Heck AJ, Mohammed S, Scheres B, Menke FL, (2013) "Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth." Mol Cell Proteomics 12(5):1158–69; PMID: 23328941; doi: 10.1074/mcp.M112.021220; GPMDB: 11.
  418. Wang F, Blanchard AP, Elisma F, Granger M, Xu H, Bennett SA, Figeys D, Zou H, (2013) "Phosphoproteome analysis of an early onset mouse model (TgCRND8) of Alzheimer's disease reveals temporal changes in neuronal and glia signaling pathways." Proteomics 13(8):1292–305; PMID: 23335269; doi: 10.1002/pmic.201200415; GPMDB: 63.
  419. Albrethsen J, Agner J, Piersma SR, Højrup P, Pham TV, Weldingh K, Jimenez CR, Andersen P, Rosenkrands I, (2013) "Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems." Mol Cell Proteomics 12(5):1180–91; PMID: 23345537; doi: 10.1074/mcp.M112.018846; GPMDB: 59.
  420. Haußmann U, Wolters DA, Fränzel B, Eltis LD, Poetsch A, (2013) "Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates." J Proteome Res 12(3):1188–98; PMID: 23360181; doi: 10.1021/pr300816n; GPMDB: 220.
  421. Lee HJ, Jeong SK, Na K, Lee MJ, Lee SH, Lim JS, Cha HJ, Cho JY, Kwon JY, Kim H, Song SY, Yoo JS, Park YM, Kim H, Hancock WS, Paik YK, (2013) "Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project." J Proteome Res 12(6):2458–66; PMID: 23362793; doi: 10.1021/pr301040g; GPMDB: 47.
  422. Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY, (2013) "Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging." Science 339(6125):1328–31; PMID: 23371551; doi: 10.1126/science.1230593; GPMDB: 64.
  423. Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, van Ree JH, van Deursen JM, Trempus CS, Machesky LM, Linding R, Wickström SA, Fässler R, Mann M, (2013) "In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis." Cell Rep 3(2):552–66; PMID: 23375375; doi: 10.1016/j.celrep.2013.01.003; GPMDB: 315.
  424. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H, (2013) "On terminal alkynes that can react with active-site cysteine nucleophiles in proteases." J Am Chem Soc 135(8):2867–70; PMID: 23387960; doi: 10.1021/ja309802n; GPMDB: 1.
  425. Cho CK, Drabovich AP, Karagiannis GS, Martínez-Morillo E, Dason S, Dimitromanolakis A, Diamandis EP, (2013) "Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome." Clin Proteomics 10(1):2; PMID: 23394617; doi: 10.1186/1559-0275-10-2; GPMDB: 30.
  426. de Graaf EL, Vermeij WP, de Waard MC, Rijksen Y, van der Pluijm I, Hoogenraad CC, Hoeijmakers JH, Altelaar AF, Heck AJ, (2013) "Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum." Mol Cell Proteomics 12(5):1350–62; PMID: 23399551; doi: 10.1074/mcp.M112.024950; GPMDB: 120.
  427. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A, Rueda OM, Holmes KA, Theodorou V, Robinson JL, Zwart W, Saadi A, Ross-Innes CS, Chin SF, Menon S, Stingl J, Palmieri C, Caldas C, Carroll JS, (2013) "Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor." Cell Rep 3(2):342–9; PMID: 23403292; doi: 10.1016/j.celrep.2013.01.010; GPMDB: 9.
  428. Sun B, Ma L, Yan X, Lee D, Alexander V, Hohmann LJ, Lorang C, Chandrasena L, Tian Q, Hood L, (2013) "N-glycoproteome of E14.Tg2a mouse embryonic stem cells." PLoS One 8(2):e55722; PMID: 23405203; doi: 10.1371/journal.pone.0055722; GPMDB: 40.
  429. Colinet H, Overgaard J, Com E, Sørensen JG, (2013) "Proteomic profiling of thermal acclimation in Drosophila melanogaster." Insect Biochem Mol Biol 43(4):352–65; PMID: 23416132; doi: 10.1016/j.ibmb.2013.01.006; GPMDB: 50.
  430. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M, (2013) "Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives." Cell 152(5):1146–59; PMID: 23434322; doi: 10.1016/j.cell.2013.02.004; GPMDB: 249.
  431. Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, Gasnier B, Journet A, (2013) "An extended proteome map of the lysosomal membrane reveals novel potential transporters." Mol Cell Proteomics 12(6):1572–88; PMID: 23436907; doi: 10.1074/mcp.M112.021980; GPMDB: 1.
  432. Fabietti A, Gaspari M, Krishnan S, Quirino A, Liberto MC, Cuda G, Focà A, (2013) "Shotgun proteomic analysis of two Bartonella quintana strains." Proteomics 13(8):1375–8; PMID: 23450663; doi: 10.1002/pmic.201200165; GPMDB: 8.
  433. Varjosalo M, Sacco R, Stukalov A, van Drogen A, Planyavsky M, Hauri S, Aebersold R, Bennett KL, Colinge J, Gstaiger M, Superti-Furga G, (2013) "Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS." Nat Methods 10(4):307–14; PMID: 23455922; doi: 10.1038/nmeth.2400; GPMDB: 288.
  434. Fanayan S, Smith JT, Lee LY, Yan F, Snyder M, Hancock WS, Nice E, (2013) "Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405." J Proteome Res 12(4):1732–42; PMID: 23458625; doi: 10.1021/pr3010869; GPMDB: 136.
  435. Rao SA, Carolan JC, Wilkinson TL, (2013) "Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins." PLoS One 8(2):e57413; PMID: 23460852; doi: 10.1371/journal.pone.0057413; GPMDB: 16.
  436. Gunaratne J, Schmidt A, Quandt A, Neo SP, Saraç OS, Gracia T, Loguercio S, Ahrné E, Xia RL, Tan KH, Lössner C, Bähler J, Beyer A, Blackstock W, Aebersold R, (2013) "Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas." Mol Cell Proteomics 12(6):1741–51; PMID: 23462206; doi: 10.1074/mcp.M112.023754; GPMDB: 384.
  437. Hassan C, Kester MG, de Ru AH, Hombrink P, Drijfhout JW, Nijveen H, Leunissen JA, Heemskerk MH, Falkenburg JH, van Veelen PA, (2013) "The human leukocyte antigen-presented ligandome of B lymphocytes." Mol Cell Proteomics 12(7):1829–43; PMID: 23481700; doi: 10.1074/mcp.M112.024810; GPMDB: 191.
  438. Urbaniak MD, Martin DM, Ferguson MA, (2013) "Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei." J Proteome Res 12(5):2233–44; PMID: 23485197; doi: 10.1021/pr400086y; GPMDB: 148.
  439. van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M, Timmers HT, (2013) "Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes." Mol Cell Biol 33(10):2067–77; PMID: 23508102; doi: 10.1128/MCB.01742-12; GPMDB: 52.
  440. Papachristou EK, Roumeliotis TI, Chrysagi A, Trigoni C, Charvalos E, Townsend PA, Pavlakis K, Garbis SD, (2013) "The shotgun proteomic study of the human ThinPrep cervical smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS: the detection of the human papillomavirus at the protein level." J Proteome Res 12(5):2078–89; PMID: 23510160; doi: 10.1021/pr301067r; GPMDB: 3.
  441. Ori A, Banterle N, Iskar M, Andrés-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M, (2013) "Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines." Mol Syst Biol 9:648; PMID: 23511206; doi: 10.1038/msb.2013.4; GPMDB: 30.
  442. Bendz M, Skwark M, Nilsson D, Granholm V, Cristobal S, Käll L, Elofsson A, (2013) "Membrane protein shaving with thermolysin can be used to evaluate topology predictors." Proteomics 13(9):1467–80; PMID: 23512833; doi: 10.1002/pmic.201200517; GPMDB: 8.
  443. Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA, (2013) "Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit." BMC Plant Biol 13:49; PMID: 23514573; doi: 10.1186/1471-2229-13-49; GPMDB: 96.
  444. Bradshaw E, Saalbach G, McArthur M, (2013) "Proteomic survey of the Streptomyces coelicolor nucleoid." J Proteomics 83:37–46; PMID: 23523638; doi: 10.1016/j.jprot.2013.02.033; GPMDB: 6.
  445. Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S, Cutillas PR, (2013) "Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells." Sci Signal 6(268):rs6; PMID: 23532336; doi: 10.1126/scisignal.2003573; GPMDB: 160.
  446. Webb KJ, Xu T, Park SK, Yates JR 3rd, (2013) "Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast." J Proteome Res 12(5):2177–84; PMID: 23540446; doi: 10.1021/pr400027m; GPMDB: 135.
  447. Sun B, Utleg AG, Hu Z, Qin S, Keller A, Lorang C, Gray L, Brightman A, Lee D, Alexander VM, Ranish JA, Moritz RL, Hood L, (2013) "Glycocapture-assisted global quantitative proteomics (gagQP) reveals multiorgan responses in serum toxicoproteome." J Proteome Res 12(5):2034–44; PMID: 23540550; doi: 10.1021/pr301178a; GPMDB: 58.
  448. Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ, (2013) "Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis." Plant Physiol 162(1):157–79; PMID: 23548781; doi: 10.1104/pp.113.215699; GPMDB: 118.
  449. Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ, (2013) "Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components." Proteomics 13(10-11):1672–86; PMID: 23585443; doi: 10.1002/pmic.201200562; GPMDB: 51.
  450. Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA, (2013) "Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors." J Biol Chem 288(23):16606–18; PMID: 23589303; doi: 10.1074/jbc.M113.475285; GPMDB: 210.
  451. Zhuang G, Yu K, Jiang Z, Chung A, Yao J, Ha C, Toy K, Soriano R, Haley B, Blackwood E, Sampath D, Bais C, Lill JR, Ferrara N, (2013) "Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases." Sci Signal 6(271):ra25; PMID: 23592840; doi: 10.1126/scisignal.2003572; GPMDB: 7.
  452. Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, Gstaiger M, (2013) "The protein interaction landscape of the human CMGC kinase group." Cell Rep 3(4):1306–20; PMID: 23602568; doi: 10.1016/j.celrep.2013.03.027; GPMDB: 114.
  453. Marcone S, Fitzgerald DJ, (2013) "Proteomic identification of the candidate target proteins of 15-deoxy-delta12,14-prostaglandin J2." Proteomics 13(14):2135–9; PMID: 23606334; doi: 10.1002/pmic.201200289; GPMDB: 62.
  454. Halim VA, Alvarez-Fernández M, Xu YJ, Aprelia M, van den Toorn HW, Heck AJ, Mohammed S, Medema RH, (2013) "Comparative phosphoproteomic analysis of checkpoint recovery identifies new regulators of the DNA damage response." Sci Signal 6(272):rs9; PMID: 23612710; doi: 10.1126/scisignal.2003664; GPMDB: 247.
  455. Kooij V, Holewinski RJ, Murphy AM, Van Eyk JE, (2013) "Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts." J Mol Cell Cardiol 60:116–20; PMID: 23619294; doi: 10.1016/j.yjmcc.2013.04.012; GPMDB: 87.
  456. Casado P, Alcolea MP, Iorio F, Rodríguez-Prados JC, Vanhaesebroeck B, Saez-Rodriguez J, Joel S, Cutillas PR, (2013) "Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors." Genome Biol 14(4):R37; PMID: 23628362; doi: 10.1186/gb-2013-14-4-r37; GPMDB: 75.
  457. Sheynkman GM, Shortreed MR, Frey BL, Smith LM, (2013) "Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq." Mol Cell Proteomics 12(8):2341–53; PMID: 23629695; doi: 10.1074/mcp.O113.028142; GPMDB: 28.
  458. Wijten P, van Holten T, Woo LL, Bleijerveld OB, Roest M, Heck AJ, Scholten A, (2013) "High precision platelet releasate definition by quantitative reversed protein profiling--brief report." Arterioscler Thromb Vasc Biol 33(7):1635–8; PMID: 23640497; doi: 10.1161/ATVBAHA.113.301147; GPMDB: 82.
  459. Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, Coleman BM, Hill AF, Kusebauch U, Hallows JL, Shteynberg D, Moritz RL, Zhu HJ, Simpson RJ, (2013) "Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition." Mol Cell Proteomics 12(8):2148–59; PMID: 23645497; doi: 10.1074/mcp.M112.027086; GPMDB: 187.
  460. Müller SA, Findeiß S, Pernitzsch SR, Wissenbach DK, Stadler PF, Hofacker IL, von Bergen M, Kalkhof S, (2013) "Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics." J Proteomics 86:27–42; PMID: 23665149; doi: 10.1016/j.jprot.2013.04.036; GPMDB: 63.
  461. Marimuthu A, Chavan S, Sathe G, Sahasrabuddhe NA, Srikanth SM, Renuse S, Ahmad S, Radhakrishnan A, Barbhuiya MA, Kumar RV, Harsha HC, Sidransky D, Califano J, Pandey A, Chatterjee A, (2013) "Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome." Biochim Biophys Acta 1834(11):2308–16; PMID: 23665456; doi: 10.1016/j.bbapap.2013.04.029; GPMDB: 23.
  462. Chen Z, Wen B, Wang Q, Tong W, Guo J, Bai X, Zhao J, Sun Y, Tang Q, Lin Z, Lin L, Liu S, (2013) "Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis." Mol Cell Proteomics 12(8):2266–77; PMID: 23665590; doi: 10.1074/mcp.M112.025817; GPMDB: 84.
  463. Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, Tang H, Snyder M, (2013) "Variation and genetic control of protein abundance in humans." Nature 499(7456):79–82; PMID: 23676674; doi: 10.1038/nature12223; GPMDB: 51.
  464. Greening DW, Kapp EA, Ji H, Speed TP, Simpson RJ, (2013) "Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment." Biochim Biophys Acta 1834(11):2396–407; PMID: 23684732; doi: 10.1016/j.bbapap.2013.05.006; GPMDB: 4.
  465. Zhang L, Holmes IP, Hochgräfe F, Walker SR, Ali NA, Humphrey ES, Wu J, de Silva M, Kersten WJ, Connor T, Falk H, Allan L, Street IP, Bentley JD, Pilling PA, Monahan BJ, Peat TS, Daly RJ, (2013) "Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling." J Proteome Res 12(7):3104–16; PMID: 23692254; doi: 10.1021/pr3008495; GPMDB: 106.
  466. Courcelles M, Frémin C, Voisin L, Lemieux S, Meloche S, Thibault P, (2013) "Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions." Mol Syst Biol 9:669; PMID: 23712012; doi: 10.1038/msb.2013.25; GPMDB: 124.
  467. Darville LN, Sokolowski BH, (2013) "In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry." J Proteome Res 12(8):3620–30; PMID: 23721421; doi: 10.1021/pr4001338; GPMDB: 160.
  468. Villamor JG, Kaschani F, Colby T, Oeljeklaus J, Zhao D, Kaiser M, Patricelli MP, van der Hoorn RA, (2013) "Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes." Mol Cell Proteomics 12(9):2481–96; PMID: 23722185; doi: 10.1074/mcp.M112.026278; GPMDB: 30.
  469. Liberski AR, Al-Noubi MN, Rahman ZH, Halabi NM, Dib SS, Al-Mismar R, Billing AM, Krishnankutty R, Ahmad FS, Raynaud CM, Rafii A, Engholm-Keller K, Graumann J, (2013) "Adaptation of a commonly used, chemically defined medium for human embryonic stem cells to stable isotope labeling with amino acids in cell culture." J Proteome Res 12(7):3233–45; PMID: 23734825; doi: 10.1021/pr400099j; GPMDB: 13.
  470. Casabona MG, Vandenbrouck Y, Attree I, Couté Y, (2013) "Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane." Proteomics 13(16):2419–23; PMID: 23744604; doi: 10.1002/pmic.201200565; GPMDB: 6.
  471. Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, de la Cruz AF, Imhof A, Mellone BG, Malik HS, (2013) "Stepwise evolution of essential centromere function in a Drosophila neogene." Science 340(6137):1211–4; PMID: 23744945; doi: 10.1126/science.1234393; GPMDB: 18.
  472. Miura N, Shinohara M, Tatsukami Y, Sato Y, Morisaka H, Kuroda K, Ueda M, (2013) "Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia." Eukaryot Cell 12(8):1106–19; PMID: 23748432; doi: 10.1128/EC.00093-13; GPMDB: 8.
  473. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J, (2013) "Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation." Nat Methods 10(7):676–82; PMID: 23749301; doi: 10.1038/nmeth.2519; GPMDB: 137.
  474. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA, (2013) "Integrated proteomic analysis of post-translational modifications by serial enrichment." Nat Methods 10(7):634–7; PMID: 23749302; doi: 10.1038/nmeth.2518; GPMDB: 231.
  475. Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, Cristea IM, (2013) "The functional interactome landscape of the human histone deacetylase family." Mol Syst Biol 9:672; PMID: 23752268; doi: 10.1038/msb.2013.26; GPMDB: 75.
  476. Wierer M, Verde G, Pisano P, Molina H, Font-Mateu J, Di Croce L, Beato M, (2013) "PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription." Cell Rep 3(6):2021–32; PMID: 23770244; doi: 10.1016/j.celrep.2013.05.024; GPMDB: 7.
  477. Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, Murata Y, Shimazaki K, (2013) "bHLH transcription factors that facilitate K⁺ uptake during stomatal opening are repressed by abscisic acid through phosphorylation." Sci Signal 6(280):ra48; PMID: 23779086; doi: 10.1126/scisignal.2003760; GPMDB: 2.
  478. Freund DM, Prenni JE, Curthoys NP, (2013) "Proteomic profiling of the mitochondrial inner membrane of rat renal proximal convoluted tubules." Proteomics 13(16):2495–9; PMID: 23780708; doi: 10.1002/pmic.201200558; GPMDB: 10.
  479. Maier SK, Hahne H, Gholami AM, Balluff B, Meding S, Schoene C, Walch AK, Kuster B, (2013) "Comprehensive identification of proteins from MALDI imaging." Mol Cell Proteomics 12(10):2901–10; PMID: 23782541; doi: 10.1074/mcp.M113.027599; GPMDB: 215.
  480. Tanca A, Biosa G, Pagnozzi D, Addis MF, Uzzau S, (2013) "Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome." Proteomics 13(17):2597–607; PMID: 23784971; doi: 10.1002/pmic.201200478; GPMDB: 131.
  481. Hansen AM, Chaerkady R, Sharma J, Díaz-Mejía JJ, Tyagi N, Renuse S, Jacob HK, Pinto SM, Sahasrabuddhe NA, Kim MS, Delanghe B, Srinivasan N, Emili A, Kaper JB, Pandey A, (2013) "The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence." PLoS Pathog 9(6):e1003403; PMID: 23785281; doi: 10.1371/journal.ppat.1003403; GPMDB: 24.
  482. Prewitz MC, Seib FP, von Bonin M, Friedrichs J, Stißel A, Niehage C, Müller K, Anastassiadis K, Waskow C, Hoflack B, Bornhäuser M, Werner C, (2013) "Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments." Nat Methods 10(8):788–94; PMID: 23793238; doi: 10.1038/nmeth.2523; GPMDB: 108.
  483. Xiang F, Guo X, Chen W, Wang J, Zhou T, Huang F, Cao C, Chen X, (2013) "Proteomics analysis of human pericardial fluid." Proteomics 13(17):2692–5; PMID: 23797974; doi: 10.1002/pmic.201200317; GPMDB: 59.
  484. Kosanam H, Prassas I, Chrystoja CC, Soleas I, Chan A, Dimitromanolakis A, Blasutig IM, Rückert F, Gruetzmann R, Pilarsky C, Maekawa M, Brand R, Diamandis EP, (2013) "Laminin, gamma 2 (LAMC2): a promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues." Mol Cell Proteomics 12(10):2820–32; PMID: 23798558; doi: 10.1074/mcp.M112.023507; GPMDB: 112.
  485. Vialas V, Sun Z, Loureiro y Penha CV, Carrascal M, Abián J, Monteoliva L, Deutsch EW, Aebersold R, Moritz RL, Gil C, (2014) "A Candida albicans PeptideAtlas." J Proteomics 97:62–8; PMID: 23811049; doi: 10.1016/j.jprot.2013.06.020; GPMDB: 148.
  486. Höhner R, Barth J, Magneschi L, Jaeger D, Niehues A, Bald T, Grossman A, Fufezan C, Hippler M, (2013) "The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics." Mol Cell Proteomics 12(10):2774–90; PMID: 23820728; doi: 10.1074/mcp.M113.029991; GPMDB: 669.
  487. Stout GJ, Stigter EC, Essers PB, Mulder KW, Kolkman A, Snijders DS, van den Broek NJ, Betist MC, Korswagen HC, Macinnes AW, Brenkman AB, (2013) "Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism." Mol Syst Biol 9:679; PMID: 23820781; doi: 10.1038/msb.2013.35; GPMDB: 66.
  488. Bottermann K, Reinartz M, Barsoum M, Kötter S, Gödecke A, (2013) "Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2." PLoS One 8(6):e66045; PMID: 23823123; doi: 10.1371/journal.pone.0066045; GPMDB: 4.
  489. Rodríguez-Piñeiro AM, Bergström JH, Ermund A, Gustafsson JK, Schütte A, Johansson ME, Hansson GC, (2013) "Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins." Am J Physiol Gastrointest Liver Physiol 305(5):G348–56; PMID: 23832517; doi: 10.1152/ajpgi.00047.2013; GPMDB: 72.
  490. Konvalinka A, Zhou J, Dimitromanolakis A, Drabovich AP, Fang F, Gurley S, Coffman T, John R, Zhang SL, Diamandis EP, Scholey JW, (2013) "Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC)." J Biol Chem 288(34):24834–47; PMID: 23846697; doi: 10.1074/jbc.M113.485326; GPMDB: 204.
  491. Zhou F, Lu Y, Ficarro SB, Adelmant G, Jiang W, Luckey CJ, Marto JA, (2013) "Genome-scale proteome quantification by DEEP SEQ mass spectrometry." Nat Commun 4:2171; PMID: 23863870; doi: 10.1038/ncomms3171; GPMDB: 60.
  492. Johansson HJ, Sanchez BC, Mundt F, Forshed J, Kovacs A, Panizza E, Hultin-Rosenberg L, Lundgren B, Martens U, Máthé G, Yakhini Z, Helou K, Krawiec K, Kanter L, Hjerpe A, Stål O, Linderholm BK, Lehtiö J, (2013) "Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer." Nat Commun 4:2175; PMID: 23868472; doi: 10.1038/ncomms3175; GPMDB: 144.
  493. Prasad TS, Verma R, Kumar S, Nirujogi RS, Sathe GJ, Madugundu AK, Sharma J, Puttamallesh VN, Ganjiwale A, Myneedu VP, Chatterjee A, Pandey A, Harsha H, Narayana J, (2013) "Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis." Clin Proteomics 10(1):8; PMID: 23870090; doi: 10.1186/1559-0275-10-8; GPMDB: 1.
  494. Omasits U, Quebatte M, Stekhoven DJ, Fortes C, Roschitzki B, Robinson MD, Dehio C, Ahrens CH, (2013) "Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome." Genome Res 23(11):1916–27; PMID: 23878158; doi: 10.1101/gr.151035.112; GPMDB: 26.
  495. Xia L, Wang TD, Shen SM, Zhao M, Sun H, He Y, Xie L, Wu ZX, Han SF, Wang LS, Chen GQ, (2013) "Phosphoproteomics study on the activated PKCδ-induced cell death." J Proteome Res 12(10):4280–301; PMID: 23879269; doi: 10.1021/pr400089v; GPMDB: 385.
  496. Chen YY, Chambers MC, Li M, Ham AJ, Turner JL, Zhang B, Tabb DL, (2013) "IDPQuantify: combining precursor intensity with spectral counts for protein and peptide quantification." J Proteome Res 12(9):4111–21; PMID: 23879310; doi: 10.1021/pr400438q; GPMDB: 23.
  497. Chamrád I, Rix U, Stukalov A, Gridling M, Parapatics K, Müller AC, Altiok S, Colinge J, Superti-Furga G, Haura EB, Bennett KL, (2013) "A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies." J Proteome Res 12(9):4005–17; PMID: 23901793; doi: 10.1021/pr400309p; GPMDB: 56.
  498. Oosterkamp MJ, Boeren S, Plugge CM, Schaap PJ, Stams AJ, (2013) "Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation." Proteomics 13(18-19):2886–94; PMID: 23907812; doi: 10.1002/pmic.201200571; GPMDB: 16.
  499. Kwon SC, Yi H, Eichelbaum K, Föhr S, Fischer B, You KT, Castello A, Krijgsveld J, Hentze MW, Kim VN, (2013) "The RNA-binding protein repertoire of embryonic stem cells." Nat Struct Mol Biol 20(9):1122–30; PMID: 23912277; doi: 10.1038/nsmb.2638; GPMDB: 36.
  500. Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B, (2013) "Global proteome analysis of the NCI-60 cell line panel." Cell Rep 4(3):609–20; PMID: 23933261; doi: 10.1016/j.celrep.2013.07.018; GPMDB: 899.
  501. Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM, (2013) "Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis." J Proteome Res 12(9):4101–10; PMID: 23937099; doi: 10.1021/pr400433h; GPMDB: 112.
  502. Han D, Moon S, Kim Y, Kim J, Jin J, Kim Y, (2013) "In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation." Proteomics 13(20):2984–8; PMID: 23943505; doi: 10.1002/pmic.201300091; GPMDB: 36.
  503. Edwards AV, Edwards GJ, Schwämmle V, Saxtorph H, Larsen MR, (2014) "Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain." J Proteome Res 13(1):260–7; PMID: 23947802; doi: 10.1021/pr4002977; GPMDB: 11.
  504. Ulrich C, Quilici DR, Schlauch KA, Buxton IL, (2013) "The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor." Am J Physiol Cell Physiol 305(8):C803–16; PMID: 23948706; doi: 10.1152/ajpcell.00198.2013; GPMDB: 9.
  505. Liu NQ, Dekker LJ, Stingl C, Güzel C, De Marchi T, Martens JW, Foekens JA, Luider TM, Umar A, (2013) "Quantitative proteomic analysis of microdissected breast cancer tissues: comparison of label-free and SILAC-based quantification with shotgun, directed, and targeted MS approaches." J Proteome Res 12(10):4627–41; PMID: 23957277; doi: 10.1021/pr4005794; GPMDB: 57.
  506. Hahne H, Pachl F, Ruprecht B, Maier SK, Klaeger S, Helm D, Médard G, Wilm M, Lemeer S, Kuster B, (2013) "DMSO enhances electrospray response, boosting sensitivity of proteomic experiments." Nat Methods 10(10):989–91; PMID: 23975139; doi: 10.1038/nmeth.2610; GPMDB: 64.
  507. Lewandowska D, ten Have S, Hodge K, Tillemans V, Lamond AI, Brown JW, (2013) "Plant SILAC: stable-isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics." PLoS One 8(8):e72207; PMID: 23977254; doi: 10.1371/journal.pone.0072207; GPMDB: 50.
  508. Zanivan S, Maione F, Hein MY, Hernández-Fernaud JR, Ostasiewicz P, Giraudo E, Mann M, (2013) "SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers." Mol Cell Proteomics 12(12):3599–611; PMID: 23979707; doi: 10.1074/mcp.M113.031344; GPMDB: 452.
  509. Lichtman JS, Marcobal A, Sonnenburg JL, Elias JE, (2013) "Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota." Mol Cell Proteomics 12(11):3310–8; PMID: 23982161; doi: 10.1074/mcp.M113.029967; GPMDB: 289.
  510. Ueda K, Tatsuguchi A, Saichi N, Toyama A, Tamura K, Furihata M, Takata R, Akamatsu S, Igarashi M, Nakayama M, Sato TA, Ogawa O, Fujioka T, Shuin T, Nakamura Y, Nakagawa H, (2013) "Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide." J Proteome Res 12(10):4497–506; PMID: 23991666; doi: 10.1021/pr400547s; GPMDB: 116.
  511. Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, Brewer HM, Camp DG 2nd, Smith RD, Braeckman BP, (2013) "Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans." Mol Cell Proteomics 12(12):3624–39; PMID: 24002365; doi: 10.1074/mcp.M113.027383; GPMDB: 64.
  512. Jones KA, Kim PD, Patel BB, Kelsen SG, Braverman A, Swinton DJ, Gafken PR, Jones LA, Lane WS, Neveu JM, Leung HC, Shaffer SA, Leszyk JD, Stanley BA, Fox TE, Stanley A, Hall MJ, Hampel H, South CD, de la Chapelle A, Burt RW, Jones DA, Kopelovich L, Yeung AT, (2013) "Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers." J Proteome Res 12(10):4351–65; PMID: 24004147; doi: 10.1021/pr400307u; GPMDB: 149.
  513. Salmon CR, Tomazela DM, Ruiz KG, Foster BL, Paes Leme AF, Sallum EA, Somerman MJ, Nociti FH Jr, (2013) "Proteomic analysis of human dental cementum and alveolar bone." J Proteomics 91:544–55; PMID: 24007660; doi: 10.1016/j.jprot.2013.08.016; GPMDB: 42.
  514. Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ, (2013) "New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants." Mol Cell Proteomics 12(12):3666–76; PMID: 24019145; doi: 10.1074/mcp.M113.030692; GPMDB: 8.
  515. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, Wang X, Xia Q, Duong DM, Street C, Cantero G, Cheng D, Jones DR, Wu Z, Li Y, Diner I, Heilman CJ, Rees HD, Wu H, Lin L, Szulwach KE, Gearing M, Mufson EJ, Bennett DA, Montine TJ, Seyfried NT, Wingo TS, Sun YE, Jin P, Hanfelt J, Willcock DM, Levey A, Lah JJ, Peng J, (2013) "U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease." Proc Natl Acad Sci U S A 110(41):16562–7; PMID: 24023061; doi: 10.1073/pnas.1310249110; GPMDB: 80.
  516. Kirkwood KJ, Ahmad Y, Larance M, Lamond AI, (2013) "Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics." Mol Cell Proteomics 12(12):3851–73; PMID: 24043423; doi: 10.1074/mcp.M113.032367; GPMDB: 120.
  517. Miranda HV, Antelmann H, Hepowit N, Chavarria NE, Krause DJ, Pritz JR, Bäsell K, Becher D, Humbard MA, Brocchieri L, Maupin-Furlow JA, (2014) "Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism." Mol Cell Proteomics 13(1):220–39; PMID: 24097257; doi: 10.1074/mcp.M113.029652; GPMDB: 35.
  518. Hartmann EM, Armengaud J, (2014) "Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1." Environ Microbiol 16(1):162–76; PMID: 24118890; doi: 10.1111/1462-2920.12264; GPMDB: 84.
  519. Puttamallesh VN, Sreenivasamurthy SK, Singh PK, Harsha HC, Ganjiwale A, Broor S, Pandey A, Narayana J, Prasad TS, (2013) "Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response." Clin Proteomics 10(1):14; PMID: 24124767; doi: 10.1186/1559-0275-10-14; GPMDB: 23.
  520. Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J, (2014) "Defining the protein-protein interaction network of the human hippo pathway." Mol Cell Proteomics 13(1):119–31; PMID: 24126142; doi: 10.1074/mcp.M113.030049; GPMDB: 66.
  521. Khan Z, Ford MJ, Cusanovich DA, Mitrano A, Pritchard JK, Gilad Y, (2013) "Primate transcript and protein expression levels evolve under compensatory selection pressures." Science 342(6162):1100–4; PMID: 24136357; doi: 10.1126/science.1242379; GPMDB: 173.
  522. Segura V, Medina-Aunon JA, Mora MI, Martínez-Bartolomé S, Abian J, Aloria K, Antúnez O, Arizmendi JM, Azkargorta M, Barceló-Batllori S, Beaskoetxea J, Bech-Serra JJ, Blanco F, Monteiro MB, Cáceres D, Canals F, Carrascal M, Casal JI, Clemente F, Colomé N, Dasilva N, Díaz P, Elortza F, Fernández-Puente P, Fuentes M, Gallardo O, Gharbi SI, Gil C, González-Tejedo C, Hernáez ML, Lombardía M, Lopez-Lucendo M, Marcilla M, Mato JM, Mendes M, Oliveira E, Orera I, Pascual-Montano A, Prieto G, Ruiz-Romero C, Sánchez del Pino MM, Tabas-Madrid D, Valero ML, Vialas V, Villanueva J, Albar JP, Corrales FJ, (2014) "Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome." J Proteome Res 13(1):158–72; PMID: 24138474; doi: 10.1021/pr400721r; GPMDB: 106.
  523. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ, (2014) "The one hour yeast proteome." Mol Cell Proteomics 13(1):339–47; PMID: 24143002; doi: 10.1074/mcp.M113.034769; GPMDB: 7.
  524. Gorbachev AY, Fisunov GY, Izraelson M, Evsyutina DV, Mazin PV, Alexeev DG, Pobeguts OV, Gorshkova TN, Kovalchuk SI, Kamashev DE, Govorun VM, (2013) "DNA repair in Mycoplasma gallisepticum." BMC Genomics 14:726; PMID: 24148612; doi: 10.1186/1471-2164-14-726; GPMDB: 1.
  525. McKnight H, Kelsey WP, Hooper DA, Hart TC, Mariotti A, (2014) "Proteomic analyses of human gingival and periodontal ligament fibroblasts." J Periodontol 85(6):810–8; PMID: 24171499; doi: 10.1902/jop.2013.130161; GPMDB: 8.
  526. Deeb SJ, Cox J, Schmidt-Supprian M, Mann M, (2014) "N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes." Mol Cell Proteomics 13(1):240–51; PMID: 24190977; doi: 10.1074/mcp.M113.033977; GPMDB: 40.
  527. English JA, Harauma A, Föcking M, Wynne K, Scaife C, Cagney G, Moriguchi T, Cotter DR, (2013) "Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus." Front Genet 4:208; PMID: 24194745; doi: 10.3389/fgene.2013.00208; GPMDB: 48.
  528. Fujita T, Asano Y, Ohtsuka J, Takada Y, Saito K, Ohki R, Fujii H, (2013) "Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)." Sci Rep 3:3171; PMID: 24201379; doi: 10.1038/srep03171; GPMDB: 30.
  529. Salek M, McGowan S, Trudgian DC, Dushek O, de Wet B, Efstathiou G, Acuto O, (2013) "Quantitative phosphoproteome analysis unveils LAT as a modulator of CD3ζ and ZAP-70 tyrosine phosphorylation." PLoS One 8(10):e77423; PMID: 24204825; doi: 10.1371/journal.pone.0077423; GPMDB: 162.
  530. Sandberg A, Branca RM, Lehtiö J, Forshed J, (2014) "Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference." J Proteomics 96:133–44; PMID: 24211767; doi: 10.1016/j.jprot.2013.10.035; GPMDB: 27.
  531. Caruthers NJ, Stemmer PM, Shin N, Dombkowski A, Caruso JA, Gill R, Rosenspire A, (2014) "Mercury alters B-cell protein phosphorylation profiles." J Proteome Res 13(2):496–505; PMID: 24224561; doi: 10.1021/pr400657k; GPMDB: 21.
  532. Sancak Y, Markhard AL, Kitami T, Kovács-Bogdán E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK, (2013) "EMRE is an essential component of the mitochondrial calcium uniporter complex." Science 342(6164):1379–82; PMID: 24231807; doi: 10.1126/science.1242993; GPMDB: 7.
  533. Thomae AW, Schade GO, Padeken J, Borath M, Vetter I, Kremmer E, Heun P, Imhof A, (2013) "A pair of centromeric proteins mediates reproductive isolation in Drosophila species." Dev Cell 27(4):412–24; PMID: 24239514; doi: 10.1016/j.devcel.2013.10.001; GPMDB: 51.
  534. Branca RM, Orre LM, Johansson HJ, Granholm V, Huss M, Pérez-Bercoff Å, Forshed J, Käll L, Lehtiö J, (2014) "HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics." Nat Methods 11(1):59–62; PMID: 24240322; doi: 10.1038/nmeth.2732; GPMDB: 2592.
  535. Schaab C, Oppermann FS, Klammer M, Pfeifer H, Tebbe A, Oellerich T, Krauter J, Levis M, Perl AE, Daub H, Steffen B, Godl K, Serve H, (2014) "Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib." Leukemia 28(3):716–9; PMID: 24247654; doi: 10.1038/leu.2013.347; GPMDB: 22.
  536. Drake JM, Graham NA, Lee JK, Stoyanova T, Faltermeier CM, Sud S, Titz B, Huang J, Pienta KJ, Graeber TG, Witte ON, (2013) "Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets." Proc Natl Acad Sci U S A 110(49):E4762–9; PMID: 24248375; doi: 10.1073/pnas.1319948110; GPMDB: 87.
  537. Chang C, Li L, Zhang C, Wu S, Guo K, Zi J, Chen Z, Jiang J, Ma J, Yu Q, Fan F, Qin P, Han M, Su N, Chen T, Wang K, Zhai L, Zhang T, Ying W, Xu Z, Zhang Y, Liu Y, Liu X, Zhong F, Shen H, Wang Q, Hou G, Zhao H, Li G, Liu S, Gu W, Wang G, Wang T, Zhang G, Qian X, Li N, He QY, Lin L, Yang P, Zhu Y, He F, Xu P, (2014) "Systematic analyses of the transcriptome, translatome, and proteome provide a global view and potential strategy for the C-HPP." J Proteome Res 13(1):38–49; PMID: 24256510; doi: 10.1021/pr4009018; GPMDB: 216.
  538. Dagley LF, White CA, Liao Y, Shi W, Smyth GK, Orian JM, Emili A, Purcell AW, (2014) "Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain." Proteomics 14(2-3):241–61; PMID: 24259518; doi: 10.1002/pmic.201300196; GPMDB: 56.
  539. Xing X, Zhang C, Li N, Zhai L, Zhu Y, Yang X, Xu P, (2014) "Qualitative and quantitative analysis of the adult Drosophila melanogaster proteome." Proteomics 14(2-3):286–90; PMID: 24259522; doi: 10.1002/pmic.201300121; GPMDB: 125.
  540. Lichti CF, Liu H, Shavkunov AS, Mostovenko E, Sulman EP, Ezhilarasan R, Wang Q, Kroes RA, Moskal JC, Fenyö D, Oksuz BA, Conrad CA, Lang FF, Berven FS, Végvári A, Rezeli M, Marko-Varga G, Hober S, Nilsson CL, (2014) "Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines." J Proteome Res 13(1):191–9; PMID: 24266786; doi: 10.1021/pr400786s; GPMDB: 66.
  541. Grolimund L, Aeby E, Hamelin R, Armand F, Chiappe D, Moniatte M, Lingner J, (2013) "A quantitative telomeric chromatin isolation protocol identifies different telomeric states." Nat Commun 4:2848; PMID: 24270157; doi: 10.1038/ncomms3848; GPMDB: 177.
  542. Martins-de-Souza D, Carvalho PC, Schmitt A, Junqueira M, Nogueira FC, Turck CW, Domont GB, (2014) "Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project." J Proteome Res 13(1):147–57; PMID: 24274931; doi: 10.1021/pr4009157; GPMDB: 80.
  543. Schlage P, Egli FE, Nanni P, Wang LW, Kizhakkedathu JN, Apte SS, auf dem Keller U, (2014) "Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome." Mol Cell Proteomics 13(2):580–93; PMID: 24281761; doi: 10.1074/mcp.M113.035139; GPMDB: 34.
  544. Aquino PF, Lima DB, de Saldanha da Gama Fischer J, Melani RD, Nogueira FC, Chalub SR, Soares ER, Barbosa VC, Domont GB, Carvalho PC, (2014) "Exploring the proteomic landscape of a gastric cancer biopsy with the shotgun imaging analyzer." J Proteome Res 13(1):314–20; PMID: 24283986; doi: 10.1021/pr400919k; GPMDB: 152.
  545. Nensa FM, Neumann MH, Schrötter A, Przyborski A, Mastalski T, Susdalzew S, Looβe C, Helling S, El Magraoui F, Erdmann R, Meyer HE, Uszkoreit J, Eisenacher M, Suh J, Guénette SY, Röhner N, Kögel D, Theiss C, Marcus K, Müller T, (2014) "Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain." Mol Cell Proteomics 13(2):475–88; PMID: 24284412; doi: 10.1074/mcp.M113.029280; GPMDB: 60.
  546. Jüschke C, Dohnal I, Pichler P, Harzer H, Swart R, Ammerer G, Mechtler K, Knoblich JA, (2013) "Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation." Genome Biol 14(11):r133; PMID: 24289286; doi: 10.1186/gb-2013-14-11-r133; GPMDB: 203.
  547. Wang C, Weerapana E, Blewett MM, Cravatt BF, (2014) "A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles." Nat Methods 11(1):79–85; PMID: 24292485; doi: 10.1038/nmeth.2759; GPMDB: 180.
  548. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL, (2014) "Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells." Science 343(6168):301–5; PMID: 24292625; doi: 10.1126/science.1244851; GPMDB: 90.
  549. Poulsen ET, Runager K, Risør MW, Dyrlund TF, Scavenius C, Karring H, Praetorius J, Vorum H, Otzen DE, Klintworth GK, Enghild JJ, (2014) "Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene." Proteomics Clin Appl 8(3-4):168–77; PMID: 24302499; doi: 10.1002/prca.201300058; GPMDB: 10.
  550. Macleod AK, Zang T, Riches Z, Henderson CJ, Wolf CR, Huang JT, (2014) "A targeted in vivo SILAC approach for quantification of drug metabolism enzymes: regulation by the constitutive androstane receptor." J Proteome Res 13(2):866–74; PMID: 24303842; doi: 10.1021/pr400897t; GPMDB: 44.
  551. Aguilera L, Toloza L, Giménez R, Odena A, Oliveira E, Aguilar J, Badia J, Baldomà L, (2014) "Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917." Proteomics 14(2-3):222–9; PMID: 24307187; doi: 10.1002/pmic.201300328; GPMDB: 44.
  552. de la Tour CB, Passot FM, Toueille M, Mirabella B, Guérin P, Blanchard L, Servant P, de Groot A, Sommer S, Armengaud J, (2013) "Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage." Proteomics 13(23-24):3457–69; PMID: 24307635; doi: 10.1002/pmic.201300249; GPMDB: 24.
  553. Carlson SM, Moore KE, Green EM, Martín GM, Gozani O, (2014) "Proteome-wide enrichment of proteins modified by lysine methylation." Nat Protoc 9(1):37–50; PMID: 24309976; doi: 10.1038/nprot.2013.164; GPMDB: 8.
  554. Fierro-Monti I, Echeverria P, Racle J, Hernandez C, Picard D, Quadroni M, (2013) "Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy." PLoS One 8(11):e80425; PMID: 24312219; doi: 10.1371/journal.pone.0080425; GPMDB: 293.
  555. Bland C, Bellanger L, Armengaud J, (2014) "Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides." J Proteome Res 13(2):668–80; PMID: 24313271; doi: 10.1021/pr400774z; GPMDB: 9.
  556. Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, Lin PY, Hong RW, Sung TY, Chen YJ, (2014) "Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography." Anal Chem 86(1):685–93; PMID: 24313913; doi: 10.1021/ac4031175; GPMDB: 27.
  557. Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C, Kim JS, Zhang Y, Wang X, Ivey RG, Zhao L, Min H, Lee Y, Yu MH, Yang EG, Lee C, Wang P, Rodriguez H, Kim Y, Carr SA, Paulovich AG, (2014) "Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins." Nat Methods 11(2):149–55; PMID: 24317253; doi: 10.1038/nmeth.2763; GPMDB: 221.
  558. Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC, (2014) "Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis." Mol Cell Proteomics 13(2):594–605; PMID: 24319056; doi: 10.1074/mcp.M113.032680; GPMDB: 9.
  559. Beck F, Geiger J, Gambaryan S, Veit J, Vaudel M, Nollau P, Kohlbacher O, Martens L, Walter U, Sickmann A, Zahedi RP, (2014) "Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways." Blood 123(5):e1–e10; PMID: 24324209; doi: 10.1182/blood-2013-07-512384; GPMDB: 19.
  560. Lv DW, Subburaj S, Cao M, Yan X, Li X, Appels R, Sun DF, Ma W, Yan YM, (2014) "Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress." Mol Cell Proteomics 13(2):632–52; PMID: 24335353; doi: 10.1074/mcp.M113.030171; GPMDB: 87.
  561. Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R, Gstaiger M, (2013) "Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1." Mol Syst Biol 9:713; PMID: 24366813; doi: 10.1002/msb.201304750; GPMDB: 96.
  562. Hoffmann C, Finsel I, Otto A, Pfaffinger G, Rothmeier E, Hecker M, Becher D, Hilbi H, (2014) "Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages." Cell Microbiol 16(7):1034–52; PMID: 24373249; doi: 10.1111/cmi.12256; GPMDB: 120.
  563. Robles MS, Cox J, Mann M, (2014) "In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism." PLoS Genet 10(1):e1004047; PMID: 24391516; doi: 10.1371/journal.pgen.1004047; GPMDB: 282.
  564. Faso C, Bischof S, Hehl AB, (2013) "The proteome landscape of Giardia lamblia encystation." PLoS One 8(12):e83207; PMID: 24391747; doi: 10.1371/journal.pone.0083207; GPMDB: 125.
  565. Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Couté Y, Rome S, (2014) "Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?" PLoS One 9(1):e84153; PMID: 24392111; doi: 10.1371/journal.pone.0084153; GPMDB: 6.
  566. Eichelbaum K, Krijgsveld J, (2014) "Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation." Mol Cell Proteomics 13(3):792–810; PMID: 24396086; doi: 10.1074/mcp.M113.030916; GPMDB: 48.
  567. Liu NQ, Stingl C, Look MP, Smid M, Braakman RB, De Marchi T, Sieuwerts AM, Span PN, Sweep FC, Linderholm BK, Mangia A, Paradiso A, Dirix LY, Van Laere SJ, Luider TM, Martens JW, Foekens JA, Umar A, (2014) "Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer." J Natl Cancer Inst 106(2):djt376; PMID: 24399849; doi: 10.1093/jnci/djt376; GPMDB: 126.
  568. Van Damme P, Støve SI, Glomnes N, Gevaert K, Arnesen T, (2014) "A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant." Mol Cell Proteomics 13(8):2031–41; PMID: 24408909; doi: 10.1074/mcp.M113.035402; GPMDB: 192.
  569. Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T, (2014) "In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome." Biochem Biophys Res Commun 445(4):694–701; PMID: 24434149; doi: 10.1016/j.bbrc.2013.12.070; GPMDB: 14.
  570. Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ, (2014) "Global analysis reveals the complexity of the human glomerular extracellular matrix." J Am Soc Nephrol 25(5):939–51; PMID: 24436468; doi: 10.1681/ASN.2013030233; GPMDB: 89.
  571. Byron A, Randles MJ, Humphries JD, Mironov A, Hamidi H, Harris S, Mathieson PW, Saleem MA, Satchell SC, Zent R, Humphries MJ, Lennon R, (2014) "Glomerular cell cross-talk influences composition and assembly of extracellular matrix." J Am Soc Nephrol 25(5):953–66; PMID: 24436469; doi: 10.1681/ASN.2013070795; GPMDB: 180.
  572. Licker V, Turck N, Kövari E, Burkhardt K, Côte M, Surini-Demiri M, Lobrinus JA, Sanchez JC, Burkhard PR, (2014) "Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson's disease pathogenesis." Proteomics 14(6):784–94; PMID: 24449343; doi: 10.1002/pmic.201300342; GPMDB: 48.
  573. Pesciotta EN, Sriswasdi S, Tang HY, Speicher DW, Mason PJ, Bessler M, (2014) "Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients." PLoS One 9(1):e85504; PMID: 24454878; doi: 10.1371/journal.pone.0085504; GPMDB: 346.
  574. Ferreira R, Vitorino R, Padrão AI, Espadas G, Mancuso FM, Moreira-Gonçalves D, Castro-Sousa G, Henriques-Coelho T, Oliveira PA, Barros AS, Duarte JA, Sabidó E, Amado F, (2014) "Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats." J Proteome Res 13(4):2045–55; PMID: 24467267; doi: 10.1021/pr4011926; GPMDB: 20.
  575. Barth J, Bergner SV, Jaeger D, Niehues A, Schulze S, Scholz M, Fufezan C, (2014) "The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry." Mol Cell Proteomics 13(4):969–89; PMID: 24482124; doi: 10.1074/mcp.M113.032771; GPMDB: 198.
  576. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M, (2014) "Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells." Nat Methods 11(3):319–24; PMID: 24487582; doi: 10.1038/nmeth.2834; GPMDB: 59.
  577. Weinert BT, Iesmantavicius V, Moustafa T, Schölz C, Wagner SA, Magnes C, Zechner R, Choudhary C, (2014) "Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae." Mol Syst Biol 10:716; PMID: 24489116; doi: 10.1002/msb.134766; GPMDB: 88.
  578. Kjellin H, Johansson H, Höög A, Lehtiö J, Jakobsson PJ, Kjellman M, (2014) "Differentially expressed proteins in malignant and benign adrenocortical tumors." PLoS One 9(2):e87951; PMID: 24498411; doi: 10.1371/journal.pone.0087951; GPMDB: 2.
  579. van den Biggelaar M, Hernández-Fernaud JR, van den Eshof BL, Neilson LJ, Meijer AB, Mertens K, Zanivan S, (2014) "Quantitative phosphoproteomics unveils temporal dynamics of thrombin signaling in human endothelial cells." Blood 123(12):e22–36; PMID: 24501219; doi: 10.1182/blood-2013-12-546036; GPMDB: 87.
  580. Eguren M, Álvarez-Fernández M, García F, López-Contreras AJ, Fujimitsu K, Yaguchi H, Luque-García JL, Fernández-Capetillo O, Muñoz J, Yamano H, Malumbres M, (2014) "A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens." Cell Rep 6(4):670–83; PMID: 24508461; doi: 10.1016/j.celrep.2014.01.017; GPMDB: 119.
  581. Rinschen MM, Wu X, König T, Pisitkun T, Hagmann H, Pahmeyer C, Lamkemeyer T, Kohli P, Schnell N, Schermer B, Dryer S, Brooks BR, Beltrao P, Krueger M, Brinkkoetter PT, Benzing T, (2014) "Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier." J Am Soc Nephrol 25(7):1509–22; PMID: 24511133; doi: 10.1681/ASN.2013070760; GPMDB: 34.
  582. Tao D, King JG, Tweedell RE, Jost PJ, Boddey JA, Dinglasan RR, (2014) "The acute transcriptomic and proteomic response of HC-04 hepatoma cells to hepatocyte growth factor and its implications for Plasmodium falciparum sporozoite invasion." Mol Cell Proteomics 13(5):1153–64; PMID: 24532842; doi: 10.1074/mcp.M113.035584; GPMDB: 51.
  583. Kustatscher G, Hégarat N, Wills KL, Furlan C, Bukowski-Wills JC, Hochegger H, Rappsilber J, (2014) "Proteomics of a fuzzy organelle: interphase chromatin." EMBO J 33(6):648–64; PMID: 24534090; doi: 10.1002/embj.201387614; GPMDB: 519.
  584. Bland C, Hartmann EM, Christie-Oleza JA, Fernandez B, Armengaud J, (2014) "N-Terminal-oriented proteogenomics of the marine bacterium roseobacter denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography." Mol Cell Proteomics 13(5):1369–81; PMID: 24536027; doi: 10.1074/mcp.O113.032854; GPMDB: 4.
  585. Zufferey A, Schvartz D, Nolli S, Reny JL, Sanchez JC, Fontana P, (2014) "Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules." J Proteomics 101:130–40; PMID: 24549006; doi: 10.1016/j.jprot.2014.02.008; GPMDB: 8.
  586. Depuydt G, Xie F, Petyuk VA, Smolders A, Brewer HM, Camp DG 2nd, Smith RD, Braeckman BP, (2014) "LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism." J Proteome Res 13(4):1938–56; PMID: 24555535; doi: 10.1021/pr401081b; GPMDB: 40.
  587. Lange PF, Huesgen PF, Nguyen K, Overall CM, (2014) "Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome." J Proteome Res 13(4):2028–44; PMID: 24555563; doi: 10.1021/pr401191w; GPMDB: 101.
  588. Plohnke N, Hamann A, Poetsch A, Osiewacz HD, Rögner M, Rexroth S, (2014) "Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms." Exp Gerontol 56:13–25; PMID: 24556281; doi: 10.1016/j.exger.2014.02.008; GPMDB: 36.
  589. Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa E, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D, (2014) "Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters." Nat Nanotechnol 9(3):193–7; PMID: 24561353; doi: 10.1038/nnano.2014.13; GPMDB: 1.
  590. Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC, Eppler E, Seiler R, Hansen LH, Castruita JA, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM Jr, Collins MJ, Gilbert MT, Rühli F, Cappellini E, (2014) "Pathogens and host immunity in the ancient human oral cavity." Nat Genet 46(4):336–44; PMID: 24562188; doi: 10.1038/ng.2906; GPMDB: 18.
  591. Sigdel TK, Nicora CD, Hsieh SC, Dai H, Qian WJ, Camp DG 2nd, Sarwal MM, (2014) "Optimization for peptide sample preparation for urine peptidomics." Clin Proteomics 11(1):7; PMID: 24568099; doi: 10.1186/1559-0275-11-7; GPMDB: 8.
  592. Husi H, Van Agtmael T, Mullen W, Bahlmann FH, Schanstra JP, Vlahou A, Delles C, Perco P, Mischak H, (2014) "Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease." Circ Cardiovasc Genet 7(2):161–70; PMID: 24573165; doi: 10.1161/CIRCGENETICS.113.000196; GPMDB: 14.
  593. Talamantes T, Ughy B, Domonkos I, Kis M, Gombos Z, Prokai L, (2014) "Label-free LC-MS/MS identification of phosphatidylglycerol-regulated proteins in Synechocystis sp. PCC6803." Proteomics 14(9):1053–7; PMID: 24574175; doi: 10.1002/pmic.201300372; GPMDB: 30.
  594. Benevento M, Di Palma S, Snijder J, Moyer CL, Reddy VS, Nemerow GR, Heck AJ, (2014) "Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics." J Biol Chem 289(16):11421–30; PMID: 24591515; doi: 10.1074/jbc.M113.537498; GPMDB: 5.
  595. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Couté Y, Rivkina E, Abergel C, Claverie JM, (2014) "Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology." Proc Natl Acad Sci U S A 111(11):4274–9; PMID: 24591590; doi: 10.1073/pnas.1320670111; GPMDB: 1.
  596. Ly T, Ahmad Y, Shlien A, Soroka D, Mills A, Emanuele MJ, Stratton MR, Lamond AI, (2014) "A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells." Elife 3:e01630; PMID: 24596151; GPMDB: 98.
  597. Bailey DJ, McDevitt MT, Westphall MS, Pagliarini DJ, Coon JJ, (2014) "Intelligent data acquisition blends targeted and discovery methods." J Proteome Res 13(4):2152–61; PMID: 24611583; doi: 10.1021/pr401278j; GPMDB: 37.
  598. Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS, (2014) "Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart." Aging Cell 13(3):529–39; PMID: 24612461; doi: 10.1111/acel.12203; GPMDB: 140.
  599. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO, (2014) "Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters." Elife 3:e01308; PMID: 24618895; doi: 10.7554/eLife.01308; GPMDB: 44.
  600. Peebo K, Valgepea K, Nahku R, Riis G, Oun M, Adamberg K, Vilu R, (2014) "Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli." Appl Microbiol Biotechnol 98(11):5131–43; PMID: 24633370; doi: 10.1007/s00253-014-5613-y; GPMDB: 10.
  601. Clark CG, Chong PM, McCorrister SJ, Simon P, Walker M, Lee DM, Nguy K, Cheng K, Gilmour MW, Westmacott GR, (2014) "The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts." BMC Microbiol 14:70; PMID: 24641125; doi: 10.1186/1471-2180-14-70; GPMDB: 163.
  602. Zhang Q, Matzke M, Schepmoes AA, Moore RJ, Webb-Robertson BJ, Hu Z, Monroe ME, Qian WJ, Smith RD, Morgan WF, (2014) "High and low doses of ionizing radiation induce different secretome profiles in a human skin model." PLoS One 9(3):e92332; PMID: 24642900; doi: 10.1371/journal.pone.0092332; GPMDB: 85.
  603. de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM, Dale TC, Korswagen HC, Bryja V, (2014) "Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway." Sci Signal 7(317):ra26; PMID: 24643799; doi: 10.1126/scisignal.2004985; GPMDB: 10.
  604. Sahasrabuddhe NA, Barbhuiya MA, Bhunia S, Subbannayya T, Gowda H, Advani J, Shrivastav BR, Navani S, Leal P, Roa JC, Chaerkady R, Gupta S, Chatterjee A, Pandey A, Tiwari PK, (2014) "Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics." Biochem Biophys Res Commun 446(4):863–9; PMID: 24657443; doi: 10.1016/j.bbrc.2014.03.017; GPMDB: 29.
  605. Schwarzer C, Siatkowski M, Pfeiffer MJ, Baeumer N, Drexler HC, Wang B, Fuellen G, Boiani M, (2014) "Maternal age effect on mouse oocytes: new biological insight from proteomic analysis." Reproduction 148(1):55–72; PMID: 24686459; doi: 10.1530/REP-14-0126; GPMDB: 3.
  606. Kume H, Muraoka S, Kuga T, Adachi J, Narumi R, Watanabe S, Kuwano M, Kodera Y, Matsushita K, Fukuoka J, Masuda T, Ishihama Y, Matsubara H, Nomura F, Tomonaga T, (2014) "Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis." Mol Cell Proteomics 13(6):1471–84; PMID: 24687888; doi: 10.1074/mcp.M113.037093; GPMDB: 6.
  607. Guo X, Trudgian DC, Lemoff A, Yadavalli S, Mirzaei H, (2014) "Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics." Mol Cell Proteomics 13(6):1573–84; PMID: 24696503; doi: 10.1074/mcp.M113.035170; GPMDB: 99.
  608. Hiemstra TF, Charles PD, Gracia T, Hester SS, Gatto L, Al-Lamki R, Floto RA, Su Y, Skepper JN, Lilley KS, Karet Frankl FE, (2014) "Human urinary exosomes as innate immune effectors." J Am Soc Nephrol 25(9):2017–27; PMID: 24700864; doi: 10.1681/ASN.2013101066; GPMDB: 489.
  609. Shevchuk O, Abidi N, Klawonn F, Wissing J, Nimtz M, Kugler C, Steinert M, Goldmann T, Jänsch L, (2014) "HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies." J Proteome Res 13(11):5230–9; PMID: 24702127; doi: 10.1021/pr500096a; GPMDB: 4.
  610. Tsai CM, Wu HY, Su TH, Kuo CW, Huang HW, Chung CH, Chen CS, Khoo KH, Chen YJ, Lin KI, (2014) "Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling." J Proteomics 103:241–53; PMID: 24704852; doi: 10.1016/j.jprot.2014.03.031; GPMDB: 15.
  611. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, Hogenhout SA, (2014) "Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner." PLoS Biol 12(4):e1001835; PMID: 24714165; doi: 10.1371/journal.pbio.1001835; GPMDB: 20.
  612. Bourdetsky D, Schmelzer CE, Admon A, (2014) "The nature and extent of contributions by defective ribosome products to the HLA peptidome." Proc Natl Acad Sci U S A 111(16):E1591–9; PMID: 24715725; doi: 10.1073/pnas.1321902111; GPMDB: 16.
  613. Azimi A, Pernemalm M, Frostvik Stolt M, Hansson J, Lehtiö J, Egyházi Brage S, Hertzman Johansson C, (2014) "Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance." Br J Cancer 110(10):2489–95; PMID: 24722184; doi: 10.1038/bjc.2014.169; GPMDB: 146.
  614. Svozil J, Hirsch-Hoffmann M, Dudler R, Gruissem W, Baerenfaller K, (2014) "Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A." Mol Cell Proteomics 13(6):1523–36; PMID: 24732913; doi: 10.1074/mcp.M113.036269; GPMDB: 128.
  615. Farrelly LA, Dicker P, Wynne K, English J, Cagney G, Föcking M, Cotter DR, (2014) "Adolescent Risperidone treatment alters protein expression associated with protein trafficking and cellular metabolism in the adult rat prefrontal cortex." Proteomics 14(12):1574–8; PMID: 24733778; doi: 10.1002/pmic.201300466; GPMDB: 30.
  616. Tran DT, Adhikari J, Fitzgerald MC, (2014) "StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions." Mol Cell Proteomics 13(7):1800–13; PMID: 24741112; doi: 10.1074/mcp.M113.034702; GPMDB: 27.
  617. Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, Oeljeklaus S, Warscheid B, (2014) "The membrane proteome of sensory cilia to the depth of olfactory receptors." Mol Cell Proteomics 13(7):1828–43; PMID: 24748648; doi: 10.1074/mcp.M113.035378; GPMDB: 91.
  618. Sansoni V, Casas-Delucchi CS, Rajan M, Schmidt A, Bönisch C, Thomae AW, Staege MS, Hake SB, Cardoso MC, Imhof A, (2014) "The histone variant H2A.Bbd is enriched at sites of DNA synthesis." Nucleic Acids Res 42(10):6405–20; PMID: 24753410; doi: 10.1093/nar/gku303; GPMDB: 96.
  619. Han D, Jin J, Woo J, Min H, Kim Y, (2014) "Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation." Proteomics 14(13-14):1604–9; PMID: 24753479; doi: 10.1002/pmic.201300495; GPMDB: 107.
  620. Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jiménez CR, (2014) "Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset." J Proteomics 106:191–204; PMID: 24769233; doi: 10.1016/j.jprot.2014.04.028; GPMDB: 36.
  621. Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C, (2014) "Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae." J Proteomics 106:140–50; PMID: 24769239; doi: 10.1016/j.jprot.2014.04.022; GPMDB: 48.
  622. Eravci M, Sommer C, Selbach M, (2014) "IPG strip-based peptide fractionation for shotgun proteomics." Methods Mol Biol 1156:67–77; PMID: 24791982; doi: 10.1007/978-1-4939-0685-7_5; GPMDB: 41.
  623. Güther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA, (2014) "High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics." J Proteome Res 13(6):2796–806; PMID: 24792668; doi: 10.1021/pr401209w; GPMDB: 154.
  624. Guyonnet B, Egge N, Cornwall GA, (2014) "Functional amyloids in the mouse sperm acrosome." Mol Cell Biol 34(14):2624–34; PMID: 24797071; doi: 10.1128/MCB.00073-14; GPMDB: 12.
  625. Tong J, Taylor P, Moran MF, (2014) "Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress." Mol Cell Proteomics 13(7):1644–58; PMID: 24797263; doi: 10.1074/mcp.M114.038596; GPMDB: 69.
  626. Giansanti P, Preisinger C, Huber KV, Gridling M, Superti-Furga G, Bennett KL, Heck AJ, (2014) "Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics." ACS Chem Biol 9(7):1490–8; PMID: 24804581; doi: 10.1021/cb500116c; GPMDB: 71.
  627. Rowshanravan B, Woodcock SA, Botella JA, Kiermayer C, Schneuwly S, Hughes DA, (2014) "RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis." J Cell Sci 127(Pt 13):2849–61; PMID: 24816559; doi: 10.1242/jcs.139329; GPMDB: 42.
  628. Bracht T, Hagemann S, Loscha M, Megger DA, Padden J, Eisenacher M, Kuhlmann K, Meyer HE, Baba HA, Sitek B, (2014) "Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration." J Proteome Res 13(6):2771–82; PMID: 24818710; doi: 10.1021/pr401188r; GPMDB: 68.
  629. Siljamäki P, Varmanen P, Kankainen M, Sukura A, Savijoki K, Nyman TA, (2014) "Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence." J Proteome Res 13(7):3249–61; PMID: 24840314; doi: 10.1021/pr500075j; GPMDB: 94.
  630. Barth TK, Schade GO, Schmidt A, Vetter I, Wirth M, Heun P, Thomae AW, Imhof A, (2014) "Identification of novel Drosophila centromere-associated proteins." Proteomics 14(19):2167–78; PMID: 24841622; doi: 10.1002/pmic.201400052; GPMDB: 72.
  631. Poulsen ET, Dyrlund TF, Runager K, Scavenius C, Krogager TP, Højrup P, Thøgersen IB, Sanggaard KW, Vorum H, Hjortdal J, Enghild JJ, (2014) "Proteomics of Fuchs' endothelial corneal dystrophy support that the extracellular matrix of Descemet's membrane is disordered." J Proteome Res 13(11):4659–67; PMID: 24846694; doi: 10.1021/pr500252r; GPMDB: 66.
  632. Leong HS, Dawson K, Wirth C, Li Y, Connolly Y, Smith DL, Wilkinson CR, Miller CJ, (2014) "A global non-coding RNA system modulates fission yeast protein levels in response to stress." Nat Commun 5:3947; PMID: 24853205; doi: 10.1038/ncomms4947; GPMDB: 60.
  633. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A, (2014) "A draft map of the human proteome." Nature 509(7502):575–81; PMID: 24870542; doi: 10.1038/nature13302; GPMDB: 88.
  634. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B, (2014) "Mass-spectrometry-based draft of the human proteome." Nature 509(7502):582–7; PMID: 24870543; doi: 10.1038/nature13319; GPMDB: 1257.
  635. van der Post S, Hansson GC, (2014) "Membrane protein profiling of human colon reveals distinct regional differences." Mol Cell Proteomics 13(9):2277–87; PMID: 24889196; doi: 10.1074/mcp.M114.040204; GPMDB: 16.
  636. Kim MS, Zhong Y, Yachida S, Rajeshkumar NV, Abel ML, Marimuthu A, Mudgal K, Hruban RH, Poling JS, Tyner JW, Maitra A, Iacobuzio-Donahue CA, Pandey A, (2014) "Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics." Mol Cell Proteomics 13(11):2803–11; PMID: 24895378; doi: 10.1074/mcp.M114.038547; GPMDB: 24.
  637. Siljamäki P, Varmanen P, Kankainen M, Pyörälä S, Karonen T, Iivanainen A, Auvinen P, Paulin L, Laine PK, Taponen S, Simojoki H, Sukura A, Nyman TA, Savijoki K, (2014) "Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins." Proteomics 14(16):1890–4; PMID: 24909406; doi: 10.1002/pmic.201300275; GPMDB: 3.
  638. Köcher T, Pichler P, De Pra M, Rieux L, Swart R, Mechtler K, (2014) "Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up." Proteomics 14(17-18):1999–2007; PMID: 24920484; doi: 10.1002/pmic.201300418; GPMDB: 39.
  639. Corradini E, Vallur R, Raaijmakers LM, Feil S, Feil R, Heck AJ, Scholten A, (2014) "Alterations in the cerebellar (Phospho)proteome of a cyclic guanosine monophosphate (cGMP)-dependent protein kinase knockout mouse." Mol Cell Proteomics 13(8):2004–16; PMID: 24925903; doi: 10.1074/mcp.M113.035154; GPMDB: 6.
  640. Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, Fufezan C, Finazzi G, Hippler M, (2014) "Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation." Plant Physiol 165(4):1604–1617; PMID: 24948831; doi: 10.1104/pp.114.240648; GPMDB: 79.
  641. Cuello F, Shankar-Hari M, Mayr U, Yin X, Marshall M, Suna G, Willeit P, Langley SR, Jayawardhana T, Zeller T, Terblanche M, Shah AM, Mayr M, (2014) "Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis." Mol Cell Proteomics 13(10):2545–57; PMID: 24958171; doi: 10.1074/mcp.M114.039446; GPMDB: 384.
  642. de Graaf EL, Kaplon J, Zhou H, Heck AJ, Peeper DS, Altelaar AF, (2014) "Phosphoproteome dynamics in onset and maintenance of oncogene-induced senescence." Mol Cell Proteomics 13(8):2089–100; PMID: 24961811; doi: 10.1074/mcp.M113.035436; GPMDB: 223.
  643. Iesmantavicius V, Weinert BT, Choudhary C, (2014) "Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells." Mol Cell Proteomics 13(8):1979–92; PMID: 24961812; doi: 10.1074/mcp.O113.035683; GPMDB: 71.
  644. Jefferson M, Donaszi-Ivanov A, Pollen S, Dalmay T, Saalbach G, Powell PP, (2014) "Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex." J Virol 88(18):10340–53; PMID: 24965446; doi: 10.1128/JVI.00984-14; GPMDB: 30.
  645. Milbradt J, Kraut A, Hutterer C, Sonntag E, Schmeiser C, Ferro M, Wagner S, Lenac T, Claus C, Pinkert S, Hamilton ST, Rawlinson WD, Sticht H, Couté Y, Marschall M, (2014) "Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus." Mol Cell Proteomics 13(8):2132–46; PMID: 24969177; doi: 10.1074/mcp.M113.035782; GPMDB: 24.
  646. Fischer MG, Kelly I, Foster LJ, Suttle CA, (2014) "The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair." Virology 466-467:82–94; PMID: 24973308; doi: 10.1016/j.virol.2014.05.029; GPMDB: 10.
  647. Chiva C, Ortega M, Sabidó E, (2014) "Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation." J Proteome Res 13(9):3979–86; PMID: 24986539; doi: 10.1021/pr500294d; GPMDB: 89.
  648. Uechi G, Sun Z, Schreiber EM, Halfter W, Balasubramani M, (2014) "Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules." J Proteome Res; PMID: 24990792; doi: 10.1021/pr5002065; GPMDB: 315.
  649. Zhang H, Wu P, Chen F, Hao Y, Lao Y, Ren L, Sun L, Sun W, Wei H, Chan DW, Jiang Y, He F, (2014) "SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells." Proteomics 14(17-18):1977–86; PMID: 24995952; doi: 10.1002/pmic.201300539; GPMDB: 30.
  650. Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R, Yates JR 3rd, Klemke R, Gonias SL, Coppinger JA, (2015) "Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation." Mol Cell Proteomics 14(1):1–14; PMID: 24997994; doi: 10.1074/mcp.M114.037697; GPMDB: 51.
  651. Chopra T, Hamelin R, Armand F, Chiappe D, Moniatte M, McKinney JD, (2014) "Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis." Mol Cell Proteomics 13(11):3014–28; PMID: 24997995; doi: 10.1074/mcp.M113.034082; GPMDB: 28.
  652. Öhman T, Söderholm S, Hintsanen P, Välimäki E, Lietzén N, MacKintosh C, Aittokallio T, Matikainen S, Nyman TA, (2014) "Phosphoproteomics combined with quantitative 14-3-3-affinity capture identifies SIRT1 and RAI as novel regulators of cytosolic double-stranded RNA recognition pathway." Mol Cell Proteomics 13(10):2604–17; PMID: 24997996; doi: 10.1074/mcp.M114.038968; GPMDB: 44.
  653. Sangar V, Funk CC, Kusebauch U, Campbell DS, Moritz RL, Price ND, (2014) "Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells." Mol Cell Proteomics 13(10):2618–31; PMID: 24997998; doi: 10.1074/mcp.M114.040428; GPMDB: 8.
  654. Savijoki K, Iivanainen A, Siljamäki P, Laine PK, Paulin L, Karonen T, Pyörälä S, Kankainen M, Nyman TA, Salomäki T, Koskinen P, Holm L, Simojoki H, Taponen S, Sukura A, Kalkkinen N, Auvinen P, Varmanen P, (2014) "Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains." J Proteome Res; PMID: 25014494; doi: 10.1021/pr500322d; GPMDB: 8.
  655. de Keijzer J, de Haas PE, de Ru AH, van Veelen PA, van Soolingen D, (2014) "Disclosure of selective advantages in the "modern" sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics." Mol Cell Proteomics 13(10):2632–45; PMID: 25022876; doi: 10.1074/mcp.M114.038380; GPMDB: 152.
  656. Engel E, Viargues P, Mortier M, Taillebourg E, Couté Y, Thevenon D, Fauvarque MO, (2014) "Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome." Cell Commun Signal 12:41; PMID: 25027767; doi: 10.1186/PREACCEPT-1588328929121802; GPMDB: 2.
  657. Padden J, Megger DA, Bracht T, Reis H, Ahrens M, Kohl M, Eisenacher M, Schlaak JF, Canbay AE, Weber F, Hoffmann AC, Kuhlmann K, Meyer HE, Baba HA, Sitek B, (2014) "Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma." Mol Cell Proteomics 13(10):2661–72; PMID: 25034945; doi: 10.1074/mcp.M113.034942; GPMDB: 16.
  658. Naba A, Clauser KR, Whittaker CA, Carr SA, Tanabe KK, Hynes RO, (2014) "Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver." BMC Cancer 14:518; PMID: 25037231; doi: 10.1186/1471-2407-14-518; GPMDB: 176.
  659. Guldbrandsen A, Vethe H, Farag Y, Oveland E, Garberg H, Berle M, Myhr KM, Opsahl JA, Barsnes H, Berven FS, (2014) "In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR)." Mol Cell Proteomics 13(11):3152–63; PMID: 25038066; doi: 10.1074/mcp.M114.038554; GPMDB: 88.
  660. Chen YJ, Ching WC, Chen JS, Lee TY, Lu CT, Chou HC, Lin PY, Khoo KH, Chen JH, Chen YJ, (2014) "Decoding the s-nitrosoproteomic atlas in individualized human colorectal cancer tissues using a label-free quantitation strategy." J Proteome Res 13(11):4942–58; PMID: 25040305; doi: 10.1021/pr5002675; GPMDB: 54.
  661. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJ, Carr SA, Tabb DL, Coffey RJ, Slebos RJ, Liebler DC, NCI CPTAC., (2014) "Proteogenomic characterization of human colon and rectal cancer." Nature 513(7518):382–7; PMID: 25043054; doi: 10.1038/nature13438; GPMDB: 1381.
  662. An E, Narayanan M, Manes NP, Nita-Lazar A, (2014) "Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling." Mol Cell Proteomics 13(10):2687–704; PMID: 25044017; doi: 10.1074/mcp.M113.034371; GPMDB: 73.
  663. Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukhovich I, Li KW, del Sol A, Smit AB, Spijker S, van Kesteren RE, (2014) "Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline." Mol Cell Proteomics 13(11):2975–85; PMID: 25044018; doi: 10.1074/mcp.M113.032086; GPMDB: 8.
  664. Heo S, Spoerk S, Birner-Gruenberger R, Lubec G, (2014) "Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro." Proteomics 14(17-18):2084–8; PMID: 25044505; doi: 10.1002/pmic.201400077; GPMDB: 60.
  665. Aasebø E, Vaudel M, Mjaavatten O, Gausdal G, Van der Burgh A, Gjertsen BT, Døskeland SO, Bruserud O, Berven FS, Selheim F, (2014) "Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines." Proteomics 14(17-18):1971–6; PMID: 25044641; doi: 10.1002/pmic.201300448; GPMDB: 186.
  666. Soleilhavoup C, Tsikis G, Labas V, Harichaux G, Kohnke PL, Dacheux JL, Guérin Y, Gatti JL, de Graaf SP, Druart X, (2014) "Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa." J Proteomics 109:245–60; PMID: 25053255; doi: 10.1016/j.jprot.2014.07.007; GPMDB: 114.
  667. Smits AH, Lindeboom RG, Perino M, van Heeringen SJ, Veenstra GJ, Vermeulen M, (2014) "Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs." Nucleic Acids Res 42(15):9880–91; PMID: 25056316; doi: 10.1093/nar/gku661; GPMDB: 62.
  668. Tao D, Ubaida-Mohien C, Mathias DK, King JG, Pastrana-Mena R, Tripathi A, Goldowitz I, Graham DR, Moss E, Marti M, Dinglasan RR, (2014) "Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology." Mol Cell Proteomics 13(10):2705–24; PMID: 25056935; doi: 10.1074/mcp.M114.040956; GPMDB: 10.
  669. Klaubauf S, Narang HM, Post H, Zhou M, Brunner K, Mach-Aigner AR, Mach RL, Heck AJ, Altelaar AF, de Vries RP, (2014) "Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi." Fungal Genet Biol 72:73–81; PMID: 25064064; doi: 10.1016/j.fgb.2014.07.007; GPMDB: 40.
  670. Putker M, Vos HR, van Dorenmalen K, de Ruiter H, Duran AG, Snel B, Burgering BM, Vermeulen M, Dansen TB, (2015) "Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling." Antioxid Redox Signal 22(1):15–28; PMID: 25069953; doi: 10.1089/ars.2014.6056; GPMDB: 41.
  671. Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP, Amon A, Torres EM, (2014) "Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast." Elife 3:e03023; PMID: 25073701; doi: 10.7554/eLife.03023; GPMDB: 10.
  672. Yang W, Ramachandran A, You S, Jeong H, Morley S, Mulone MD, Logvinenko T, Kim J, Hwang D, Freeman MR, Adam RM, (2014) "Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells." Cell Commun Signal 12:44; PMID: 25080971; doi: 10.1186/s12964-014-0044-z; GPMDB: 30.
  673. Labas V, Grasseau I, Cahier K, Gargaros A, Harichaux G, Teixeira-Gomes AP, Alves S, Bourin M, Gérard N, Blesbois E, (2015) "Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen." J Proteomics 112:313–35; PMID: 25086240; doi: 10.1016/j.jprot.2014.07.024; GPMDB: 44.
  674. Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG, Stevanović S, Stickel JS, (2015) "Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy." Leukemia 29(3):647–59; PMID: 25092142; doi: 10.1038/leu.2014.233; GPMDB: 73.
  675. Alqahtani A, Heesom K, Bramson JL, Curiel D, Ugai H, Matthews DA, (2014) "Analysis of purified wild type and mutant adenovirus particles by SILAC based quantitative proteomics." J Gen Virol 95(Pt 11):2504–11; PMID: 25096814; doi: 10.1099/vir.0.068221-0; GPMDB: 22.
  676. Jin L, Huo Y, Zheng Z, Jiang X, Deng H, Chen Y, Lian Q, Ge R, Deng H, (2014) "Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines." Mol Cell Proteomics 13(11):3138–51; PMID: 25096996; doi: 10.1074/mcp.M113.033217; GPMDB: 11.
  677. Zhang B, Pirmoradian M, Chernobrovkin A, Zubarev RA, (2014) "DeMix workflow for efficient identification of cofragmented peptides in high resolution data-dependent tandem mass spectrometry." Mol Cell Proteomics 13(11):3211–23; PMID: 25100859; doi: 10.1074/mcp.O114.038877; GPMDB: 7.
  678. Wallin MT, Oh U, Nyalwidhe J, Semmes J, Kislinger T, Coffman P, Kurtzke JF, Jacobson S, (2015) "Serum proteomic analysis of a pre-symptomatic multiple sclerosis cohort." Eur J Neurol 22(3):591–9; PMID: 25104396; doi: 10.1111/ene.12534; GPMDB: 104.
  679. Perdomo D, Aït-Ammar N, Syan S, Sachse M, Jhingan GD, Guillén N, (2015) "Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica." J Proteomics 112:125–40; PMID: 25109464; doi: 10.1016/j.jprot.2014.07.034; GPMDB: 3.
  680. Talman AM, Prieto JH, Marques S, Ubaida-Mohien C, Lawniczak M, Wass MN, Xu T, Frank R, Ecker A, Stanway RS, Krishna S, Sternberg MJ, Christophides GK, Graham DR, Dinglasan RR, Yates JR 3rd, Sinden RE, (2014) "Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility." Malar J 13:315; PMID: 25124718; doi: 10.1186/1475-2875-13-315; GPMDB: 3.
  681. Carvalho AS, Ribeiro H, Voabil P, Penque D, Jensen ON, Molina H, Matthiesen R, (2014) "Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress." Mol Cell Proteomics 13(12):3294–307; PMID: 25128556; doi: 10.1074/mcp.M113.034363; GPMDB: 18.
  682. Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, Brinkmann L, Bernhardt J, Salazar MG, Sun Z, Shteynberg D, Kusebauch U, Moritz RL, Wollscheid B, Lalk M, Völker U, Schmidt F, (2014) "Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells." Front Microbiol 5:392; PMID: 25136337; doi: 10.3389/fmicb.2014.00392; GPMDB: 71.
  683. Worboys JD, Sinclair J, Yuan Y, Jørgensen C, (2014) "Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome." Nat Methods 11(10):1041–4; PMID: 25152083; doi: 10.1038/nmeth.3072; GPMDB: 12.
  684. Moczulska KE, Pichler P, Schutzbier M, Schleiffer A, Rumpel S, Mechtler K, (2014) "Deep and precise quantification of the mouse synaptosomal proteome reveals substantial remodeling during postnatal maturation." J Proteome Res 13(10):4310–24; PMID: 25157418; doi: 10.1021/pr500456t; GPMDB: 100.
  685. Han D, Jin J, Yu J, Kim K, Kim Y, (2015) "Integrated approach using multistep enzyme digestion, TiO2 enrichment, and database search for in-depth phosphoproteomic profiling." Proteomics 15(2-3):618–23; PMID: 25159016; doi: 10.1002/pmic.201400102; GPMDB: 36.
  686. Sharma K, D'Souza RC, Tyanova S, Schaab C, Wiśniewski JR, Cox J, Mann M, (2014) "Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling." Cell Rep 8(5):1583–94; PMID: 25159151; doi: 10.1016/j.celrep.2014.07.036; GPMDB: 276.
  687. Bennike T, Ayturk U, Haslauer CM, Froehlich JW, Proffen BL, Barnaby O, Birkelund S, Murray MM, Warman ML, Stensballe A, Steen H, (2014) "A normative study of the synovial fluid proteome from healthy porcine knee joints." J Proteome Res 13(10):4377–87; PMID: 25160569; doi: 10.1021/pr500587x; GPMDB: 57.
  688. Reinartz M, Raupach A, Kaisers W, Gödecke A, (2014) "AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes." J Proteome Res 13(10):4232–45; PMID: 25162660; doi: 10.1021/pr500131g; GPMDB: 8.
  689. Dyrlund TF, Kirkegaard K, Poulsen ET, Sanggaard KW, Hindkjær JJ, Kjems J, Enghild JJ, Ingerslev HJ, (2014) "Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis." Hum Reprod 29(11):2421–30; PMID: 25164020; doi: 10.1093/humrep/deu220; GPMDB: 63.
  690. Yang J, Gupta V, Carroll KS, Liebler DC, (2014) "Site-specific mapping and quantification of protein S-sulphenylation in cells." Nat Commun 5:4776; PMID: 25175731; doi: 10.1038/ncomms5776; GPMDB: 24.
  691. Liao BM, Raddatz K, Zhong L, Parker BL, Raftery MJ, Schmitz-Peiffer C, (2014) "Proteomic analysis of livers from fat-fed mice deficient in either PKCδ or PKCε identifies Htatip2 as a regulator of lipid metabolism." Proteomics 14(21-22):2578–87; PMID: 25175814; doi: 10.1002/pmic.201400202; GPMDB: 222.
  692. Van den Bossche A, Ceyssens PJ, De Smet J, Hendrix H, Bellon H, Leimer N, Wagemans J, Delattre AS, Cenens W, Aertsen A, Landuyt B, Minakhin L, Severinov K, Noben JP, Lavigne R, (2014) "Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa." J Proteome Res 13(10):4446–56; PMID: 25185497; doi: 10.1021/pr500796n; GPMDB: 600.
  693. Hornburg D, Drepper C, Butter F, Meissner F, Sendtner M, Mann M, (2014) "Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics." Mol Cell Proteomics 13(12):3410–20; PMID: 25193168; doi: 10.1074/mcp.M113.037291; GPMDB: 29.
  694. Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J, (2014) "JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy." Mol Cell Proteomics 13(12):3663–73; PMID: 25202125; doi: 10.1074/mcp.O114.039586; GPMDB: 13.
  695. Zeiler M, Moser M, Mann M, (2014) "Copy number analysis of the murine platelet proteome spanning the complete abundance range." Mol Cell Proteomics 13(12):3435–45; PMID: 25205226; doi: 10.1074/mcp.M114.038513; GPMDB: 9.
  696. Chocu S, Evrard B, Lavigne R, Rolland AD, Aubry F, Jégou B, Chalmel F, Pineau C, (2014) "Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells." Biol Reprod 91(5):123; PMID: 25210130; doi: 10.1095/biolreprod.114.122416; GPMDB: 6.
  697. Frenk S, Oxley D, Houseley J, (2014) "The nuclear exosome is active and important during budding yeast meiosis." PLoS One 9(9):e107648; PMID: 25210768; doi: 10.1371/journal.pone.0107648; GPMDB: 12.
  698. Laouami S, Clair G, Armengaud J, Duport C, (2014) "Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579." PLoS One 9(9):e107354; PMID: 25216269; doi: 10.1371/journal.pone.0107354; GPMDB: 12.
  699. Shin J, Kim HJ, Kim G, Song M, Woo SJ, Lee ST, Kim H, Lee C, (2014) "Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics." J Proteome Res 13(11):4919–31; PMID: 25216327; doi: 10.1021/pr500790f; GPMDB: 34.
  700. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC, (2014) "Uncovering global SUMOylation signaling networks in a site-specific manner." Nat Struct Mol Biol 21(10):927–36; PMID: 25218447; doi: 10.1038/nsmb.2890; GPMDB: 32.
  701. Wiese H, Gelis L, Wiese S, Reichenbach C, Jovancevic N, Osterloh M, Meyer HE, Neuhaus EM, Hatt HH, Radziwill G, Warscheid B, (2015) "Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells." Biochim Biophys Acta 1854(6):632–40; PMID: 25219547; doi: 10.1016/j.bbapap.2014.09.002; GPMDB: 191.
  702. Negroni L, Taouji S, Arma D, Pallares-Lupon N, Leong K, Beausang LA, Latterich M, Bossé R, Balabaud C, Schmitter JM, Bioulac-Sage P, Zucman-Rossi J, Rosenbaum J, Chevet E, (2014) "Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers." Mol Cell Proteomics 13(12):3473–83; PMID: 25225353; doi: 10.1074/mcp.M114.043174; GPMDB: 8.
  703. Wiśniewski JR, Hein MY, Cox J, Mann M, (2014) "A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards." Mol Cell Proteomics 13(12):3497–506; PMID: 25225357; doi: 10.1074/mcp.M113.037309; GPMDB: 69.
  704. Adachi J, Kishida M, Watanabe S, Hashimoto Y, Fukamizu K, Tomonaga T, (2014) "Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe." J Proteome Res 13(12):5461–70; PMID: 25230287; doi: 10.1021/pr500845u; GPMDB: 37.
  705. Alli Shaik A, Wee S, Li RH, Li Z, Carney TJ, Mathavan S, Gunaratne J, (2014) "Functional mapping of the zebrafish early embryo proteome and transcriptome." J Proteome Res 13(12):5536–50; PMID: 25230361; doi: 10.1021/pr5005136; GPMDB: 24.
  706. Tape CJ, Worboys JD, Sinclair J, Gourlay R, Vogt J, McMahon KM, Trost M, Lauffenburger DA, Lamont DJ, Jørgensen C, (2014) "Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC." Anal Chem 86(20):10296–302; PMID: 25233145; doi: 10.1021/ac5025842; GPMDB: 103.
  707. Groessl M, Slany A, Bileck A, Gloessmann K, Kreutz D, Jaeger W, Pfeiler G, Gerner C, (2014) "Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts." J Proteome Res 13(11):4773–82; PMID: 25238572; doi: 10.1021/pr500727h; GPMDB: 281.
  708. Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W, (2014) "A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803." Mol Cell Proteomics 13(12):3519–32; PMID: 25239498; doi: 10.1074/mcp.M113.035675; GPMDB: 21.
  709. Schwenk J, Baehrens D, Haupt A, Bildl W, Boudkkazi S, Roeper J, Fakler B, Schulte U, (2014) "Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain." Neuron 84(1):41–54; PMID: 25242221; doi: 10.1016/j.neuron.2014.08.044; GPMDB: 95.
  710. Wu X, Renuse S, Sahasrabuddhe NA, Zahari MS, Chaerkady R, Kim MS, Nirujogi RS, Mohseni M, Kumar P, Raju R, Zhong J, Yang J, Neiswinger J, Jeong JS, Newman R, Powers MA, Somani BL, Gabrielson E, Sukumar S, Stearns V, Qian J, Zhu H, Vogelstein B, Park BH, Pandey A, (2014) "Activation of diverse signalling pathways by oncogenic PIK3CA mutations." Nat Commun 5:4961; PMID: 25247763; doi: 10.1038/ncomms5961; GPMDB: 91.
  711. van der Lelij P, Stocsits RR, Ladurner R, Petzold G, Kreidl E, Koch B, Schmitz J, Neumann B, Ellenberg J, Peters JM, (2014) "SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs." EMBO J 33(22):2643–58; PMID: 25257309; doi: 10.15252/embj.201488202; GPMDB: 2.
  712. Cortes LK, Vainauskas S, Dai N, McClung CM, Shah M, Benner JS, Corrêa IR Jr, VerBerkmoes NC, Taron CH, (2014) "Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment." Proteomics 14(21-22):2471–84; PMID: 25262930; doi: 10.1002/pmic.201400148; GPMDB: 36.
  713. Zhong J, Martinez M, Sengupta S, Lee A, Wu X, Chaerkady R, Chatterjee A, O'Meally RN, Cole RN, Pandey A, Zachara NE, (2015) "Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway." Proteomics 15(2-3):591–607; PMID: 25263469; doi: 10.1002/pmic.201400339; GPMDB: 6.
  714. Navarro MN, Goebel J, Hukelmann JL, Cantrell DA, (2014) "Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks." Mol Cell Proteomics 13(12):3544–57; PMID: 25266776; doi: 10.1074/mcp.M113.037242; GPMDB: 274.
  715. Zhang G, Bowling H, Hom N, Kirshenbaum K, Klann E, Chao MV, Neubert TA, (2014) "In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor." J Proteome Res 13(12):5707–14; PMID: 25271054; doi: 10.1021/pr5006982; GPMDB: 8.
  716. Shender VO, Pavlyukov MS, Ziganshin RH, Arapidi GP, Kovalchuk SI, Anikanov NA, Altukhov IA, Alexeev DG, Butenko IO, Shavarda AL, Khomyakova EB, Evtushenko E, Ashrafyan LA, Antonova IB, Kuznetcov IN, Gorbachev AY, Shakhparonov MI, Govorun VM, (2014) "Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication." Mol Cell Proteomics 13(12):3558–71; PMID: 25271300; doi: 10.1074/mcp.M114.041194; GPMDB: 17.
  717. Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF, Eberhard D, Martinez Molina D, Jafari R, Dovega RB, Klaeger S, Kuster B, Nordlund P, Bantscheff M, Drewes G, (2014) "Tracking cancer drugs in living cells by thermal profiling of the proteome." Science 346(6205):1255784; PMID: 25278616; doi: 10.1126/science.1255784; GPMDB: 403.
  718. Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer KH, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M, (2014) "Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach." J Biotechnol 192 Pt A:204–14; PMID: 25281541; doi: 10.1016/j.jbiotec.2014.08.028; GPMDB: 120.
  719. Bhargava M, Becker TL, Viken KJ, Jagtap PD, Dey S, Steinbach MS, Wu B, Kumar V, Bitterman PB, Ingbar DH, Wendt CH, (2014) "Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors." PLoS One 9(10):e109713; PMID: 25290099; doi: 10.1371/journal.pone.0109713; GPMDB: 15.
  720. Qi L, Liu Z, Wang J, Cui Y, Guo Y, Zhou T, Zhou Z, Guo X, Xue Y, Sha J, (2014) "Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis." Mol Cell Proteomics 13(12):3626–38; PMID: 25293948; doi: 10.1074/mcp.M114.039073; GPMDB: 59.
  721. Tan H, Wu Z, Wang H, Bai B, Li Y, Wang X, Zhai B, Beach TG, Peng J, (2015) "Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome." Proteomics 15(2-3):500–7; PMID: 25307156; doi: 10.1002/pmic.201400171; GPMDB: 3.
  722. Carney KE, Milanese M, van Nierop P, Li KW, Oliet SH, Smit AB, Bonanno G, Verheijen MH, (2014) "Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins." J Proteome Res 13(12):5918–27; PMID: 25308431; doi: 10.1021/pr500829z; GPMDB: 42.
  723. Yin X, Sakata K, Komatsu S, (2014) "Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress." J Proteome Res 13(12):5618–34; PMID: 25316100; doi: 10.1021/pr500621c; GPMDB: 54.
  724. Gopinath RK, You ST, Chien KY, Swamy KB, Yu JS, Schuyler SC, Leu JY, (2014) "The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity." Genome Biol Evol 6(10):2851–65; PMID: 25316598; doi: 10.1093/gbe/evu226; GPMDB: 2.
  725. Herbst FA, Søndergaard MT, Kjeldal H, Stensballe A, Nielsen PH, Dueholm MS, (2015) "Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1." J Proteome Res 14(1):72–81; PMID: 25317949; doi: 10.1021/pr500938x; GPMDB: 282.
  726. Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, Nanjappa V, Radhakrishnan A, Raja R, Pinto SM, Srinivasan A, Prasad TS, Srikumar K, Gowda H, Santosh V, Sidransky D, Califano JA, Pandey A, Chatterjee A, (2015) "Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma." Proteomics 15(2-3):383–93; PMID: 25327479; doi: 10.1002/pmic.201400338; GPMDB: 1.
  727. Helgeland E, Breivik LE, Vaudel M, Svendsen ØS, Garberg H, Nordrehaug JE, Berven FS, Jonassen AK, (2014) "Exploring the human plasma proteome for humoral mediators of remote ischemic preconditioning--a word of caution." PLoS One 9(10):e109279; PMID: 25333471; doi: 10.1371/journal.pone.0109279; GPMDB: 146.
  728. Batth TS, Francavilla C, Olsen JV, (2014) "Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics." J Proteome Res 13(12):6176–86; PMID: 25338131; doi: 10.1021/pr500893m; GPMDB: 11.
  729. Fang NN, Chan GT, Zhu M, Comyn SA, Persaud A, Deshaies RJ, Rotin D, Gsponer J, Mayor T, (2014) "Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress." Nat Cell Biol 16(12):1227–37; PMID: 25344756; doi: 10.1038/ncb3054; GPMDB: 9.
  730. Renuse S, Madugundu AK, Kumar P, Nair BG, Gowda H, Prasad TS, Pandey A, (2014) "Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host." Proteomics 14(23-24):2769–79; PMID: 25346215; doi: 10.1002/pmic.201400267; GPMDB: 105.
  731. Marino F, Cristobal A, Binai NA, Bache N, Heck AJ, Mohammed S, (2014) "Characterization and usage of the EASY-spray technology as part of an online 2D SCX-RP ultra-high pressure system." Analyst 139(24):6520–8; PMID: 25346955; doi: 10.1039/c4an01568a; GPMDB: 38.
  732. Bileck A, Kreutz D, Muqaku B, Slany A, Gerner C, (2014) "Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells." J Proteome Res 13(12):5989–6000; PMID: 25347463; doi: 10.1021/pr5008625; GPMDB: 48.
  733. Kelstrup CD, Jersie-Christensen RR, Batth TS, Arrey TN, Kuehn A, Kellmann M, Olsen JV, (2014) "Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer." J Proteome Res 13(12):6187–95; PMID: 25349961; doi: 10.1021/pr500985w; GPMDB: 36.
  734. Huang TC, Renuse S, Pinto S, Kumar P, Yang Y, Chaerkady R, Godsey B, Mendell JT, Halushka MK, Civin CI, Marchionni L, Pandey A, (2015) "Identification of miR-145 targets through an integrated omics analysis." Mol Biosyst 11(1):197–207; PMID: 25354783; doi: 10.1039/c4mb00585f; GPMDB: 10.
  735. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J, (2014) "Ultrasensitive proteome analysis using paramagnetic bead technology." Mol Syst Biol 10:757; PMID: 25358341; GPMDB: 163.
  736. Yang YS, Fernandez B, Lagorce A, Aloin V, De Guillen KM, Boyer JB, Dedieu A, Confalonieri F, Armengaud J, Roumestand C, (2015) "Prioritizing targets for structural biology through the lens of proteomics: the archaeal protein TGAM_1934 from Thermococcus gammatolerans." Proteomics 15(1):114–23; PMID: 25359407; doi: 10.1002/pmic.201300535; GPMDB: 4.
  737. Scheltema RA, Hauschild JP, Lange O, Hornburg D, Denisov E, Damoc E, Kuehn A, Makarov A, Mann M, (2014) "The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer." Mol Cell Proteomics 13(12):3698–708; PMID: 25360005; doi: 10.1074/mcp.M114.043489; GPMDB: 99.
  738. Mazin PV, Fisunov GY, Gorbachev AY, Kapitskaya KY, Altukhov IA, Semashko TA, Alexeev DG, Govorun VM, (2014) "Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium." Nucleic Acids Res 42(21):13254–68; PMID: 25361977; doi: 10.1093/nar/gku976; GPMDB: 12.
  739. Keilhauer EC, Hein MY, Mann M, (2015) "Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS)." Mol Cell Proteomics 14(1):120–35; PMID: 25363814; doi: 10.1074/mcp.M114.041012; GPMDB: 196.
  740. Bourderioux M, Nguyen-Khoa T, Chhuon C, Jeanson L, Tondelier D, Walczak M, Ollero M, Bekri S, Knebelmann B, Escudier E, Escudier B, Edelman A, Guerrera IC, (2015) "A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients." J Proteome Res 14(1):567–77; PMID: 25365230; doi: 10.1021/pr501003q; GPMDB: 340.
  741. Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS, Subbannayya Y, Roa JC, Chatterjee A, Prasad TS, Pandey A, (2015) "Quantitative phosphoproteomic analysis of IL-33-mediated signaling." Proteomics 15(2-3):532–44; PMID: 25367039; doi: 10.1002/pmic.201400303; GPMDB: 4.
  742. Cubeñas-Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang XD, Cotter RJ, Raught B, Matunis MJ, (2015) "Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes." Proteomics 15(4):763–72; PMID: 25367092; doi: 10.1002/pmic.201400400; GPMDB: 8.
  743. Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, Wang B, Fuellen G, Boiani M, (2015) "Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice." Proteomics 15(4):675–87; PMID: 25367296; doi: 10.1002/pmic.201400334; GPMDB: 4.
  744. Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P, (2014) "Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling." Nat Commun 5:5409; PMID: 25391492; doi: 10.1038/ncomms6409; GPMDB: 6.
  745. Ruprecht B, Koch H, Medard G, Mundt M, Kuster B, Lemeer S, (2015) "Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns." Mol Cell Proteomics 14(1):205–15; PMID: 25394399; doi: 10.1074/mcp.M114.043109; GPMDB: 152.
  746. Götzke H, Muheim C, Altelaar AF, Heck AJ, Maddalo G, Daley DO, (2015) "Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics." Mol Cell Proteomics 14(1):216–26; PMID: 25403562; doi: 10.1074/mcp.M114.043216; GPMDB: 9.
  747. Nirujogi RS, Wright JD Jr, Manda SS, Zhong J, Na CH, Meyerhoff J, Benton B, Jabbour R, Willis K, Kim MS, Pandey A, Sekowski JW, (2015) "Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats." Proteomics 15(2-3):487–99; PMID: 25403869; doi: 10.1002/pmic.201400371; GPMDB: 12.
  748. Sap KA, Bezstarosti K, Dekkers DH, van den Hout M, van Ijcken W, Rijkers E, Demmers JA, (2015) "Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster." Proteomics 15(4):725–38; PMID: 25403936; doi: 10.1002/pmic.201400308; GPMDB: 8.
  749. Zhang X, Belkina N, Jacob HK, Maity T, Biswas R, Venugopalan A, Shaw PG, Kim MS, Chaerkady R, Pandey A, Guha U, (2015) "Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics." Proteomics 15(2-3):340–55; PMID: 25404012; doi: 10.1002/pmic.201400315; GPMDB: 73.
  750. Loroch S, Zahedi RP, Sickmann A, (2015) "Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography." Anal Chem 87(3):1596–604; PMID: 25405705; doi: 10.1021/ac502708m; GPMDB: 84.
  751. Chawade A, Sandin M, Teleman J, Malmström J, Levander F, (2015) "Data processing has major impact on the outcome of quantitative label-free LC-MS analysis." J Proteome Res 14(2):676–87; PMID: 25407311; doi: 10.1021/pr500665j; GPMDB: 12.
  752. Zhang P, Dufresne C, Turner R, Ferri S, Venkatraman V, Karani R, Lutty GA, Van Eyk JE, Semba RD, (2015) "The proteome of human retina." Proteomics 15(4):836–40; PMID: 25407473; doi: 10.1002/pmic.201400397; GPMDB: 60.
  753. Gruber AR, Martin G, Müller P, Schmidt A, Gruber AJ, Gumienny R, Mittal N, Jayachandran R, Pieters J, Keller W, van Nimwegen E, Zavolan M, (2014) "Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells." Nat Commun 5:5465; PMID: 25413384; doi: 10.1038/ncomms6465; GPMDB: 13.
  754. Huesgen PF, Lange PF, Rogers LD, Solis N, Eckhard U, Kleifeld O, Goulas T, Gomis-Rüth FX, Overall CM, (2015) "LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification." Nat Methods 12(1):55–8; PMID: 25419962; doi: 10.1038/nmeth.3177; GPMDB: 60.
  755. Rinschen MM, Pahmeyer C, Pisitkun T, Schnell N, Wu X, Maaß M, Bartram MP, Lamkemeyer T, Schermer B, Benzing T, Brinkkoetter PT, (2015) "Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture." Proteomics 15(7):1326–31; PMID: 25420462; doi: 10.1002/pmic.201400235; GPMDB: 40.
  756. Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, Taylor P, Ignatchenko V, Ignatchenko A, Zhang W, Wang D, Yanagawa N, Li M, Pintilie M, Liu G, Muthuswamy L, Shepherd FA, Tsao MS, Kislinger T, Moran MF, (2014) "Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact." Nat Commun 5:5469; PMID: 25429762; doi: 10.1038/ncomms6469; GPMDB: 33.
  757. Hagen L, Sharma A, Aas PA, Slupphaug G, (2015) "Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection." Biochim Biophys Acta 1854(1):84–90; PMID: 25448019; doi: 10.1016/j.bbapap.2014.10.016; GPMDB: 27.
  758. Tummala KS, Gomes AL, Yilmaz M, Graña O, Bakiri L, Ruppen I, Ximénez-Embún P, Sheshappanavar V, Rodriguez-Justo M, Pisano DG, Wagner EF, Djouder N, (2014) "Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage." Cancer Cell 26(6):826–39; PMID: 25453901; doi: 10.1016/j.ccell.2014.10.002; GPMDB: 46.
  759. Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R, (2014) "E-cadherin interactome complexity and robustness resolved by quantitative proteomics." Sci Signal 7(354):rs7; PMID: 25468996; doi: 10.1126/scisignal.2005473; GPMDB: 90.
  760. Wiśniewski JR, Koepsell H, Gizak A, Rakus D, (2015) "Absolute protein quantification allows differentiation of cell-specific metabolic routes and functions." Proteomics 15(7):1316–25; PMID: 25475432; doi: 10.1002/pmic.201400456; GPMDB: 44.
  761. Schnell G, Boeuf A, Jaulhac B, Boulanger N, Collin E, Barthel C, De Martino S, Ehret-Sabatier L, (2015) "Proteomic analysis of three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for Lyme vaccine design." Proteomics 15(7):1280–90; PMID: 25475896; doi: 10.1002/pmic.201400177; GPMDB: 6.
  762. Yang X, Liu F, Yan Y, Zhou T, Guo Y, Sun G, Zhou Z, Zhang W, Guo X, Sha J, (2015) "Proteomic analysis of N-glycosylation of human seminal plasma." Proteomics 15(7):1255–8; PMID: 25476145; doi: 10.1002/pmic.201400203; GPMDB: 3.
  763. Binai NA, Marino F, Soendergaard P, Bache N, Mohammed S, Heck AJ, (2015) "Rapid analyses of proteomes and interactomes using an integrated solid-phase extraction-liquid chromatography-MS/MS system." J Proteome Res 14(2):977–85; PMID: 25485597; doi: 10.1021/pr501011z; GPMDB: 71.
  764. Vaga S, Bernardo-Faura M, Cokelaer T, Maiolica A, Barnes CA, Gillet LC, Hegemann B, van Drogen F, Sharifian H, Klipp E, Peter M, Saez-Rodriguez J, Aebersold R, (2014) "Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast." Mol Syst Biol 10:767; PMID: 25492886; GPMDB: 108.
  765. Selvam RM, Nithya R, Devi PN, Shree RS, Nila MV, Demonte NL, Thangavel C, Maheshwari JJ, Lalitha P, Prajna NV, Dharmalingam K, (2015) "Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease." J Proteomics 115:23–35; PMID: 25497218; doi: 10.1016/j.jprot.2014.11.017; GPMDB: 10.
  766. Bergseng E, Dørum S, Arntzen MØ, Nielsen M, Nygård S, Buus S, de Souza GA, Sollid LM, (2015) "Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires." Immunogenetics 67(2):73–84; PMID: 25502872; doi: 10.1007/s00251-014-0819-9; GPMDB: 51.
  767. Guo M, Härtlova A, Dill BD, Prescott AR, Gierliński M, Trost M, (2015) "High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages." Proteomics 15(18):3169–74; PMID: 25504905; doi: 10.1002/pmic.201400431; GPMDB: 6.
  768. Gomes-Alves P, Serra M, Brito C, R-Borlado L, López JA, Vázquez J, Carrondo MJ, Bernad A, Alves PM, (2015) "Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome." Proteomics 15(7):1332–7; PMID: 25504917; doi: 10.1002/pmic.201400318; GPMDB: 2.
  769. Baert Y, Stukenborg JB, Landreh M, De Kock J, Jörnvall H, Söder O, Goossens E, (2015) "Derivation and characterization of a cytocompatible scaffold from human testis." Hum Reprod 30(2):256–67; PMID: 25505010; doi: 10.1093/humrep/deu330; GPMDB: 1.
  770. Peláez-García A, Barderas R, Batlle R, Viñas-Castells R, Bartolomé RA, Torres S, Mendes M, Lopez-Lucendo M, Mazzolini R, Bonilla F, García de Herreros A, Casal JI, (2015) "A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation." Mol Cell Proteomics 14(2):303–15; PMID: 25505127; doi: 10.1074/mcp.M114.045328; GPMDB: 2.
  771. Gao L, Ge H, Huang X, Liu K, Zhang Y, Xu W, Wang Y, (2015) "Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs)." Mol Cell Proteomics 14(2):340–53; PMID: 25505158; doi: 10.1074/mcp.M114.044800; GPMDB: 24.
  772. Low TY, Peng M, Magliozzi R, Mohammed S, Guardavaccaro D, Heck AJ, (2014) "A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase." Sci Signal 7(356):rs8; PMID: 25515538; doi: 10.1126/scisignal.2005882; GPMDB: 120.
  773. Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR, (2015) "The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis." Plant J 81(4):611–24; PMID: 25515814; doi: 10.1111/tpj.12747; GPMDB: 6.
  774. Ferl RJ, Koh J, Denison F, Paul AL, (2015) "Spaceflight induces specific alterations in the proteomes of Arabidopsis." Astrobiology 15(1):32–56; PMID: 25517942; doi: 10.1089/ast.2014.1210; GPMDB: 15.
  775. Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T, Cristea IM, (2014) "Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity." Cell 159(7):1615–25; PMID: 25525879; doi: 10.1016/j.cell.2014.11.046; GPMDB: 24.
  776. Gueugneau M, Coudy-Gandilhon C, Gourbeyre O, Chambon C, Combaret L, Polge C, Taillandier D, Attaix D, Friguet B, Maier AB, Butler-Browne G, Béchet D, (2014) "Proteomics of muscle chronological ageing in post-menopausal women." BMC Genomics 15:1165; PMID: 25532418; doi: 10.1186/1471-2164-15-1165; GPMDB: 98.
  777. Rotival M, Ko JH, Srivastava PK, Kerloc'h A, Montoya A, Mauro C, Faull P, Cutillas PR, Petretto E, Behmoaras J, (2015) "Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation." Mol Cell Proteomics 14(3):484–98; PMID: 25532521; doi: 10.1074/mcp.M114.043836; GPMDB: 15.
  778. Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A, van Attikum H, Srivas R, Ideker T, Shimada K, Gasser SM, (2015) "Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling." Mol Cell 57(2):273–89; PMID: 25533186; doi: 10.1016/j.molcel.2014.11.016; GPMDB: 12.
  779. Paster W, Bruger AM, Katsch K, Grégoire C, Roncagalli R, Fu G, Gascoigne NR, Nika K, Cohnen A, Feller SM, Simister PC, Molder KC, Cordoba SP, Dushek O, Malissen B, Acuto O, (2015) "A THEMIS:SHP1 complex promotes T-cell survival." EMBO J 34(3):393–409; PMID: 25535246; doi: 10.15252/embj.201387725; GPMDB: 15.
  780. Hubner NC, Nguyen LN, Hornig NC, Stunnenberg HG, (2015) "A quantitative proteomics tool to identify DNA-protein interactions in primary cells or blood." J Proteome Res 14(2):1315–29; PMID: 25546135; doi: 10.1021/pr5009515; GPMDB: 82.
  781. Chang HY, Li MH, Huang TC, Hsu CL, Tsai SR, Lee SC, Huang HC, Juan HF, (2015) "Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells." J Proteome Res 14(2):1250–62; PMID: 25556991; doi: 10.1021/pr5011873; GPMDB: 1.
  782. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS, Gracanin A, Oni T, Yu KH, van Boxtel R, Huch M, Rivera KD, Wilson JP, Feigin ME, Öhlund D, Handly-Santana A, Ardito-Abraham CM, Ludwig M, Elyada E, Alagesan B, Biffi G, Yordanov GN, Delcuze B, Creighton B, Wright K, Park Y, Morsink FH, Molenaar IQ, Borel Rinkes IH, Cuppen E, Hao Y, Jin Y, Nijman IJ, Iacobuzio-Donahue C, Leach SD, Pappin DJ, Hammell M, Klimstra DS, Basturk O, Hruban RH, Offerhaus GJ, Vries RG, Clevers H, Tuveson DA, (2015) "Organoid models of human and mouse ductal pancreatic cancer." Cell 160(1-2):324–38; PMID: 25557080; doi: 10.1016/j.cell.2014.12.021; GPMDB: 4.
  783. Selevsek N, Chang CY, Gillet LC, Navarro P, Bernhardt OM, Reiter L, Cheng LY, Vitek O, Aebersold R, (2015) "Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry." Mol Cell Proteomics 14(3):739–49; PMID: 25561506; doi: 10.1074/mcp.M113.035550; GPMDB: 46.
  784. Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Schiltz O, Bousquet-Dubouch MP, (2015) "Deciphering preferential interactions within supramolecular protein complexes: the proteasome case." Mol Syst Biol 11(1):771; PMID: 25561571; GPMDB: 84.
  785. Kershaw CJ, Costello JL, Castelli LM, Talavera D, Rowe W, Sims PF, Ashe MP, Hubbard SJ, Pavitt GD, Grant CM, (2015) "The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response." PLoS Genet 11(1):e1004903; PMID: 25569619; doi: 10.1371/journal.pgen.1004903; GPMDB: 20.
  786. Zappacosta F, Scott GF, Huddleston MJ, Annan RS, (2015) "An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome." J Proteome Res 14(2):997–1009; PMID: 25575281; doi: 10.1021/pr501025e; GPMDB: 42.
  787. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M, (2015) "Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation." Mol Cell Proteomics 14(3):658–73; PMID: 25576301; doi: 10.1074/mcp.M114.042812; GPMDB: 40.
  788. Hong JH, Kaustov L, Coyaud E, Srikumar T, Wan J, Arrowsmith C, Raught B, (2015) "KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation." Mol Cell Proteomics 14(3):674–85; PMID: 25582440; doi: 10.1074/mcp.M114.042168; GPMDB: 58.
  789. Chiang DY, Lebesgue N, Beavers DL, Alsina KM, Damen JM, Voigt N, Dobrev D, Wehrens XH, Scholten A, (2015) "Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients." J Am Coll Cardiol 65(2):163–73; PMID: 25593058; doi: 10.1016/j.jacc.2014.10.042; GPMDB: 22.
  790. Kasvandik S, Sillaste G, Velthut-Meikas A, Mikelsaar AV, Hallap T, Padrik P, Tenson T, Jaakma Ü, Kõks S, Salumets A, (2015) "Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment." Proteomics 15(11):1906–20; PMID: 25603787; doi: 10.1002/pmic.201400297; GPMDB: 16.
  791. Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ, (2015) "A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting." Nat Commun 6:6135; PMID: 25609142; doi: 10.1038/ncomms7135; GPMDB: 237.
  792. Braakman RB, Bezstarosti K, Sieuwerts AM, de Weerd V, van Galen AM, Stingl C, Luider TM, Timmermans MA, Smid M, Martens JW, Foekens JA, Demmers JA, Umar A, (2015) "Integrative analysis of genomics and proteomics data on clinical breast cancer tissue specimens extracted with acid guanidinium thiocyanate-phenol-chloroform." J Proteome Res 14(3):1627–36; PMID: 25611981; doi: 10.1021/acs.jproteome.5b00046; GPMDB: 3.
  793. Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M, (2015) "Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors." Mol Cell Proteomics 14(4):841–53; PMID: 25616865; doi: 10.1074/mcp.M114.044222; GPMDB: 6.
  794. Ramond E, Gesbert G, Guerrera IC, Chhuon C, Dupuis M, Rigard M, Henry T, Barel M, Charbit A, (2015) "Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts." Mol Cell Proteomics 14(4):870–81; PMID: 25616868; doi: 10.1074/mcp.M114.044552; GPMDB: 18.
  795. Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A, (2015) "Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research." Biochim Biophys Acta 1854(5):460–8; PMID: 25619855; doi: 10.1016/j.bbapap.2015.01.006; GPMDB: 36.
  796. Harel M, Oren-Giladi P, Kaidar-Person O, Shaked Y, Geiger T, (2015) "Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification." Mol Cell Proteomics 14(4):1127–36; PMID: 25624350; doi: 10.1074/mcp.M114.043364; GPMDB: 46.
  797. Zanker D, Otto W, Chen W, von Bergen M, Tomm JM, (2015) "Compartment resolved reference proteome map from highly purified naïve, activated, effector, and memory CD8⁺ murine immune cells." Proteomics 15(11):1808–12; PMID: 25643623; doi: 10.1002/pmic.201400405; GPMDB: 249.
  798. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M, (2015) "Single muscle fiber proteomics reveals unexpected mitochondrial specialization." EMBO Rep 16(3):387–95; PMID: 25643707; doi: 10.15252/embr.201439757; GPMDB: 89.
  799. Eagle GL, Zhuang J, Jenkins RE, Till KJ, Jithesh PV, Lin K, Johnson GG, Oates M, Park K, Kitteringham NR, Pettitt AR, (2015) "Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia." Mol Cell Proteomics 14(4):933–45; PMID: 25645933; doi: 10.1074/mcp.M114.044479; GPMDB: 3.
  800. Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, Goldfarb D, Graham DM, Yan F, Deal AM, Fedoriw Y, Richards KL, Davis IJ, Weidinger G, Damania B, Major MB, (2015) "FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma." Sci Signal 8(362):ra12; PMID: 25650440; doi: 10.1126/scisignal.2005654; GPMDB: 8.
  801. Marza E, Taouji S, Barroso K, Raymond AA, Guignard L, Bonneu M, Pallares-Lupon N, Dupuy JW, Fernandez-Zapico ME, Rosenbaum J, Palladino F, Dupuy D, Chevet E, (2015) "Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription." EMBO Rep 16(3):332–40; PMID: 25652260; doi: 10.15252/embr.201439123; GPMDB: 6.
  802. Corradini E, Burgers PP, Plank M, Heck AJ, Scholten A, (2015) "Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase Iβ isoform." J Biol Chem 290(12):7887–96; PMID: 25653285; doi: 10.1074/jbc.M114.622613; GPMDB: 6.
  803. Sandin M, Chawade A, Levander F, (2015) "Is label-free LC-MS/MS ready for biomarker discovery?" Proteomics Clin Appl 9(3-4):289–94; PMID: 25656266; doi: 10.1002/prca.201400202; GPMDB: 2.
  804. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y, (2015) "Genomic variation. Impact of regulatory variation from RNA to protein." Science 347(6222):664–7; PMID: 25657249; doi: 10.1126/science.1260793; GPMDB: 2622.
  805. St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Pelletier L, Gingras AC, (2015) "Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission." Mol Cell Proteomics 14(4):946–60; PMID: 25659891; doi: 10.1074/mcp.M114.046086; GPMDB: 190.
  806. Hill RC, Calle EA, Dzieciatkowska M, Niklason LE, Hansen KC, (2015) "Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering." Mol Cell Proteomics 14(4):961–73; PMID: 25660013; doi: 10.1074/mcp.M114.045260; GPMDB: 60.
  807. Médard G, Pachl F, Ruprecht B, Klaeger S, Heinzlmeir S, Helm D, Qiao H, Ku X, Wilhelm M, Kuehne T, Wu Z, Dittmann A, Hopf C, Kramer K, Kuster B, (2015) "Optimized chemical proteomics assay for kinase inhibitor profiling." J Proteome Res 14(3):1574–86; PMID: 25660469; doi: 10.1021/pr5012608; GPMDB: 126.
  808. Krahmer J, Hindle MM, Martin SF, Le Bihan T, Millar AJ, (2015) "Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana." Methods Enzymol 551:405–31; PMID: 25662467; doi: 10.1016/bs.mie.2014.10.022; GPMDB: 117.
  809. Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM, (2015) "The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA." Mol Syst Biol 11(1):787; PMID: 25665578; GPMDB: 21.
  810. Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, Gevaert K, (2015) "Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress." Mol Cell Proteomics 14(5):1217–29; PMID: 25693801; doi: 10.1074/mcp.M114.043729; GPMDB: 2.
  811. Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J, (2015) "Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis." Plant Physiol 167(4):1731–46; PMID: 25699590; doi: 10.1104/pp.15.00026; GPMDB: 12.
  812. Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, Vilu R, (2015) "Proteome reallocation in Escherichia coli with increasing specific growth rate." Mol Biosyst 11(4):1184–93; PMID: 25712329; doi: 10.1039/c4mb00721b; GPMDB: 26.
  813. Koganti S, Clark C, Zhi J, Li X, Chen EI, Chakrabortty S, Hill ER, Bhaduri-McIntosh S, (2015) "Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes." J Virol 89(9):5002–11; PMID: 25717101; doi: 10.1128/JVI.00121-15; GPMDB: 2.
  814. Kettenbach AN, Deng L, Wu Y, Baldissard S, Adamo ME, Gerber SA, Moseley JB, (2015) "Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1." Mol Cell Proteomics 14(5):1275–87; PMID: 25720772; doi: 10.1074/mcp.M114.045245; GPMDB: 96.
  815. González-Prieto R, Cuijpers SA, Luijsterburg MS, van Attikum H, Vertegaal AC, (2015) "SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites." EMBO Rep 16(4):512–9; PMID: 25722289; doi: 10.15252/embr.201440017; GPMDB: 27.
  816. Keshishian H, Burgess MW, Gillette MA, Mertins P, Clauser KR, Mani DR, Kuhn EW, Farrell LA, Gerszten RE, Carr SA, (2015) "Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury." Mol Cell Proteomics 14(9):2375–93; PMID: 25724909; doi: 10.1074/mcp.M114.046813; GPMDB: 298.
  817. Vogel CJ, Smit MA, Maddalo G, Possik PA, Sparidans RW, van der Burg SH, Verdegaal EM, Heck AJ, Samatar AA, Beijnen JH, Altelaar AF, Peeper DS, (2015) "Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK." Pigment Cell Melanoma Res 28(3):307–17; PMID: 25728708; doi: 10.1111/pcmr.12364; GPMDB: 170.
  818. Zhang H, Deery MJ, Gannon L, Powers SJ, Lilley KS, Theodoulou FL, (2015) "Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots." Proteomics 15(14):2447–57; PMID: 25728785; doi: 10.1002/pmic.201400530; GPMDB: 14.
  819. Aller K, Adamberg K, Reile I, Timarova V, Peebo K, Vilu R, (2015) "Excess of threonine compared with serine promotes threonine aldolase activity in Lactococcus lactis IL1403." Microbiology 161(Pt 5):1073–80; PMID: 25743155; doi: 10.1099/mic.0.000071; GPMDB: 6.
  820. Štalekar M, Yin X, Rebolj K, Darovic S, Troakes C, Mayr M, Shaw CE, Rogelj B, (2015) "Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport." Neuroscience 293:157–70; PMID: 25743254; doi: 10.1016/j.neuroscience.2015.02.046; GPMDB: 96.
  821. Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TS, Gowda H, Pandey A, Patole MS, (2015) "Comprehensive proteomics analysis of glycosomes from Leishmania donovani." OMICS 19(3):157–70; PMID: 25748437; doi: 10.1089/omi.2014.0163; GPMDB: 2.
  822. Willger SD, Liu Z, Olarte RA, Adamo ME, Stajich JE, Myers LC, Kettenbach AN, Hogan DA, (2015) "Analysis of the Candida albicans Phosphoproteome." Eukaryot Cell 14(5):474–85; PMID: 25750214; doi: 10.1128/EC.00011-15; GPMDB: 13.
  823. Schölz C, Weinert BT, Wagner SA, Beli P, Miyake Y, Qi J, Jensen LJ, Streicher W, McCarthy AR, Westwood NJ, Lain S, Cox J, Matthias P, Mann M, Bradner JE, Choudhary C, (2015) "Acetylation site specificities of lysine deacetylase inhibitors in human cells." Nat Biotechnol 33(4):415–23; PMID: 25751058; doi: 10.1038/nbt.3130; GPMDB: 292.
  824. Alvarez Hayes J, Lamberti Y, Surmann K, Schmidt F, Völker U, Rodriguez ME, (2015) "Shotgun proteome analysis of Bordetella pertussis reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response." Proteomics 15(13):2258–66; PMID: 25755163; doi: 10.1002/pmic.201400512; GPMDB: 6.
  825. Xiao Z, Chang JG, Hendriks IA, Sigurðsson JO, Olsen JV, Vertegaal AC, (2015) "System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability." Mol Cell Proteomics 14(5):1419–34; PMID: 25755297; doi: 10.1074/mcp.O114.044792; GPMDB: 84.
  826. Dill BD, Gierlinski M, Härtlova A, Arandilla AG, Guo M, Clarke RG, Trost M, (2015) "Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors." Mol Cell Proteomics 14(5):1334–49; PMID: 25755298; doi: 10.1074/mcp.M114.044594; GPMDB: 91.
  827. Mackmull MT, Iskar M, Parca L, Singer S, Bork P, Ori A, Beck M, (2015) "Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs)." Mol Cell Proteomics 14(5):1350–60; PMID: 25755299; doi: 10.1074/mcp.M114.042499; GPMDB: 96.
  828. Carter DM, Westdorp K, Noon KR, Terhune SS, (2015) "Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection." Proteomics 15(12):1995–2005; PMID: 25758553; doi: 10.1002/pmic.201400599; GPMDB: 8.
  829. Martin-Perez M, Villén J, (2015) "Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains." Anal Chem 87(7):4008–14; PMID: 25767917; doi: 10.1021/acs.analchem.5b00264; GPMDB: 22.
  830. Zub KA, Sousa MM, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, Jensen ON, Slupphaug G, (2015) "Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells." PLoS One 10(3):e0119857; PMID: 25769101; doi: 10.1371/journal.pone.0119857; GPMDB: 12.
  831. Zigdon H, Savidor A, Levin Y, Meshcheriakova A, Schiffmann R, Futerman AH, (2015) "Identification of a biomarker in cerebrospinal fluid for neuronopathic forms of Gaucher disease." PLoS One 10(3):e0120194; PMID: 25775479; doi: 10.1371/journal.pone.0120194; GPMDB: 27.
  832. Shalit T, Elinger D, Savidor A, Gabashvili A, Levin Y, (2015) "MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer." J Proteome Res 14(4):1979–86; PMID: 25780947; doi: 10.1021/pr501045t; GPMDB: 12.
  833. Markmann S, Thelen M, Cornils K, Schweizer M, Brocke-Ahmadinejad N, Willnow T, Heeren J, Gieselmann V, Braulke T, Kollmann K, (2015) "Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting." Traffic 16(7):743–59; PMID: 25786328; doi: 10.1111/tra.12284; GPMDB: 3.
  834. Manousopoulou A, Woo J, Woelk CH, Johnston HE, Singhania A, Hawkes C, Garbis SD, Carare RO, (2015) "Are you also what your mother eats? Distinct proteomic portrait as a result of maternal high-fat diet in the cerebral cortex of the adult mouse." Int J Obes (Lond) 39(8):1325–8; PMID: 25797609; doi: 10.1038/ijo.2015.35; GPMDB: 61.
  835. Bracht T, Schweinsberg V, Trippler M, Kohl M, Ahrens M, Padden J, Naboulsi W, Barkovits K, Megger DA, Eisenacher M, Borchers CH, Schlaak JF, Hoffmann AC, Weber F, Baba HA, Meyer HE, Sitek B, (2015) "Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis." J Proteome Res 14(5):2278–86; PMID: 25807371; doi: 10.1021/acs.jproteome.5b00053; GPMDB: 27.
  836. Broncel M, Serwa RA, Ciepla P, Krause E, Dallman MJ, Magee AI, Tate EW, (2015) "Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development." Angew Chem Int Ed Engl 54(20):5948–51; PMID: 25807930; doi: 10.1002/anie.201500342; GPMDB: 1.
  837. Tsai CF, Wang YT, Yen HY, Tsou CC, Ku WC, Lin PY, Chen HY, Nesvizhskii AI, Ishihama Y, Chen YJ, (2015) "Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics." Nat Commun 6:6622; PMID: 25814448; doi: 10.1038/ncomms7622; GPMDB: 24.
  838. Khan MN, Sakata K, Komatsu S, (2015) "Proteomic analysis of soybean hypocotyl during recovery after flooding stress." J Proteomics 121:15–27; PMID: 25818724; doi: 10.1016/j.jprot.2015.03.020; GPMDB: 21.
  839. Moretti F, Rolando C, Winker M, Ivanek R, Rodriguez J, Von Kriegsheim A, Taylor V, Bustin M, Pertz O, (2015) "Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth." Mol Cell Biol 35(11):2035–50; PMID: 25825524; doi: 10.1128/MCB.00133-15; GPMDB: 72.
  840. Alpert AJ, Hudecz O, Mechtler K, (2015) "Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography." Anal Chem 87(9):4704–11; PMID: 25827581; doi: 10.1021/ac504420c; GPMDB: 42.
  841. Ao J, Mu Y, Xiang LX, Fan D, Feng M, Zhang S, Shi Q, Zhu LY, Li T, Ding Y, Nie L, Li Q, Dong WR, Jiang L, Sun B, Zhang X, Li M, Zhang HQ, Xie S, Zhu Y, Jiang X, Wang X, Mu P, Chen W, Yue Z, Wang Z, Wang J, Shao JZ, Chen X, (2015) "Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation." PLoS Genet 11(4):e1005118; PMID: 25835551; doi: 10.1371/journal.pgen.1005118; GPMDB: 20.
  842. Lardi M, Aguilar C, Pedrioli A, Omasits U, Suppiger A, Cárcamo-Oyarce G, Schmid N, Ahrens CH, Eberl L, Pessi G, (2015) "σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111." Appl Environ Microbiol 81(12):4077–89; PMID: 25841012; doi: 10.1128/AEM.00694-15; GPMDB: 40.
  843. Piersma SR, Knol JC, de Reus I, Labots M, Sampadi BK, Pham TV, Ishihama Y, Verheul HM, Jimenez CR, (2015) "Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines." J Proteomics 127(Pt B):247–58; PMID: 25841592; doi: 10.1016/j.jprot.2015.03.019; GPMDB: 31.
  844. Krishnan RK, Nolte H, Sun T, Kaur H, Sreenivasan K, Looso M, Offermanns S, Krüger M, Swiercz JM, (2015) "Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate." Nat Commun 6:6658; PMID: 25849741; doi: 10.1038/ncomms7658; GPMDB: 53.
  845. Krisp C, Yang H, van Soest R, Molloy MP, (2015) "Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics." Mol Cell Proteomics 14(6):1708–19; PMID: 25850434; doi: 10.1074/mcp.M114.046425; GPMDB: 12.
  846. Stuart SA, Houel S, Lee T, Wang N, Old WM, Ahn NG, (2015) "A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells." Mol Cell Proteomics 14(6):1599–615; PMID: 25850435; doi: 10.1074/mcp.M114.047233; GPMDB: 255.
  847. Bergner SV, Scholz M, Trompelt K, Barth J, Gäbelein P, Steinbeck J, Xue H, Clowez S, Fucile G, Goldschmidt-Clermont M, Fufezan C, Hippler M, (2015) "STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes." Plant Physiol 168(2):615–34; PMID: 25858915; doi: 10.1104/pp.15.00072; GPMDB: 72.
  848. Oberstein A, Perlman DH, Shenk T, Terry LJ, (2015) "Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome." Proteomics 15(12):2006–22; PMID: 25867546; doi: 10.1002/pmic.201400607; GPMDB: 8.
  849. Papadopoulos P, Gutiérrez L, Demmers J, Scheer E, Pourfarzad F, Papageorgiou DN, Karkoulia E, Strouboulis J, van de Werken HJ, van der Linden R, Vandenberghe P, Dekkers DH, Philipsen S, Grosveld F, Tora L, (2015) "TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis." Mol Cell Biol 35(12):2103–18; PMID: 25870109; doi: 10.1128/MCB.01370-14; GPMDB: 4.
  850. Tyagi K, Pedrioli PG, (2015) "Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures." Nucleic Acids Res 43(9):4701–12; PMID: 25870413; doi: 10.1093/nar/gkv322; GPMDB: 46.
  851. Rauniyar N, Subramanian K, Lavallée-Adam M, Martínez-Bartolomé S, Balch WE, Yates JR 3rd, (2015) "Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis." Mol Cell Proteomics 14(7):1734–49; PMID: 25873482; doi: 10.1074/mcp.M114.045609; GPMDB: 2.
  852. Welinder C, Pawłowski K, Sugihara Y, Yakovleva M, Jönsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Jansson B, Laurell T, Fehniger T, Döme B, Malm J, Wieslander E, Nishimura T, Marko-Varga G, (2015) "A protein deep sequencing evaluation of metastatic melanoma tissues." PLoS One 10(4):e0123661; PMID: 25874936; doi: 10.1371/journal.pone.0123661; GPMDB: 11.
  853. Hosp F, Scheltema RA, Eberl HC, Kulak NA, Keilhauer EC, Mayr K, Mann M, (2015) "A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day." Mol Cell Proteomics 14(7):2030–41; PMID: 25887394; doi: 10.1074/mcp.O115.049460; GPMDB: 234.
  854. Yu Y, Sikorski P, Bowman-Gholston C, Cacciabeve N, Nelson KE, Pieper R, (2015) "Diagnosing inflammation and infection in the urinary system via proteomics." J Transl Med 13:111; PMID: 25889401; doi: 10.1186/s12967-015-0475-3; GPMDB: 260.
  855. Xu R, Greening DW, Rai A, Ji H, Simpson RJ, (2015) "Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct." Methods 87:11–25; PMID: 25890246; doi: 10.1016/j.ymeth.2015.04.008; GPMDB: 4.
  856. van der Mijn JC, Labots M, Piersma SR, Pham TV, Knol JC, Broxterman HJ, Verheul HM, Jiménez CR, (2015) "Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics." J Proteomics 127(Pt B):259–63; PMID: 25890253; doi: 10.1016/j.jprot.2015.04.006; GPMDB: 10.
  857. Lawrence RT, Perez EM, Hernández D, Miller CP, Haas KM, Irie HY, Lee SI, Blau CA, Villén J, (2015) "The proteomic landscape of triple-negative breast cancer." Cell Rep 11(4):630–44; PMID: 25892236; doi: 10.1016/j.celrep.2015.03.050; GPMDB: 91.
  858. Wang J, Zhang Y, Yu Y, (2015) "Crescendo: A Protein Sequence Database Search Engine for Tandem Mass Spectra." J Am Soc Mass Spectrom 26(7):1077–84; PMID: 25895889; doi: 10.1007/s13361-015-1120-3; GPMDB: 20.
  859. Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Pühler A, (2015) "Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster." J Proteomics 125:1–16; PMID: 25896738; doi: 10.1016/j.jprot.2015.04.013; GPMDB: 198.
  860. Oettinghaus B, Schulz JM, Restelli LM, Licci M, Savoia C, Schmidt A, Schmitt K, Grimm A, Morè L, Hench J, Tolnay M, Eckert A, D'Adamo P, Franken P, Ishihara N, Mihara K, Bischofberger J, Scorrano L, Frank S, (2016) "Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons." Cell Death Differ 23(1):18–28; PMID: 25909888; doi: 10.1038/cdd.2015.39; GPMDB: 12.
  861. Tan HT, Lim TK, Richards AM, Kofidis T, Teoh KL, Ling LH, Chung MC, (2015) "Unravelling the proteome of degenerative human mitral valves." Proteomics 15(17):2934–44; PMID: 25914152; doi: 10.1002/pmic.201500040; GPMDB: 12.
  862. Arntzen MØ, Karlskås IL, Skaugen M, Eijsink VG, Mathiesen G, (2015) "Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine." PLoS One 10(4):e0126694; PMID: 25915650; doi: 10.1371/journal.pone.0126694; GPMDB: