GPMDB Data Sources

From TheGPMWiki
(Difference between revisions)
Jump to: navigation, search
Line 28: Line 28:
The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of Jan 2, 2022.
The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of Jan 2, 2022.
 +
 +
#Lipton MS, <i>et al.</i> (2002) &quot;Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags.&quot; <i>Proc Natl Acad Sci U S A</i> <b>99</b>(17):11049&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/12177431 12177431]; doi: [https://dx.doi.org/10.1073/pnas.172170199 10.1073/pnas.172170199]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/12177431 498].
 +
#Liu T, <i>et al.</i> (2004) &quot;High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology.&quot; <i>Anal Chem</i> <b>76</b>(18):5345&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/15362891 15362891]; doi: [https://dx.doi.org/10.1021/ac049485q 10.1021/ac049485q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/15362891 6].
 +
#Sauer G, <i>et al.</i> (2005) &quot;Proteome analysis of the human mitotic spindle.&quot; <i>Mol Cell Proteomics</i> <b>4</b>(1):35&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/15561729 15561729]; doi: [https://dx.doi.org/10.1074/mcp.M400158-MCP200 10.1074/mcp.M400158-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/15561729 1].
 +
#Klein C, <i>et al.</i> (2005) &quot;The membrane proteome of Halobacterium salinarum.&quot; <i>Proteomics</i> <b>5</b>(1):180&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/15619294 15619294]; doi: [https://dx.doi.org/10.1002/pmic.200400943 10.1002/pmic.200400943]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/15619294 37].
 +
#Searle BC, <i>et al.</i> (2005) &quot;Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm.&quot; <i>J Proteome Res</i> <b>4</b>(2):546&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/15822933 15822933]; doi: [https://dx.doi.org/10.1021/pr049781j 10.1021/pr049781j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/15822933 4].
 +
#Elias JE, <i>et al.</i> (2005) &quot;Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.&quot; <i>Nat Methods</i> <b>2</b>(9):667&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/16118637 16118637]; doi: [https://dx.doi.org/10.1038/nmeth785 10.1038/nmeth785]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16118637 30].
 +
#Lee YJ, <i>et al.</i> (2006) &quot;Proteome analysis of human hair shaft: from protein identification to posttranslational modification.&quot; <i>Mol Cell Proteomics</i> <b>5</b>(5):789&ndash;800; PMID: [https://pubmed.ncbi.nlm.nih.gov/16446289 16446289]; doi: [https://dx.doi.org/10.1074/mcp.M500278-MCP200 10.1074/mcp.M500278-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16446289 75].
 +
#Gatlin CL, <i>et al.</i> (2006) &quot;Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus.&quot; <i>Proteomics</i> <b>6</b>(5):1530&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/16470658 16470658]; doi: [https://dx.doi.org/10.1002/pmic.200500253 10.1002/pmic.200500253]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16470658 1603].
 +
#Keshamouni VG, <i>et al.</i> (2006) &quot;Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype.&quot; <i>J Proteome Res</i> <b>5</b>(5):1143&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/16674103 16674103]; doi: [https://dx.doi.org/10.1021/pr050455t 10.1021/pr050455t]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16674103 3].
 +
#Bisle B, <i>et al.</i> (2006) &quot;Quantitative profiling of the membrane proteome in a halophilic archaeon.&quot; <i>Mol Cell Proteomics</i> <b>5</b>(9):1543&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/16804162 16804162]; doi: [https://dx.doi.org/10.1074/mcp.M600106-MCP200 10.1074/mcp.M600106-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16804162 32].
 +
#Hamacher M, <i>et al.</i> (2006) &quot;HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy.&quot; <i>Proteomics</i> <b>6</b>(18):4890&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/16927433 16927433]; doi: [https://dx.doi.org/10.1002/pmic.200600295 10.1002/pmic.200600295]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16927433 296].
 +
#Beausoleil SA, <i>et al.</i> (2006) &quot;A probability-based approach for high-throughput protein phosphorylation analysis and site localization.&quot; <i>Nat Biotechnol</i> <b>24</b>(10):1285&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/16964243 16964243]; doi: [https://dx.doi.org/10.1038/nbt1240 10.1038/nbt1240]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16964243 31].
 +
#Whitehead K, <i>et al.</i> (2006) &quot;An integrated systems approach for understanding cellular responses to gamma radiation.&quot; <i>Mol Syst Biol</i> <b>2</b>:47; PMID: [https://pubmed.ncbi.nlm.nih.gov/16969339 16969339]; doi: [https://dx.doi.org/10.1038/msb4100091 10.1038/msb4100091]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/16969339 27].
 +
#Price TS, <i>et al.</i> (2007) &quot;EBP, a program for protein identification using multiple tandem mass spectrometry datasets.&quot; <i>Mol Cell Proteomics</i> <b>6</b>(3):527&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/17164401 17164401]; doi: [https://dx.doi.org/10.1074/mcp.T600049-MCP200 10.1074/mcp.T600049-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17164401 314].
 +
#Tanner S, <i>et al.</i> (2007) &quot;Improving gene annotation using peptide mass spectrometry.&quot; <i>Genome Res</i> <b>17</b>(2):231&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/17189379 17189379]; doi: [https://dx.doi.org/10.1101/gr.5646507 10.1101/gr.5646507]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17189379 1].
 +
#Konstantinidis K, <i>et al.</i> (2007) &quot;Genome-wide proteomics of Natronomonas pharaonis.&quot; <i>J Proteome Res</i> <b>6</b>(1):185&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/17203963 17203963]; doi: [https://dx.doi.org/10.1021/pr060352q 10.1021/pr060352q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17203963 176].
 +
#Vill&eacute;n J, <i>et al.</i> (2007) &quot;Large-scale phosphorylation analysis of mouse liver.&quot; <i>Proc Natl Acad Sci U S A</i> <b>104</b>(5):1488&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/17242355 17242355]; doi: [https://dx.doi.org/10.1073/pnas.0609836104 10.1073/pnas.0609836104]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17242355 1].
 +
#Klein C, <i>et al.</i> (2007) &quot;The low molecular weight proteome of Halobacterium salinarum.&quot; <i>J Proteome Res</i> <b>6</b>(4):1510&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/17326674 17326674]; doi: [https://dx.doi.org/10.1021/pr060634q 10.1021/pr060634q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17326674 10].
 +
#Asara JM, <i>et al.</i> (2007) &quot;Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.&quot; <i>Science</i> <b>316</b>(5822):280&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/17431180 17431180]; doi: [https://dx.doi.org/10.1126/science.1137614 10.1126/science.1137614]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17431180 2].
 +
#Lowery DM, <i>et al.</i> (2007) &quot;Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate.&quot; <i>EMBO J</i> <b>26</b>(9):2262&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/17446864 17446864]; doi: [https://dx.doi.org/10.1038/sj.emboj.7601683 10.1038/sj.emboj.7601683]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17446864 24].
 +
#Brunner E, <i>et al.</i> (2007) &quot;A high-quality catalog of the Drosophila melanogaster proteome.&quot; <i>Nat Biotechnol</i> <b>25</b>(5):576&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/17450130 17450130]; doi: [https://dx.doi.org/10.1038/nbt1300 10.1038/nbt1300]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17450130 1907].
 +
#Wu L, <i>et al.</i> (2007) &quot;Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling.&quot; <i>Mol Cell Proteomics</i> <b>6</b>(8):1343&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/17519225 17519225]; doi: [https://dx.doi.org/10.1074/mcp.M700017-MCP200 10.1074/mcp.M700017-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17519225 2299].
 +
#Au CE, <i>et al.</i> (2007) &quot;Organellar proteomics to create the cell map.&quot; <i>Curr Opin Cell Biol</i> <b>19</b>(4):376&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/17689063 17689063]; doi: [https://dx.doi.org/10.1016/j.ceb.2007.05.004 10.1016/j.ceb.2007.05.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17689063 4090].
 +
#Whiteaker JR, <i>et al.</i> (2007) &quot;Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer.&quot; <i>J Proteome Res</i> <b>6</b>(10):3962&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/17711321 17711321]; doi: [https://dx.doi.org/10.1021/pr070202v 10.1021/pr070202v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17711321 84].
 +
#Bantscheff M, <i>et al.</i> (2007) &quot;Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.&quot; <i>Nat Biotechnol</i> <b>25</b>(9):1035&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/17721511 17721511]; doi: [https://dx.doi.org/10.1038/nbt1328 10.1038/nbt1328]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17721511 729].
 +
#Padliya ND, <i>et al.</i> (2007) &quot;Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences.&quot; <i>Proteomics</i> <b>7</b>(21):3932&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/17922518 17922518]; doi: [https://dx.doi.org/10.1002/pmic.200700419 10.1002/pmic.200700419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/17922518 1].
 +
#Rikova K, <i>et al.</i> (2007) &quot;Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.&quot; <i>Cell</i> <b>131</b>(6):1190&ndash;203; PMID: [https://pubmed.ncbi.nlm.nih.gov/18083107 18083107]; doi: [https://dx.doi.org/10.1016/j.cell.2007.11.025 10.1016/j.cell.2007.11.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18083107 104].
 +
#Ansong C, <i>et al.</i> (2008) &quot;Proteomics analysis of the causative agent of typhoid fever.&quot; <i>J Proteome Res</i> <b>7</b>(2):546&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/18166006 18166006]; doi: [https://dx.doi.org/10.1021/pr070434u 10.1021/pr070434u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18166006 313].
 +
#Finney GL, <i>et al.</i> (2008) &quot;Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution muLC-MS data.&quot; <i>Anal Chem</i> <b>80</b>(4):961&ndash;71; PMID: [https://pubmed.ncbi.nlm.nih.gov/18189369 18189369]; doi: [https://dx.doi.org/10.1021/ac701649e 10.1021/ac701649e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18189369 12].
 +
#Stevens SM Jr, <i>et al.</i> (2008) &quot;Proteomic analysis of mouse brain microsomes: identification and bioinformatic characterization of endoplasmic reticulum proteins in the mammalian central nervous system.&quot; <i>J Proteome Res</i> <b>7</b>(3):1046&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/18271522 18271522]; doi: [https://dx.doi.org/10.1021/pr7006279 10.1021/pr7006279]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18271522 4].
 +
#Yocum AK, <i>et al.</i> (2008) &quot;Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation.&quot; <i>Mol Cell Proteomics</i> <b>7</b>(4):750&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/18304949 18304949]; doi: [https://dx.doi.org/10.1074/mcp.M700399-MCP200 10.1074/mcp.M700399-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18304949 18].
 +
#Lemeer S, <i>et al.</i> (2008) &quot;Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo.&quot; <i>J Proteome Res</i> <b>7</b>(4):1555&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/18307296 18307296]; doi: [https://dx.doi.org/10.1021/pr700667w 10.1021/pr700667w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18307296 148].
 +
#Zhai B, <i>et al.</i> (2008) &quot;Phosphoproteome analysis of Drosophila melanogaster embryos.&quot; <i>J Proteome Res</i> <b>7</b>(4):1675&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/18327897 18327897]; doi: [https://dx.doi.org/10.1021/pr700696a 10.1021/pr700696a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18327897 24].
 +
#Denny P, <i>et al.</i> (2008) &quot;The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions.&quot; <i>J Proteome Res</i> <b>7</b>(5):1994&ndash;2006; PMID: [https://pubmed.ncbi.nlm.nih.gov/18361515 18361515]; doi: [https://dx.doi.org/10.1021/pr700764j 10.1021/pr700764j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18361515 102].
 +
#Sim&oacute; C, <i>et al.</i> (2008) &quot;Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 1. Behavior of mono- to hexapeptides.&quot; <i>Anal Chem</i> <b>80</b>(10):3547&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/18399644 18399644]; doi: [https://dx.doi.org/10.1021/ac702635v 10.1021/ac702635v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18399644 19].
 +
#Bachi A, <i>et al.</i> (2008) &quot;Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids.&quot; <i>Anal Chem</i> <b>80</b>(10):3557&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/18410134 18410134]; doi: [https://dx.doi.org/10.1021/ac8001353 10.1021/ac8001353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18410134 2].
 +
#Baerenfaller K, <i>et al.</i> (2008) &quot;Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics.&quot; <i>Science</i> <b>320</b>(5878):938&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/18436743 18436743]; doi: [https://dx.doi.org/10.1126/science.1157956 10.1126/science.1157956]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18436743 28].
 +
#Ji H, <i>et al.</i> (2008) &quot;Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes.&quot; <i>Electrophoresis</i> <b>29</b>(12):2660&ndash;71; PMID: [https://pubmed.ncbi.nlm.nih.gov/18494037 18494037]; doi: [https://dx.doi.org/10.1002/elps.200800015 10.1002/elps.200800015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18494037 26].
 +
#Cao Z, <i>et al.</i> (2008) &quot;Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis.&quot; <i>Mol Cell Proteomics</i> <b>7</b>(9):1651&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/18504258 18504258]; doi: [https://dx.doi.org/10.1074/mcp.M700155-MCP200 10.1074/mcp.M700155-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18504258 6].
 +
#Lemeer S, <i>et al.</i> (2008) &quot;Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos.&quot; <i>Mol Cell Proteomics</i> <b>7</b>(11):2176&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/18550893 18550893]; doi: [https://dx.doi.org/10.1074/mcp.M800081-MCP200 10.1074/mcp.M800081-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18550893 31].
 +
#Sodek KL, <i>et al.</i> (2008) &quot;Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT).&quot; <i>Mol Biosyst</i> <b>4</b>(7):762&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/18563251 18563251]; doi: [https://dx.doi.org/10.1039/b717542f 10.1039/b717542f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18563251 252].
 +
#Schimmel J, <i>et al.</i> (2008) &quot;The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle.&quot; <i>Mol Cell Proteomics</i> <b>7</b>(11):2107&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/18565875 18565875]; doi: [https://dx.doi.org/10.1074/mcp.M800025-MCP200 10.1074/mcp.M800025-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18565875 5].
 +
#Yu MJ, <i>et al.</i> (2008) &quot;Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct.&quot; <i>Am J Physiol Cell Physiol</i> <b>295</b>(3):C661&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/18596208 18596208]; doi: [https://dx.doi.org/10.1152/ajpcell.90650.2007 10.1152/ajpcell.90650.2007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18596208 137].
 +
#Pagliarini DJ, <i>et al.</i> (2008) &quot;A mitochondrial protein compendium elucidates complex I disease biology.&quot; <i>Cell</i> <b>134</b>(1):112&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/18614015 18614015]; doi: [https://dx.doi.org/10.1016/j.cell.2008.06.016 10.1016/j.cell.2008.06.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18614015 274].
 +
#Merrihew GE, <i>et al.</i> (2008) &quot;Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations.&quot; <i>Genome Res</i> <b>18</b>(10):1660&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/18653799 18653799]; doi: [https://dx.doi.org/10.1101/gr.077644.108 10.1101/gr.077644.108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18653799 369].
 +
#Dix MM, <i>et al.</i> (2008) &quot;Global mapping of the topography and magnitude of proteolytic events in apoptosis.&quot; <i>Cell</i> <b>134</b>(4):679&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/18724940 18724940]; doi: [https://dx.doi.org/10.1016/j.cell.2008.06.038 10.1016/j.cell.2008.06.038]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18724940 178].
 +
#Kline KG, <i>et al.</i> (2008) &quot;High quality catalog of proteotypic peptides from human heart.&quot; <i>J Proteome Res</i> <b>7</b>(11):5055&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/18803417 18803417]; doi: [https://dx.doi.org/10.1021/pr800239e 10.1021/pr800239e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18803417 96].
 +
#de Godoy LM, <i>et al.</i> (2008) &quot;Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.&quot; <i>Nature</i> <b>455</b>(7217):1251&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/18820680 18820680]; doi: [https://dx.doi.org/10.1038/nature07341 10.1038/nature07341]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18820680 505].
 +
#Liao L, <i>et al.</i> (2008) &quot;Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice.&quot; <i>Proc Natl Acad Sci U S A</i> <b>105</b>(40):15281&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/18829439 18829439]; doi: [https://dx.doi.org/10.1073/pnas.0804678105 10.1073/pnas.0804678105]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18829439 15].
 +
#Lin MK, <i>et al.</i> (2009) &quot;Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function.&quot; <i>Mol Cell Proteomics</i> <b>8</b>(2):343&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/18936055 18936055]; doi: [https://dx.doi.org/10.1074/mcp.M800420-MCP200 10.1074/mcp.M800420-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18936055 346].
 +
#Slebos RJ, <i>et al.</i> (2008) &quot;Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry.&quot; <i>J Proteome Res</i> <b>7</b>(12):5286&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/18939861 18939861]; doi: [https://dx.doi.org/10.1021/pr8004666 10.1021/pr8004666]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/18939861 346].
 +
#Mittler G, <i>et al.</i> (2009) &quot;A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements.&quot; <i>Genome Res</i> <b>19</b>(2):284&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/19015324 19015324]; doi: [https://dx.doi.org/10.1101/gr.081711.108 10.1101/gr.081711.108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19015324 7].
 +
#Codreanu SG, <i>et al.</i> (2009) &quot;Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal.&quot; <i>Mol Cell Proteomics</i> <b>8</b>(4):670&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/19054759 19054759]; doi: [https://dx.doi.org/10.1074/mcp.M800070-MCP200 10.1074/mcp.M800070-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19054759 168].
 +
#Ulintz PJ, <i>et al.</i> (2009) &quot;Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification.&quot; <i>J Proteome Res</i> <b>8</b>(2):887&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/19072539 19072539]; doi: [https://dx.doi.org/10.1021/pr800535h 10.1021/pr800535h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19072539 18].
 +
#Du J, <i>et al.</i> (2009) &quot;Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy.&quot; <i>Nat Biotechnol</i> <b>27</b>(1):77&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/19098899 19098899]; doi: [https://dx.doi.org/10.1038/nbt.1513 10.1038/nbt.1513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19098899 36].
 +
#Glatter T, <i>et al.</i> (2009) &quot;An integrated workflow for charting the human interaction proteome: insights into the PP2A system.&quot; <i>Mol Syst Biol</i> <b>5</b>:237; PMID: [https://pubmed.ncbi.nlm.nih.gov/19156129 19156129]; doi: [https://dx.doi.org/10.1038/msb.2008.75 10.1038/msb.2008.75]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19156129 62].
 +
#Bivi N, <i>et al.</i> (2009) &quot;Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates.&quot; <i>J Proteome Res</i> <b>8</b>(3):1131&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/19226166 19226166]; doi: [https://dx.doi.org/10.1021/pr8005606 10.1021/pr8005606]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19226166 10].
 +
#Pieper R, <i>et al.</i> (2009) &quot;Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes.&quot; <i>Proteome Sci</i> <b>7</b>:5; PMID: [https://pubmed.ncbi.nlm.nih.gov/19228400 19228400]; doi: [https://dx.doi.org/10.1186/1477-5956-7-5 10.1186/1477-5956-7-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19228400 376].
 +
#de Sousa Abreu R, <i>et al.</i> (2009) &quot;Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes.&quot; <i>J Biol Chem</i> <b>284</b>(18):12125&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/19258308 19258308]; doi: [https://dx.doi.org/10.1074/jbc.M809605200 10.1074/jbc.M809605200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19258308 14].
 +
#Mathias RA, <i>et al.</i> (2009) &quot;Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition.&quot; <i>J Proteome Res</i> <b>8</b>(6):2827&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/19296674 19296674]; doi: [https://dx.doi.org/10.1021/pr8010974 10.1021/pr8010974]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19296674 98].
 +
#Boersema PJ, <i>et al.</i> (2009) &quot;Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics.&quot; <i>Nat Protoc</i> <b>4</b>(4):484&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/19300442 19300442]; doi: [https://dx.doi.org/10.1038/nprot.2009.21 10.1038/nprot.2009.21]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19300442 3].
 +
#Ramakrishnan SR, <i>et al.</i> (2009) &quot;Integrating shotgun proteomics and mRNA expression data to improve protein identification.&quot; <i>Bioinformatics</i> <b>25</b>(11):1397&ndash;403; PMID: [https://pubmed.ncbi.nlm.nih.gov/19318424 19318424]; doi: [https://dx.doi.org/10.1093/bioinformatics/btp168 10.1093/bioinformatics/btp168]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19318424 8].
 +
#Rudomin EL, <i>et al.</i> (2009) &quot;Directed sample interrogation utilizing an accurate mass exclusion-based data-dependent acquisition strategy (AMEx).&quot; <i>J Proteome Res</i> <b>8</b>(6):3154&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/19344186 19344186]; doi: [https://dx.doi.org/10.1021/pr801017a 10.1021/pr801017a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19344186 11].
 +
#Steiling K, <i>et al.</i> (2009) &quot;Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers.&quot; <i>PLoS One</i> <b>4</b>(4):e5043; PMID: [https://pubmed.ncbi.nlm.nih.gov/19357784 19357784]; doi: [https://dx.doi.org/10.1371/journal.pone.0005043 10.1371/journal.pone.0005043]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19357784 589].
 +
#Hjelmervik TO, <i>et al.</i> (2009) &quot;The minor salivary gland proteome in Sj&ouml;gren&#39;s syndrome.&quot; <i>Oral Dis</i> <b>15</b>(5):342&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/19364392 19364392]; doi: [https://dx.doi.org/10.1111/j.1601-0825.2009.01531.x 10.1111/j.1601-0825.2009.01531.x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19364392 2].
 +
#Zanivan S, <i>et al.</i> (2008) &quot;Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry.&quot; <i>J Proteome Res</i> <b>7</b>(12):5314&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/19367708 19367708]; doi: [https://dx.doi.org/10.1021/pr800599n 10.1021/pr800599n]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19367708 20].
 +
#Reiland S, <i>et al.</i> (2009) &quot;Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks.&quot; <i>Plant Physiol</i> <b>150</b>(2):889&ndash;903; PMID: [https://pubmed.ncbi.nlm.nih.gov/19376835 19376835]; doi: [https://dx.doi.org/10.1104/pp.109.138677 10.1104/pp.109.138677]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19376835 13].
 +
#Parker KC, <i>et al.</i> (2009) &quot;Characterization of human skeletal muscle biopsy samples using shotgun proteomics.&quot; <i>J Proteome Res</i> <b>8</b>(7):3265&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/19382779 19382779]; doi: [https://dx.doi.org/10.1021/pr800873q 10.1021/pr800873q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19382779 36].
 +
#Bell AW, <i>et al.</i> (2009) &quot;A HUPO test sample study reveals common problems  in mass spectrometry-based proteomics.&quot; <i>Nat Methods</i> <b>6</b>(6):423&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/19448641 19448641]; doi: [https://dx.doi.org/10.1038/nmeth.1333 10.1038/nmeth.1333]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19448641 14].
 +
#Fern&aacute;ndez E, <i>et al.</i> (2009) &quot;Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins.&quot; <i>Mol Syst Biol</i> <b>5</b>:269; PMID: [https://pubmed.ncbi.nlm.nih.gov/19455133 19455133]; doi: [https://dx.doi.org/10.1038/msb.2009.27 10.1038/msb.2009.27]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19455133 70].
 +
#Sprung RW Jr, <i>et al.</i> (2009) &quot;Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis.&quot; <i>Mol Cell Proteomics</i> <b>8</b>(8):1988&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/19467989 19467989]; doi: [https://dx.doi.org/10.1074/mcp.M800518-MCP200 10.1074/mcp.M800518-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19467989 230].
 +
#Burkard ME, <i>et al.</i> (2009) &quot;Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells.&quot; <i>PLoS Biol</i> <b>7</b>(5):e1000111; PMID: [https://pubmed.ncbi.nlm.nih.gov/19468302 19468302]; doi: [https://dx.doi.org/10.1371/journal.pbio.1000111 10.1371/journal.pbio.1000111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19468302 1].
 +
#Samaee SM, <i>et al.</i> (2009) &quot;Quantitative composition of vitellogenin-derived yolk proteins and their effects on viability of embryos and larvae of common dentex (Dentex dentex), a marine pelagophil teleost.&quot; <i>J Exp Zool A Ecol Genet Physiol</i> <b>311</b>(7):504&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/19492308 19492308]; doi: [https://dx.doi.org/10.1002/jez.548 10.1002/jez.548]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19492308 4].
 +
#Ma ZQ, <i>et al.</i> (2009) &quot;IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering.&quot; <i>J Proteome Res</i> <b>8</b>(8):3872&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/19522537 19522537]; doi: [https://dx.doi.org/10.1021/pr900360j 10.1021/pr900360j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19522537 18].
 +
#Shi L, <i>et al.</i> (2009) &quot;Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica.&quot; <i>Infect Immun</i> <b>77</b>(8):3227&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/19528222 19528222]; doi: [https://dx.doi.org/10.1128/IAI.00063-09 10.1128/IAI.00063-09]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19528222 29].
 +
#Cox B, <i>et al.</i> (2009) &quot;Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology.&quot; <i>Mol Syst Biol</i> <b>5</b>:279; PMID: [https://pubmed.ncbi.nlm.nih.gov/19536202 19536202]; doi: [https://dx.doi.org/10.1038/msb.2009.37 10.1038/msb.2009.37]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19536202 166].
 +
#Kentsis A, <i>et al.</i> (2010) &quot;Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry.&quot; <i>Ann Emerg Med</i> <b>55</b>(1):62&ndash;70.e4; PMID: [https://pubmed.ncbi.nlm.nih.gov/19556024 19556024]; doi: [https://dx.doi.org/10.1016/j.annemergmed.2009.04.020 10.1016/j.annemergmed.2009.04.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19556024 311].
 +
#Lau NC, <i>et al.</i> (2009) &quot;Human Ccr4-Not complexes contain variable deadenylase subunits.&quot; <i>Biochem J</i> <b>422</b>(3):443&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/19558367 19558367]; doi: [https://dx.doi.org/10.1042/BJ20090500 10.1042/BJ20090500]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19558367 10].
 +
#Zivanovic Y, <i>et al.</i> (2009) &quot;Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea.&quot; <i>Genome Biol</i> <b>10</b>(6):R70; PMID: [https://pubmed.ncbi.nlm.nih.gov/19558674 19558674]; doi: [https://dx.doi.org/10.1186/gb-2009-10-6-r70 10.1186/gb-2009-10-6-r70]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19558674 7].
 +
#Alev C, <i>et al.</i> (2009) &quot;Genomic organization of zebra finch alpha and beta globin genes and their expression in primitive and definitive blood in comparison with globins in chicken.&quot; <i>Dev Genes Evol</i> <b>219</b>(7):353&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/19609557 19609557]; doi: [https://dx.doi.org/10.1007/s00427-009-0294-8 10.1007/s00427-009-0294-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19609557 8].
 +
#Izquierdo L, <i>et al.</i> (2009) &quot;Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases.&quot; <i>EMBO J</i> <b>28</b>(17):2650&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/19629045 19629045]; doi: [https://dx.doi.org/10.1038/emboj.2009.203 10.1038/emboj.2009.203]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19629045 1].
 +
#Van Hoof D, <i>et al.</i> (2009) &quot;Phosphorylation dynamics during early differentiation of human embryonic stem cells.&quot; <i>Cell Stem Cell</i> <b>5</b>(2):214&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/19664995 19664995]; doi: [https://dx.doi.org/10.1016/j.stem.2009.05.021 10.1016/j.stem.2009.05.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19664995 12].
 +
#Tebbe A, <i>et al.</i> (2009) &quot;Life-style changes of a halophilic archaeon analyzed by quantitative proteomics.&quot; <i>Proteomics</i> <b>9</b>(15):3843&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/19670246 19670246]; doi: [https://dx.doi.org/10.1002/pmic.200800944 10.1002/pmic.200800944]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19670246 43].
 +
#Casado-Vela J, <i>et al.</i> (2009) &quot;Comprehensive proteomic analysis of human endometrial fluid aspirate.&quot; <i>J Proteome Res</i> <b>8</b>(10):4622&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/19670903 19670903]; doi: [https://dx.doi.org/10.1021/pr9004426 10.1021/pr9004426]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19670903 4].
 +
#Charles RC, <i>et al.</i> (2009) &quot;Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium.&quot; <i>PLoS One</i> <b>4</b>(9):e6994; PMID: [https://pubmed.ncbi.nlm.nih.gov/19746165 19746165]; doi: [https://dx.doi.org/10.1371/journal.pone.0006994 10.1371/journal.pone.0006994]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19746165 6].
 +
#Pottiez G, <i>et al.</i> (2009) &quot;Understanding the blood-brain barrier using gene and protein expression profiling technologies.&quot; <i>Brain Res Rev</i> <b>62</b>(1):83&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/19770003 19770003]; doi: [https://dx.doi.org/10.1016/j.brainresrev.2009.09.004 10.1016/j.brainresrev.2009.09.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19770003 6].
 +
#Boersema PJ, <i>et al.</i> (2010) &quot;In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(1):84&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/19770167 19770167]; doi: [https://dx.doi.org/10.1074/mcp.M900291-MCP200 10.1074/mcp.M900291-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19770167 4].
 +
#Ozl&uuml; N, <i>et al.</i> (2010) &quot;Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(2):336&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/19786723 19786723]; doi: [https://dx.doi.org/10.1074/mcp.M900308-MCP200 10.1074/mcp.M900308-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19786723 13].
 +
#Johansen E, <i>et al.</i> (2009) &quot;A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples.&quot; <i>J Vis Exp</i> <b></b>(32):; PMID: [https://pubmed.ncbi.nlm.nih.gov/19798022 19798022]; doi: [https://dx.doi.org/10.3791/1398 10.3791/1398]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19798022 83].
 +
#Hahn CK, <i>et al.</i> (2009) &quot;Proteomic and genetic approaches identify Syk as an AML target.&quot; <i>Cancer Cell</i> <b>16</b>(4):281&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/19800574 19800574]; doi: [https://dx.doi.org/10.1016/j.ccr.2009.08.018 10.1016/j.ccr.2009.08.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19800574 8].
 +
#Delmotte N, <i>et al.</i> (2009) &quot;Community proteogenomics reveals insights into the physiology of phyllosphere bacteria.&quot; <i>Proc Natl Acad Sci U S A</i> <b>106</b>(38):16428&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/19805315 19805315]; doi: [https://dx.doi.org/10.1073/pnas.0905240106 10.1073/pnas.0905240106]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19805315 11].
 +
#Tunica DG, <i>et al.</i> (2009) &quot;Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS.&quot; <i>Proteomics</i> <b>9</b>(21):4991&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/19810032 19810032]; doi: [https://dx.doi.org/10.1002/pmic.200900065 10.1002/pmic.200900065]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19810032 1].
 +
#Mathivanan S, <i>et al.</i> (2010) &quot;Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(2):197&ndash;208; PMID: [https://pubmed.ncbi.nlm.nih.gov/19837982 19837982]; doi: [https://dx.doi.org/10.1074/mcp.M900152-MCP200 10.1074/mcp.M900152-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19837982 84].
 +
#Baudet M, <i>et al.</i> (2010) &quot;Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(2):415&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/19875382 19875382]; doi: [https://dx.doi.org/10.1074/mcp.M900359-MCP200 10.1074/mcp.M900359-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19875382 19].
 +
#Pitteri SJ, <i>et al.</i> (2009) &quot;Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery.&quot; <i>PLoS One</i> <b>4</b>(11):e7916; PMID: [https://pubmed.ncbi.nlm.nih.gov/19936259 19936259]; doi: [https://dx.doi.org/10.1371/journal.pone.0007916 10.1371/journal.pone.0007916]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19936259 144].
 +
#Bilodeau N, <i>et al.</i> (2010) &quot;Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes.&quot; <i>J Proteome Res</i> <b>9</b>(2):708&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/19947650 19947650]; doi: [https://dx.doi.org/10.1021/pr900481b 10.1021/pr900481b]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19947650 17].
 +
#Mathias RA, <i>et al.</i> (2010) &quot;Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration.&quot; <i>J Proteome Res</i> <b>9</b>(2):1007&ndash;19; PMID: [https://pubmed.ncbi.nlm.nih.gov/19954229 19954229]; doi: [https://dx.doi.org/10.1021/pr900907g 10.1021/pr900907g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/19954229 66].
 +
#Lau TY, <i>et al.</i> (2010) &quot;Prioritization of candidate protein biomarkers from an in vitro model system of breast tumor progression toward clinical verification.&quot; <i>J Proteome Res</i> <b>9</b>(3):1450&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/20000743 20000743]; doi: [https://dx.doi.org/10.1021/pr900989q 10.1021/pr900989q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20000743 5].
 +
#Chalkley RJ, <i>et al.</i> (2010) &quot;Statistical analysis of Peptide electron transfer dissociation fragmentation mass spectrometry.&quot; <i>Anal Chem</i> <b>82</b>(2):579&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/20028093 20028093]; doi: [https://dx.doi.org/10.1021/ac9018582 10.1021/ac9018582]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20028093 2].
 +
#Yin X, <i>et al.</i> (2010) &quot;Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(3):497&ndash;509; PMID: [https://pubmed.ncbi.nlm.nih.gov/20037178 20037178]; doi: [https://dx.doi.org/10.1074/mcp.M900275-MCP200 10.1074/mcp.M900275-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20037178 156].
 +
#Friso G, <i>et al.</i> (2010) &quot;Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly.&quot; <i>Plant Physiol</i> <b>152</b>(3):1219&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/20089766 20089766]; doi: [https://dx.doi.org/10.1104/pp.109.152694 10.1104/pp.109.152694]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20089766 301].
 +
#Gant-Branum RL, <i>et al.</i> (2010) &quot;Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry.&quot; <i>J Proteome Res</i> <b>9</b>(3):1541&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20095645 20095645]; doi: [https://dx.doi.org/10.1021/pr901043e 10.1021/pr901043e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20095645 8].
 +
#Paweletz CP, <i>et al.</i> (2010) &quot;Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry.&quot; <i>J Proteome Res</i> <b>9</b>(3):1392&ndash;401; PMID: [https://pubmed.ncbi.nlm.nih.gov/20095649 20095649]; doi: [https://dx.doi.org/10.1021/pr900925d 10.1021/pr900925d]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20095649 144].
 +
#Guo X, <i>et al.</i> (2010) &quot;Proteomic analysis of proteins involved in spermiogenesis in mouse.&quot; <i>J Proteome Res</i> <b>9</b>(3):1246&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/20099899 20099899]; doi: [https://dx.doi.org/10.1021/pr900735k 10.1021/pr900735k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20099899 1].
 +
#Chaerkady R, <i>et al.</i> (2010) &quot;Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells.&quot; <i>Proteomics</i> <b>10</b>(7):1359&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/20104618 20104618]; doi: [https://dx.doi.org/10.1002/pmic.200900483 10.1002/pmic.200900483]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20104618 3].
 +
#Burgess EF, <i>et al.</i> (2008) &quot;Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes.&quot; <i>Proteomics Clin Appl</i> <b>2</b>(9):1223; PMID: [https://pubmed.ncbi.nlm.nih.gov/20107526 20107526]; doi: [https://dx.doi.org/10.1002/prca.200780073 10.1002/prca.200780073]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20107526 115].
 +
#Swaney DL, <i>et al.</i> (2010) &quot;Value of using multiple proteases for large-scale mass spectrometry-based proteomics.&quot; <i>J Proteome Res</i> <b>9</b>(3):1323&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/20113005 20113005]; doi: [https://dx.doi.org/10.1021/pr900863u 10.1021/pr900863u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20113005 15].
 +
#Rinschen MM, <i>et al.</i> (2010) &quot;Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells.&quot; <i>Proc Natl Acad Sci U S A</i> <b>107</b>(8):3882&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/20139300 20139300]; doi: [https://dx.doi.org/10.1073/pnas.0910646107 10.1073/pnas.0910646107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20139300 117].
 +
#Looso M, <i>et al.</i> (2010) &quot;Advanced identification of proteins in uncharacterized proteomes by pulsed in vivo stable isotope labeling-based mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(6):1157&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/20139370 20139370]; doi: [https://dx.doi.org/10.1074/mcp.M900426-MCP200 10.1074/mcp.M900426-MCP200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20139370 23].
 +
#Tomazella GG, <i>et al.</i> (2010) &quot;Analysis of detergent-insoluble and whole cell lysate fractions of resting neutrophils using high-resolution mass spectrometry.&quot; <i>J Proteome Res</i> <b>9</b>(4):2030&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/20158270 20158270]; doi: [https://dx.doi.org/10.1021/pr1000253 10.1021/pr1000253]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20158270 2].
 +
#Sharma K, <i>et al.</i> (2010) &quot;Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response.&quot; <i>J Proteome Res</i> <b>9</b>(5):2539&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/20222745 20222745]; doi: [https://dx.doi.org/10.1021/pr901192p 10.1021/pr901192p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20222745 73].
 +
#Baiges I, <i>et al.</i> (2010) &quot;Lipogenesis is decreased by grape seed proanthocyanidins according to liver proteomics of rats fed a high fat diet.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(7):1499&ndash;513; PMID: [https://pubmed.ncbi.nlm.nih.gov/20332082 20332082]; doi: [https://dx.doi.org/10.1074/mcp.M000055-MCP201 10.1074/mcp.M000055-MCP201]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20332082 2].
 +
#Drake RR, <i>et al.</i> (2010) &quot;In-depth proteomic analyses of direct expressed prostatic secretions.&quot; <i>J Proteome Res</i> <b>9</b>(5):2109&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/20334419 20334419]; doi: [https://dx.doi.org/10.1021/pr1001498 10.1021/pr1001498]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20334419 9].
 +
#Ettwig KF, <i>et al.</i> (2010) &quot;Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.&quot; <i>Nature</i> <b>464</b>(7288):543&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20336137 20336137]; doi: [https://dx.doi.org/10.1038/nature08883 10.1038/nature08883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20336137 2].
 +
#Pardo M, <i>et al.</i> (2010) &quot;An expanded Oct4 interaction network: implications for stem cell biology, development, and disease.&quot; <i>Cell Stem Cell</i> <b>6</b>(4):382&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/20362542 20362542]; doi: [https://dx.doi.org/10.1016/j.stem.2010.03.004 10.1016/j.stem.2010.03.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20362542 7].
 +
#Geiger T, <i>et al.</i> (2010) &quot;Super-SILAC mix for quantitative proteomics of human tumor tissue.&quot; <i>Nat Methods</i> <b>7</b>(5):383&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/20364148 20364148]; doi: [https://dx.doi.org/10.1038/nmeth.1446 10.1038/nmeth.1446]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20364148 116].
 +
#Clair G, <i>et al.</i> (2010) &quot;Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(7):1486&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/20368289 20368289]; doi: [https://dx.doi.org/10.1074/mcp.M000027-MCP201 10.1074/mcp.M000027-MCP201]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20368289 27].
 +
#Aguiar M, <i>et al.</i> (2010) &quot;Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets.&quot; <i>J Proteome Res</i> <b>9</b>(6):3103&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/20377248 20377248]; doi: [https://dx.doi.org/10.1021/pr1000225 10.1021/pr1000225]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20377248 13].
 +
#Vandenborre G, <i>et al.</i> (2010) &quot;Glycosylation signatures in Drosophila: fishing with lectins.&quot; <i>J Proteome Res</i> <b>9</b>(6):3235&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/20387871 20387871]; doi: [https://dx.doi.org/10.1021/pr1001753 10.1021/pr1001753]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20387871 1].
 +
#Bakthavatsalam D, <i>et al.</i> (2010) &quot;The secreted proteome profile of developing Dictyostelium discoideum cells.&quot; <i>Proteomics</i> <b>10</b>(13):2556&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/20422638 20422638]; doi: [https://dx.doi.org/10.1002/pmic.200900516 10.1002/pmic.200900516]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20422638 1].
 +
#Olinares PD, <i>et al.</i> (2010) &quot;Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(7):1594&ndash;615; PMID: [https://pubmed.ncbi.nlm.nih.gov/20423899 20423899]; doi: [https://dx.doi.org/10.1074/mcp.M000038-MCP201 10.1074/mcp.M000038-MCP201]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20423899 110].
 +
#McManus CA, <i>et al.</i> (2010) &quot;Two-dimensional reference map for the basic proteome of the human dorsolateral prefrontal cortex (dlPFC) of the prefrontal lobe region of the brain.&quot; <i>Proteomics</i> <b>10</b>(13):2551&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/20432482 20432482]; doi: [https://dx.doi.org/10.1002/pmic.200900705 10.1002/pmic.200900705]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20432482 9].
 +
#Renard BY, <i>et al.</i> (2010) &quot;Estimating the confidence of peptide identifications without decoy databases.&quot; <i>Anal Chem</i> <b>82</b>(11):4314&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20455556 20455556]; doi: [https://dx.doi.org/10.1021/ac902892j 10.1021/ac902892j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20455556 58].
 +
#Hah N, <i>et al.</i> (2010) &quot;A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex.&quot; <i>Cancer Res</i> <b>70</b>(11):4402&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/20460533 20460533]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-09-2767 10.1158/0008-5472.CAN-09-2767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20460533 2].
 +
#Choudhary C, <i>et al.</i> (2010) &quot;Decoding signalling networks by mass spectrometry-based proteomics.&quot; <i>Nat Rev Mol Cell Biol</i> <b>11</b>(6):427&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/20461098 20461098]; doi: [https://dx.doi.org/10.1038/nrm2900 10.1038/nrm2900]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20461098 17].
 +
#Casado-Vela J, <i>et al.</i> (2010) &quot;Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry.&quot; <i>J Proteome Res</i> <b>9</b>(7):3479&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/20462273 20462273]; doi: [https://dx.doi.org/10.1021/pr901150g 10.1021/pr901150g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20462273 8].
 +
#Hubner NC, <i>et al.</i> (2010) &quot;Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions.&quot; <i>J Cell Biol</i> <b>189</b>(4):739&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/20479470 20479470]; doi: [https://dx.doi.org/10.1083/jcb.200911091 10.1083/jcb.200911091]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20479470 61].
 +
#Peng L, <i>et al.</i> (2010) &quot;The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard.&quot; <i>Proteomics</i> <b>10</b>(22):4142&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20486120 20486120]; doi: [https://dx.doi.org/10.1002/pmic.201000126 10.1002/pmic.201000126]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20486120 2].
 +
#Breitkreutz A, <i>et al.</i> (2010) &quot;A global protein kinase and phosphatase interaction network in yeast.&quot; <i>Science</i> <b>328</b>(5981):1043&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/20489023 20489023]; doi: [https://dx.doi.org/10.1126/science.1176495 10.1126/science.1176495]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20489023 571].
 +
#Pelletier S, <i>et al.</i> (2010) &quot;Quantifying cross-tissue diversity in proteasome complexes by mass spectrometry.&quot; <i>Mol Biosyst</i> <b>6</b>(8):1450&ndash;3; PMID: [https://pubmed.ncbi.nlm.nih.gov/20498902 20498902]; doi: [https://dx.doi.org/10.1039/c004989a 10.1039/c004989a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20498902 24].
 +
#Chen YS, <i>et al.</i> (2011) &quot;Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(2):M110.001131; PMID: [https://pubmed.ncbi.nlm.nih.gov/20511395 20511395]; doi: [https://dx.doi.org/10.1074/mcp.M110.001131 10.1074/mcp.M110.001131]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20511395 100].
 +
#Gundry RL, <i>et al.</i> (2010) &quot;Expanding the mouse embryonic stem cell proteome: combining three proteomic approaches.&quot; <i>Proteomics</i> <b>10</b>(14):2728&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/20512790 20512790]; doi: [https://dx.doi.org/10.1002/pmic.201000039 10.1002/pmic.201000039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20512790 16].
 +
#O&#39;Brien RN, <i>et al.</i> (2010) &quot;Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(10):2238&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/20513800 20513800]; doi: [https://dx.doi.org/10.1074/mcp.M110.000281 10.1074/mcp.M110.000281]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20513800 8].
 +
#Sury MD, <i>et al.</i> (2010) &quot;The SILAC fly allows for accurate protein quantification in vivo.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(10):2173&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/20525996 20525996]; doi: [https://dx.doi.org/10.1074/mcp.M110.000323 10.1074/mcp.M110.000323]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20525996 120].
 +
#Kallappagoudar S, <i>et al.</i> (2010) &quot;Nuclear matrix proteome analysis of Drosophila melanogaster.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(9):2005&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/20530634 20530634]; doi: [https://dx.doi.org/10.1074/mcp.M110.001362 10.1074/mcp.M110.001362]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20530634 19].
 +
#Didangelos A, <i>et al.</i> (2010) &quot;Proteomics characterization of extracellular space components in the human aorta.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(9):2048&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/20551380 20551380]; doi: [https://dx.doi.org/10.1074/mcp.M110.001693 10.1074/mcp.M110.001693]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20551380 108].
 +
#Kozielski F, <i>et al.</i> (2011) &quot;Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.&quot; <i>Amino Acids</i> <b>41</b>(2):363&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/20567863 20567863]; doi: [https://dx.doi.org/10.1007/s00726-010-0649-5 10.1007/s00726-010-0649-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20567863 15].
 +
#Andrews G, <i>et al.</i> (2010) &quot;Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting.&quot; <i>Anal Bioanal Chem</i> <b>398</b>(1):391&ndash;404; PMID: [https://pubmed.ncbi.nlm.nih.gov/20582400 20582400]; doi: [https://dx.doi.org/10.1007/s00216-010-3929-8 10.1007/s00216-010-3929-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20582400 48].
 +
#Li M, <i>et al.</i> (2010) &quot;Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling.&quot; <i>J Proteome Res</i> <b>9</b>(8):4295&ndash;305; PMID: [https://pubmed.ncbi.nlm.nih.gov/20586475 20586475]; doi: [https://dx.doi.org/10.1021/pr100527g 10.1021/pr100527g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20586475 153].
 +
#Wolschin F, <i>et al.</i> (2011) &quot;Insulin receptor substrate influences female caste development in honeybees.&quot; <i>Biol Lett</i> <b>7</b>(1):112&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/20591854 20591854]; doi: [https://dx.doi.org/10.1098/rsbl.2010.0463 10.1098/rsbl.2010.0463]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20591854 23].
 +
#Bezstarosti K, <i>et al.</i> (2010) &quot;Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome.&quot; <i>J Proteome Res</i> <b>9</b>(9):4464&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/20593818 20593818]; doi: [https://dx.doi.org/10.1021/pr100217d 10.1021/pr100217d]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20593818 1].
 +
#Lee CP, <i>et al.</i> (2010) &quot;Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(10):2125&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/20601493 20601493]; doi: [https://dx.doi.org/10.1074/mcp.M110.001214 10.1074/mcp.M110.001214]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20601493 55].
 +
#Azimzadeh O, <i>et al.</i> (2010) &quot;Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics.&quot; <i>J Proteome Res</i> <b>9</b>(9):4710&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/20604508 20604508]; doi: [https://dx.doi.org/10.1021/pr1004168 10.1021/pr1004168]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20604508 11].
 +
#DeMarco R, <i>et al.</i> (2010) &quot;Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts.&quot; <i>Genome Res</i> <b>20</b>(8):1112&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/20606017 20606017]; doi: [https://dx.doi.org/10.1101/gr.100099.109 10.1101/gr.100099.109]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20606017 1].
 +
#Magdeldin S, <i>et al.</i> (2010) &quot;Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8.&quot; <i>J Proteomics</i> <b>73</b>(10):2031&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/20619372 20619372]; doi: [https://dx.doi.org/10.1016/j.jprot.2010.06.010 10.1016/j.jprot.2010.06.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20619372 5].
 +
#Andrews G, <i>et al.</i> (2010) &quot;Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2.&quot; <i>Anal Bioanal Chem</i> <b>398</b>(1):377&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/20623222 20623222]; doi: [https://dx.doi.org/10.1007/s00216-010-3955-6 10.1007/s00216-010-3955-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20623222 58].
 +
#Impens F, <i>et al.</i> (2010) &quot;A quantitative proteomics design for systematic identification of protease cleavage events.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(10):2327&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/20627866 20627866]; doi: [https://dx.doi.org/10.1074/mcp.M110.001271 10.1074/mcp.M110.001271]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20627866 3].
 +
#M&auml;usbacher N, <i>et al.</i> (2010) &quot;Glycoprotein capture and quantitative phosphoproteomics indicate coordinated regulation of cell migration upon lysophosphatidic acid stimulation.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(11):2337&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/20639409 20639409]; doi: [https://dx.doi.org/10.1074/mcp.M110.000737 10.1074/mcp.M110.000737]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20639409 70].
 +
#Xu G, <i>et al.</i> (2010) &quot;Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling.&quot; <i>Nat Biotechnol</i> <b>28</b>(8):868&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/20639865 20639865]; doi: [https://dx.doi.org/10.1038/nbt.1654 10.1038/nbt.1654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20639865 2].
 +
#Tu C, <i>et al.</i> (2010) &quot;Depletion of abundant plasma proteins and limitations of plasma proteomics.&quot; <i>J Proteome Res</i> <b>9</b>(10):4982&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/20677825 20677825]; doi: [https://dx.doi.org/10.1021/pr100646w 10.1021/pr100646w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20677825 207].
 +
#Gnad F, <i>et al.</i> (2010) &quot;Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(12):2642&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/20688971 20688971]; doi: [https://dx.doi.org/10.1074/mcp.M110.001594 10.1074/mcp.M110.001594]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20688971 18].
 +
#Korfali N, <i>et al.</i> (2010) &quot;The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(12):2571&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/20693407 20693407]; doi: [https://dx.doi.org/10.1074/mcp.M110.002915 10.1074/mcp.M110.002915]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20693407 8].
 +
#Victor KJ, <i>et al.</i> (2010) &quot;Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines.&quot; <i>Proteome Sci</i> <b>8</b>:44; PMID: [https://pubmed.ncbi.nlm.nih.gov/20704748 20704748]; doi: [https://dx.doi.org/10.1186/1477-5956-8-44 10.1186/1477-5956-8-44]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20704748 2].
 +
#Gunaratne R, <i>et al.</i> (2010) &quot;Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells.&quot; <i>Proc Natl Acad Sci U S A</i> <b>107</b>(35):15653&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20713729 20713729]; doi: [https://dx.doi.org/10.1073/pnas.1007424107 10.1073/pnas.1007424107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20713729 4].
 +
#Kline KG, <i>et al.</i> (2010) &quot;In planta changes in protein phosphorylation induced by the plant hormone abscisic acid.&quot; <i>Proc Natl Acad Sci U S A</i> <b>107</b>(36):15986&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/20733066 20733066]; doi: [https://dx.doi.org/10.1073/pnas.1007879107 10.1073/pnas.1007879107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20733066 48].
 +
#Franklin S, <i>et al.</i> (2011) &quot;Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(1):M110.000703; PMID: [https://pubmed.ncbi.nlm.nih.gov/20807835 20807835]; doi: [https://dx.doi.org/10.1074/mcp.M110.000703 10.1074/mcp.M110.000703]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20807835 136].
 +
#Alvarado R, <i>et al.</i> (2010) &quot;A comparative study of in-gel digestions using microwave and pressure-accelerated technologies.&quot; <i>J Biomol Tech</i> <b>21</b>(3):148&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/20808644 20808644]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20808644 85].
 +
#Wei Y, <i>et al.</i> (2011) &quot;Primary tumor xenografts of human lung adeno and squamous cell carcinoma express distinct proteomic signatures.&quot; <i>J Proteome Res</i> <b>10</b>(1):161&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/20815376 20815376]; doi: [https://dx.doi.org/10.1021/pr100491e 10.1021/pr100491e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20815376 150].
 +
#Patel VN, <i>et al.</i> (2010) &quot;Prediction and testing of biological networks underlying intestinal cancer.&quot; <i>PLoS One</i> <b>5</b>(9):; PMID: [https://pubmed.ncbi.nlm.nih.gov/20824133 20824133]; doi: [https://dx.doi.org/10.1371/journal.pone.0012497 10.1371/journal.pone.0012497]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20824133 1].
 +
#Kim S, <i>et al.</i> (2010) &quot;The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(12):2840&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/20829449 20829449]; doi: [https://dx.doi.org/10.1074/mcp.M110.003731 10.1074/mcp.M110.003731]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20829449 48].
 +
#Collier TS, <i>et al.</i> (2010) &quot;Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics.&quot; <i>Anal Chem</i> <b>82</b>(20):8696&ndash;702; PMID: [https://pubmed.ncbi.nlm.nih.gov/20845935 20845935]; doi: [https://dx.doi.org/10.1021/ac101978b 10.1021/ac101978b]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20845935 39].
 +
#Vermeulen M, <i>et al.</i> (2010) &quot;Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers.&quot; <i>Cell</i> <b>142</b>(6):967&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/20850016 20850016]; doi: [https://dx.doi.org/10.1016/j.cell.2010.08.020 10.1016/j.cell.2010.08.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20850016 92].
 +
#Wegener KM, <i>et al.</i> (2010) &quot;Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations.&quot; <i>Mol Cell Proteomics</i> <b>9</b>(12):2678&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/20858728 20858728]; doi: [https://dx.doi.org/10.1074/mcp.M110.000109 10.1074/mcp.M110.000109]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20858728 278].
 +
#Nagaraj N, <i>et al.</i> (2010) &quot;Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation.&quot; <i>J Proteome Res</i> <b>9</b>(12):6786&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/20873877 20873877]; doi: [https://dx.doi.org/10.1021/pr100637q 10.1021/pr100637q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20873877 25].
 +
#Sun RX, <i>et al.</i> (2010) &quot;Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra.&quot; <i>J Proteome Res</i> <b>9</b>(12):6354&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/20883037 20883037]; doi: [https://dx.doi.org/10.1021/pr100648r 10.1021/pr100648r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20883037 69].
 +
#Stone MD, <i>et al.</i> (2010) &quot;Novel In Situ Collection of Tumor Interstitial Fluid from a Head and Neck Squamous Carcinoma Reveals a Unique Proteome with Diagnostic Potential.&quot; <i>Clin Proteomics</i> <b>6</b>(3):75&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/20930922 20930922]; doi: [https://dx.doi.org/10.1007/s12014-010-9050-3 10.1007/s12014-010-9050-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20930922 1].
 +
#Rice RH, <i>et al.</i> (2010) &quot;Proteomic analysis of human nail plate.&quot; <i>J Proteome Res</i> <b>9</b>(12):6752&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/20939611 20939611]; doi: [https://dx.doi.org/10.1021/pr1009349 10.1021/pr1009349]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20939611 40].
 +
#Khositseth S, <i>et al.</i> (2011) &quot;Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(1):M110.004036; PMID: [https://pubmed.ncbi.nlm.nih.gov/20940332 20940332]; doi: [https://dx.doi.org/10.1074/mcp.M110.004036 10.1074/mcp.M110.004036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20940332 5].
 +
#Bowyer PW, <i>et al.</i> (2011) &quot;Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(5):M110.001636; PMID: [https://pubmed.ncbi.nlm.nih.gov/20943600 20943600]; doi: [https://dx.doi.org/10.1074/mcp.M110.001636 10.1074/mcp.M110.001636]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20943600 760].
 +
#Dedieu A, <i>et al.</i> (2011) &quot;Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy.&quot; <i>J Biol Chem</i> <b>286</b>(1):259&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/20978121 20978121]; doi: [https://dx.doi.org/10.1074/jbc.M110.159483 10.1074/jbc.M110.159483]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/20978121 14].
 +
#Bartke T, <i>et al.</i> (2010) &quot;Nucleosome-interacting proteins regulated by DNA and histone methylation.&quot; <i>Cell</i> <b>143</b>(3):470&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/21029866 21029866]; doi: [https://dx.doi.org/10.1016/j.cell.2010.10.012 10.1016/j.cell.2010.10.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21029866 160].
 +
#de Souza GA, <i>et al.</i> (2011) &quot;Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(1):M110.002527; PMID: [https://pubmed.ncbi.nlm.nih.gov/21030493 21030493]; doi: [https://dx.doi.org/10.1074/mcp.M110.002527 10.1074/mcp.M110.002527]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21030493 6].
 +
#Murray CI, <i>et al.</i> (2011) &quot;Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(3):M110.004721; PMID: [https://pubmed.ncbi.nlm.nih.gov/21036925 21036925]; doi: [https://dx.doi.org/10.1074/mcp.M110.004721 10.1074/mcp.M110.004721]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21036925 36].
 +
#Walther DM, <i>et al.</i> (2011) &quot;Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(2):M110.004523; PMID: [https://pubmed.ncbi.nlm.nih.gov/21048193 21048193]; doi: [https://dx.doi.org/10.1074/mcp.M110.004523 10.1074/mcp.M110.004523]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21048193 119].
 +
#Murphy JP, <i>et al.</i> (2011) &quot;Targeted proteomic analysis of glycolysis in cancer cells.&quot; <i>J Proteome Res</i> <b>10</b>(2):604&ndash;13; PMID: [https://pubmed.ncbi.nlm.nih.gov/21058741 21058741]; doi: [https://dx.doi.org/10.1021/pr100774f 10.1021/pr100774f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21058741 1].
 +
#Li YF, <i>et al.</i> (2010) &quot;The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics.&quot; <i>J Proteome Res</i> <b>9</b>(12):6288&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/21067214 21067214]; doi: [https://dx.doi.org/10.1021/pr1005586 10.1021/pr1005586]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21067214 20].
 +
#Vranakis I, <i>et al.</i> (2011) &quot;Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii.&quot; <i>J Proteome Res</i> <b>10</b>(2):756&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/21070068 21070068]; doi: [https://dx.doi.org/10.1021/pr100906v 10.1021/pr100906v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21070068 1].
 +
#Angel TE, <i>et al.</i> (2010) &quot;Proteome analysis of Borrelia burgdorferi response to environmental change.&quot; <i>PLoS One</i> <b>5</b>(11):e13800; PMID: [https://pubmed.ncbi.nlm.nih.gov/21072190 21072190]; doi: [https://dx.doi.org/10.1371/journal.pone.0013800 10.1371/journal.pone.0013800]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21072190 70].
 +
#Majeran W, <i>et al.</i> (2010) &quot;Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.&quot; <i>Plant Cell</i> <b>22</b>(11):3509&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/21081695 21081695]; doi: [https://dx.doi.org/10.1105/tpc.110.079764 10.1105/tpc.110.079764]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21081695 453].
 +
#Valgepea K, <i>et al.</i> (2010) &quot;Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase.&quot; <i>BMC Syst Biol</i> <b>4</b>:166; PMID: [https://pubmed.ncbi.nlm.nih.gov/21122111 21122111]; doi: [https://dx.doi.org/10.1186/1752-0509-4-166 10.1186/1752-0509-4-166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21122111 22].
 +
#Helbig AO, <i>et al.</i> (2010) &quot;Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels.&quot; <i>BMC Genomics</i> <b>11</b>:685; PMID: [https://pubmed.ncbi.nlm.nih.gov/21126336 21126336]; doi: [https://dx.doi.org/10.1186/1471-2164-11-685 10.1186/1471-2164-11-685]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21126336 10].
 +
#Fan C, <i>et al.</i> (2011) &quot;S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(3):M110.000901; PMID: [https://pubmed.ncbi.nlm.nih.gov/21139050 21139050]; doi: [https://dx.doi.org/10.1074/mcp.M110.000901 10.1074/mcp.M110.000901]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21139050 13].
 +
#Skirycz A, <i>et al.</i> (2011) &quot;A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions.&quot; <i>J Proteome Res</i> <b>10</b>(3):1018&ndash;29; PMID: [https://pubmed.ncbi.nlm.nih.gov/21142212 21142212]; doi: [https://dx.doi.org/10.1021/pr100785n 10.1021/pr100785n]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21142212 476].
 +
#Mestdagh P, <i>et al.</i> (2010) &quot;The miR-17-92 microRNA cluster regulates multiple components of the TGF-&beta; pathway in neuroblastoma.&quot; <i>Mol Cell</i> <b>40</b>(5):762&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/21145484 21145484]; doi: [https://dx.doi.org/10.1016/j.molcel.2010.11.038 10.1016/j.molcel.2010.11.038]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21145484 1].
 +
#Li QR, <i>et al.</i> (2011) &quot;Large scale phosphoproteome profiles comprehensive features of mouse embryonic stem cells.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(4):M110.001750; PMID: [https://pubmed.ncbi.nlm.nih.gov/21149613 21149613]; doi: [https://dx.doi.org/10.1074/mcp.M110.001750 10.1074/mcp.M110.001750]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21149613 12].
 +
#Ito J, <i>et al.</i> (2011) &quot;Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism.&quot; <i>J Proteome Res</i> <b>10</b>(4):1571&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/21166475 21166475]; doi: [https://dx.doi.org/10.1021/pr1009433 10.1021/pr1009433]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21166475 3].
 +
#Lee JE, <i>et al.</i> (2011) &quot;The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(5):M110.006460; PMID: [https://pubmed.ncbi.nlm.nih.gov/21169563 21169563]; doi: [https://dx.doi.org/10.1074/mcp.M110.006460 10.1074/mcp.M110.006460]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21169563 41].
 +
#Huttlin EL, <i>et al.</i> (2010) &quot;A tissue-specific atlas of mouse protein phosphorylation and expression.&quot; <i>Cell</i> <b>143</b>(7):1174&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/21183079 21183079]; doi: [https://dx.doi.org/10.1016/j.cell.2010.12.001 10.1016/j.cell.2010.12.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21183079 562].
 +
#Brockmeyer C, <i>et al.</i> (2011) &quot;T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component.&quot; <i>J Biol Chem</i> <b>286</b>(9):7535&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/21189249 21189249]; doi: [https://dx.doi.org/10.1074/jbc.M110.201236 10.1074/jbc.M110.201236]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21189249 4].
 +
#Manes NP, <i>et al.</i> (2011) &quot;Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(3):M110.000927; PMID: [https://pubmed.ncbi.nlm.nih.gov/21189417 21189417]; doi: [https://dx.doi.org/10.1074/mcp.M110.000927 10.1074/mcp.M110.000927]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21189417 133].
 +
#Chornoguz O, <i>et al.</i> (2011) &quot;Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(3):M110.002980; PMID: [https://pubmed.ncbi.nlm.nih.gov/21191032 21191032]; doi: [https://dx.doi.org/10.1074/mcp.M110.002980 10.1074/mcp.M110.002980]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21191032 6].
 +
#Hansson J, <i>et al.</i> (2011) &quot;Time-resolved quantitative proteome analysis of in vivo intestinal development.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(3):M110.005231; PMID: [https://pubmed.ncbi.nlm.nih.gov/21191033 21191033]; doi: [https://dx.doi.org/10.1074/mcp.M110.005231 10.1074/mcp.M110.005231]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21191033 48].
 +
#Singh SK, <i>et al.</i> (2011) &quot;Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis.&quot; <i>J Sep Sci</i> <b>34</b>(2):225&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/21246729 21246729]; doi: [https://dx.doi.org/10.1002/jssc.201000626 10.1002/jssc.201000626]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21246729 17].
 +
#Bantscheff M, <i>et al.</i> (2011) &quot;Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes.&quot; <i>Nat Biotechnol</i> <b>29</b>(3):255&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/21258344 21258344]; doi: [https://dx.doi.org/10.1038/nbt.1759 10.1038/nbt.1759]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21258344 128].
 +
#Baerenfaller K, <i>et al.</i> (2011) &quot;pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana.&quot; <i>Integr Biol (Camb)</i> <b>3</b>(3):225&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/21264403 21264403]; doi: [https://dx.doi.org/10.1039/c0ib00078g 10.1039/c0ib00078g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21264403 64].
 +
#Otto A, <i>et al.</i> (2010) &quot;Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis.&quot; <i>Nat Commun</i> <b>1</b>:137; PMID: [https://pubmed.ncbi.nlm.nih.gov/21266987 21266987]; doi: [https://dx.doi.org/10.1038/ncomms1137 10.1038/ncomms1137]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21266987 76].
 +
#Burkard TR, <i>et al.</i> (2011) &quot;Initial characterization of the human central proteome.&quot; <i>BMC Syst Biol</i> <b>5</b>:17; PMID: [https://pubmed.ncbi.nlm.nih.gov/21269460 21269460]; doi: [https://dx.doi.org/10.1186/1752-0509-5-17 10.1186/1752-0509-5-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21269460 99].
 +
#Smith CR, <i>et al.</i> (2011) &quot;Draft genome of the red harvester ant Pogonomyrmex barbatus.&quot; <i>Proc Natl Acad Sci U S A</i> <b>108</b>(14):5667&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/21282651 21282651]; doi: [https://dx.doi.org/10.1073/pnas.1007901108 10.1073/pnas.1007901108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21282651 2].
 +
#Michalski A, <i>et al.</i> (2011) &quot;More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS.&quot; <i>J Proteome Res</i> <b>10</b>(4):1785&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/21309581 21309581]; doi: [https://dx.doi.org/10.1021/pr101060v 10.1021/pr101060v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21309581 3].
 +
#Lahtvee PJ, <i>et al.</i> (2011) &quot;Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.&quot; <i>Microb Cell Fact</i> <b>10</b>:12; PMID: [https://pubmed.ncbi.nlm.nih.gov/21349178 21349178]; doi: [https://dx.doi.org/10.1186/1475-2859-10-12 10.1186/1475-2859-10-12]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21349178 64].
 +
#Paul D, <i>et al.</i> (2011) &quot;Proteome and membrane fatty acid analyses on Oligotropha carboxidovorans OM5 grown under chemolithoautotrophic and heterotrophic conditions.&quot; <i>PLoS One</i> <b>6</b>(2):e17111; PMID: [https://pubmed.ncbi.nlm.nih.gov/21386900 21386900]; doi: [https://dx.doi.org/10.1371/journal.pone.0017111 10.1371/journal.pone.0017111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21386900 1].
 +
#Li J, <i>et al.</i> (2011) &quot;A bioinformatics workflow for variant peptide detection in shotgun proteomics.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(5):M110.006536; PMID: [https://pubmed.ncbi.nlm.nih.gov/21389108 21389108]; doi: [https://dx.doi.org/10.1074/mcp.M110.006536 10.1074/mcp.M110.006536]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21389108 59].
 +
#Frese CK, <i>et al.</i> (2011) &quot;Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos.&quot; <i>J Proteome Res</i> <b>10</b>(5):2377&ndash;88; PMID: [https://pubmed.ncbi.nlm.nih.gov/21413819 21413819]; doi: [https://dx.doi.org/10.1021/pr1011729 10.1021/pr1011729]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21413819 73].
 +
#Poliakov A, <i>et al.</i> (2011) &quot;Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(6):M110.007039; PMID: [https://pubmed.ncbi.nlm.nih.gov/21421797 21421797]; doi: [https://dx.doi.org/10.1074/mcp.M110.007039 10.1074/mcp.M110.007039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21421797 148].
 +
#Di Palma S, <i>et al.</i> (2011) &quot;Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis.&quot; <i>Anal Chem</i> <b>83</b>(9):3440&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/21443167 21443167]; doi: [https://dx.doi.org/10.1021/ac103312e 10.1021/ac103312e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21443167 4].
 +
#Jagannadham MV, <i>et al.</i> (2011) &quot;Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(6):M110.004549; PMID: [https://pubmed.ncbi.nlm.nih.gov/21447709 21447709]; doi: [https://dx.doi.org/10.1074/mcp.M110.004549 10.1074/mcp.M110.004549]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21447709 14].
 +
#Chik JK, <i>et al.</i> (2011) &quot;Proteome of the Caenorhabditis elegans oocyte.&quot; <i>J Proteome Res</i> <b>10</b>(5):2300&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/21452892 21452892]; doi: [https://dx.doi.org/10.1021/pr101124f 10.1021/pr101124f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21452892 125].
 +
#Brosch M, <i>et al.</i> (2011) &quot;Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and &quot;resurrected&quot; pseudogenes in the mouse genome.&quot; <i>Genome Res</i> <b>21</b>(5):756&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/21460061 21460061]; doi: [https://dx.doi.org/10.1101/gr.114272.110 10.1101/gr.114272.110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21460061 3].
 +
#Elschenbroich S, <i>et al.</i> (2011) &quot;In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry.&quot; <i>J Proteome Res</i> <b>10</b>(5):2286&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/21491939 21491939]; doi: [https://dx.doi.org/10.1021/pr1011087 10.1021/pr1011087]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21491939 210].
 +
#Sixt BS, <i>et al.</i> (2011) &quot;Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila.&quot; <i>Proteomics</i> <b>11</b>(10):1868&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/21500343 21500343]; doi: [https://dx.doi.org/10.1002/pmic.201000510 10.1002/pmic.201000510]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21500343 232].
 +
#Farid SG, <i>et al.</i> (2011) &quot;Shotgun proteomics of human bile in hilar cholangiocarcinoma.&quot; <i>Proteomics</i> <b>11</b>(10):2134&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/21500345 21500345]; doi: [https://dx.doi.org/10.1002/pmic.201000653 10.1002/pmic.201000653]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21500345 1].
 +
#Vaudel M, <i>et al.</i> (2011) &quot;Peptide identification quality control.&quot; <i>Proteomics</i> <b>11</b>(10):2105&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/21500347 21500347]; doi: [https://dx.doi.org/10.1002/pmic.201000704 10.1002/pmic.201000704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21500347 8].
 +
#Marimuthu A, <i>et al.</i> (2011) &quot;A comprehensive map of the human urinary proteome.&quot; <i>J Proteome Res</i> <b>10</b>(6):2734&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/21500864 21500864]; doi: [https://dx.doi.org/10.1021/pr2003038 10.1021/pr2003038]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21500864 28].
 +
#Ma ZQ, <i>et al.</i> (2011) &quot;ScanRanker: Quality assessment of tandem mass spectra via sequence tagging.&quot; <i>J Proteome Res</i> <b>10</b>(7):2896&ndash;904; PMID: [https://pubmed.ncbi.nlm.nih.gov/21520941 21520941]; doi: [https://dx.doi.org/10.1021/pr200118r 10.1021/pr200118r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21520941 9].
 +
#Adamidi C, <i>et al.</i> (2011) &quot;De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics.&quot; <i>Genome Res</i> <b>21</b>(7):1193&ndash;200; PMID: [https://pubmed.ncbi.nlm.nih.gov/21536722 21536722]; doi: [https://dx.doi.org/10.1101/gr.113779.110 10.1101/gr.113779.110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21536722 19].
 +
#Wu R, <i>et al.</i> (2011) &quot;Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(8):M111.009654; PMID: [https://pubmed.ncbi.nlm.nih.gov/21551504 21551504]; doi: [https://dx.doi.org/10.1074/mcp.M111.009654 10.1074/mcp.M111.009654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21551504 15].
 +
#de Poot SA, <i>et al.</i> (2011) &quot;Human and mouse granzyme M display divergent and species-specific substrate specificities.&quot; <i>Biochem J</i> <b>437</b>(3):431&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/21564021 21564021]; doi: [https://dx.doi.org/10.1042/BJ20110210 10.1042/BJ20110210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21564021 1].
 +
#Overton IM, <i>et al.</i> (2011) &quot;Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus.&quot; <i>BMC Syst Biol</i> <b>5</b>:68; PMID: [https://pubmed.ncbi.nlm.nih.gov/21569391 21569391]; doi: [https://dx.doi.org/10.1186/1752-0509-5-68 10.1186/1752-0509-5-68]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21569391 10].
 +
#Thakur SS, <i>et al.</i> (2011) &quot;Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(8):M110.003699; PMID: [https://pubmed.ncbi.nlm.nih.gov/21586754 21586754]; doi: [https://dx.doi.org/10.1074/mcp.M110.003699 10.1074/mcp.M110.003699]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21586754 21].
 +
#Didangelos A, <i>et al.</i> (2011) &quot;Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(8):M111.008128; PMID: [https://pubmed.ncbi.nlm.nih.gov/21593211 21593211]; doi: [https://dx.doi.org/10.1074/mcp.M111.008128 10.1074/mcp.M111.008128]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21593211 168].
 +
#Schwanh&auml;usser B, <i>et al.</i> (2011) &quot;Global quantification of mammalian gene expression control.&quot; <i>Nature</i> <b>473</b>(7347):337&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/21593866 21593866]; doi: [https://dx.doi.org/10.1038/nature10098 10.1038/nature10098]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21593866 61].
 +
#Kim MS, <i>et al.</i> (2011) &quot;Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides.&quot; <i>Proteomics</i> <b>11</b>(12):2568&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/21598390 21598390]; doi: [https://dx.doi.org/10.1002/pmic.201000547 10.1002/pmic.201000547]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21598390 28].
 +
#M&uuml;hlhaus T, <i>et al.</i> (2011) &quot;Quantitative shotgun proteomics using a uniform &sup1;&#x2075;N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(9):M110.004739; PMID: [https://pubmed.ncbi.nlm.nih.gov/21610104 21610104]; doi: [https://dx.doi.org/10.1074/mcp.M110.004739 10.1074/mcp.M110.004739]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21610104 2].
 +
#Shao H, <i>et al.</i> (2011) &quot;Proteome profiling of wild type and lumican-deficient mouse corneas.&quot; <i>J Proteomics</i> <b>74</b>(10):1895&ndash;905; PMID: [https://pubmed.ncbi.nlm.nih.gov/21616181 21616181]; doi: [https://dx.doi.org/10.1016/j.jprot.2011.04.032 10.1016/j.jprot.2011.04.032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21616181 96].
 +
#Helsens K, <i>et al.</i> (2011) &quot;Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.&quot; <i>J Proteome Res</i> <b>10</b>(8):3578&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/21619078 21619078]; doi: [https://dx.doi.org/10.1021/pr2002325 10.1021/pr2002325]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21619078 1].
 +
#Dunham WH, <i>et al.</i> (2011) &quot;A cost-benefit analysis of multidimensional fractionation of affinity purification-mass spectrometry samples.&quot; <i>Proteomics</i> <b>11</b>(13):2603&ndash;12; PMID: [https://pubmed.ncbi.nlm.nih.gov/21630450 21630450]; doi: [https://dx.doi.org/10.1002/pmic.201000571 10.1002/pmic.201000571]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21630450 105].
 +
#Choi DS, <i>et al.</i> (2011) &quot;Proteomic analysis of microvesicles derived from human colorectal cancer ascites.&quot; <i>Proteomics</i> <b>11</b>(13):2745&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/21630462 21630462]; doi: [https://dx.doi.org/10.1002/pmic.201100022 10.1002/pmic.201100022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21630462 3].
 +
#Le Bihan T, <i>et al.</i> (2011) &quot;Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri.&quot; <i>J Proteomics</i> <b>74</b>(10):2060&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/21635980 21635980]; doi: [https://dx.doi.org/10.1016/j.jprot.2011.05.028 10.1016/j.jprot.2011.05.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21635980 236].
 +
#Chan QW, <i>et al.</i> (2011) &quot;A honey bee (Apis mellifera L.) PeptideAtlas crossing castes and tissues.&quot; <i>BMC Genomics</i> <b>12</b>:290; PMID: [https://pubmed.ncbi.nlm.nih.gov/21639908 21639908]; doi: [https://dx.doi.org/10.1186/1471-2164-12-290 10.1186/1471-2164-12-290]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21639908 1032].
 +
#Olsson N, <i>et al.</i> (2011) &quot;Proteomic analysis and discovery using affinity proteomics and mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(10):M110.003962; PMID: [https://pubmed.ncbi.nlm.nih.gov/21673276 21673276]; doi: [https://dx.doi.org/10.1074/mcp.M110.003962 10.1074/mcp.M110.003962]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21673276 109].
 +
#Addona TA, <i>et al.</i> (2011) &quot;A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease.&quot; <i>Nat Biotechnol</i> <b>29</b>(7):635&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/21685905 21685905]; doi: [https://dx.doi.org/10.1038/nbt.1899 10.1038/nbt.1899]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21685905 269].
 +
#Gfeller A, <i>et al.</i> (2011) &quot;Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves.&quot; <i>Plant Physiol</i> <b>156</b>(4):1797&ndash;807; PMID: [https://pubmed.ncbi.nlm.nih.gov/21693672 21693672]; doi: [https://dx.doi.org/10.1104/pp.111.181008 10.1104/pp.111.181008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21693672 8].
 +
#Karn RC, <i>et al.</i> (2011) &quot;Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes.&quot; <i>PLoS One</i> <b>6</b>(6):e20979; PMID: [https://pubmed.ncbi.nlm.nih.gov/21695125 21695125]; doi: [https://dx.doi.org/10.1371/journal.pone.0020979 10.1371/journal.pone.0020979]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21695125 102].
 +
#de Oliveira JM, <i>et al.</i> (2011) &quot;Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.&quot; <i>PLoS One</i> <b>6</b>(6):e20865; PMID: [https://pubmed.ncbi.nlm.nih.gov/21698107 21698107]; doi: [https://dx.doi.org/10.1371/journal.pone.0020865 10.1371/journal.pone.0020865]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21698107 2].
 +
#Kuntumalla S, <i>et al.</i> (2011) &quot;In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism.&quot; <i>BMC Microbiol</i> <b>11</b>:147; PMID: [https://pubmed.ncbi.nlm.nih.gov/21702961 21702961]; doi: [https://dx.doi.org/10.1186/1471-2180-11-147 10.1186/1471-2180-11-147]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21702961 19].
 +
#Bisson N, <i>et al.</i> (2011) &quot;Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor.&quot; <i>Nat Biotechnol</i> <b>29</b>(7):653&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/21706016 21706016]; doi: [https://dx.doi.org/10.1038/nbt.1905 10.1038/nbt.1905]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21706016 5].
 +
#Kettenbach AN, <i>et al.</i> (2011) &quot;Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells.&quot; <i>Sci Signal</i> <b>4</b>(179):rs5; PMID: [https://pubmed.ncbi.nlm.nih.gov/21712546 21712546]; doi: [https://dx.doi.org/10.1126/scisignal.2001497 10.1126/scisignal.2001497]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21712546 100].
 +
#Bradel-Tretheway BG, <i>et al.</i> (2011) &quot;Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors.&quot; <i>J Virol</i> <b>85</b>(17):8569&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/21715506 21715506]; doi: [https://dx.doi.org/10.1128/JVI.00496-11 10.1128/JVI.00496-11]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21715506 22].
 +
#Freschi L, <i>et al.</i> (2011) &quot;Phosphorylation network rewiring by gene duplication.&quot; <i>Mol Syst Biol</i> <b>7</b>:504; PMID: [https://pubmed.ncbi.nlm.nih.gov/21734643 21734643]; doi: [https://dx.doi.org/10.1038/msb.2011.43 10.1038/msb.2011.43]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21734643 2].
 +
#Bright LA, <i>et al.</i> (2011) &quot;Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences.&quot; <i>Anim Genet</i> <b>42</b>(4):395&ndash;405; PMID: [https://pubmed.ncbi.nlm.nih.gov/21749422 21749422]; doi: [https://dx.doi.org/10.1111/j.1365-2052.2010.02158.x 10.1111/j.1365-2052.2010.02158.x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21749422 6].
 +
#Chi BK, <i>et al.</i> (2011) &quot;S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(11):M111.009506; PMID: [https://pubmed.ncbi.nlm.nih.gov/21749987 21749987]; doi: [https://dx.doi.org/10.1074/mcp.M111.009506 10.1074/mcp.M111.009506]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21749987 144].
 +
#Choi DS, <i>et al.</i> (2011) &quot;Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa.&quot; <i>Proteomics</i> <b>11</b>(16):3424&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/21751344 21751344]; doi: [https://dx.doi.org/10.1002/pmic.201000212 10.1002/pmic.201000212]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21751344 4].
 +
#Vermachova M, <i>et al.</i> (2011) &quot;New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis.&quot; <i>Proteomics</i> <b>11</b>(16):3430&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/21751352 21751352]; doi: [https://dx.doi.org/10.1002/pmic.201000603 10.1002/pmic.201000603]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21751352 19].
 +
#Capriotti AL, <i>et al.</i> (2011) &quot;DNA affects the composition of lipoplex protein corona: a proteomics approach.&quot; <i>Proteomics</i> <b>11</b>(16):3349&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/21751361 21751361]; doi: [https://dx.doi.org/10.1002/pmic.201000803 10.1002/pmic.201000803]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21751361 2].
 +
#Raj L, <i>et al.</i> (2011) &quot;Selective killing of cancer cells by a small molecule targeting the stress response to ROS.&quot; <i>Nature</i> <b>475</b>(7355):231&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/21753854 21753854]; doi: [https://dx.doi.org/10.1038/nature10167 10.1038/nature10167]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21753854 81].
 +
#Reiland S, <i>et al.</i> (2011) &quot;Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF).&quot; <i>Proc Natl Acad Sci U S A</i> <b>108</b>(31):12955&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/21768351 21768351]; doi: [https://dx.doi.org/10.1073/pnas.1104734108 10.1073/pnas.1104734108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21768351 8].
 +
#Schmidt A, <i>et al.</i> (2011) &quot;Absolute quantification of microbial proteomes at different states by directed mass spectrometry.&quot; <i>Mol Syst Biol</i> <b>7</b>:510; PMID: [https://pubmed.ncbi.nlm.nih.gov/21772258 21772258]; doi: [https://dx.doi.org/10.1038/msb.2011.37 10.1038/msb.2011.37]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21772258 93].
 +
#Maier T, <i>et al.</i> (2011) &quot;Quantification of mRNA and protein and integration with protein turnover in a bacterium.&quot; <i>Mol Syst Biol</i> <b>7</b>:511; PMID: [https://pubmed.ncbi.nlm.nih.gov/21772259 21772259]; doi: [https://dx.doi.org/10.1038/msb.2011.38 10.1038/msb.2011.38]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21772259 42].
 +
#Sundaresan NR, <i>et al.</i> (2011) &quot;The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy.&quot; <i>Sci Signal</i> <b>4</b>(182):ra46; PMID: [https://pubmed.ncbi.nlm.nih.gov/21775285 21775285]; doi: [https://dx.doi.org/10.1126/scisignal.2001465 10.1126/scisignal.2001465]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21775285 2].
 +
#Ficarro SB, <i>et al.</i> (2011) &quot;Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(11):O111.011064; PMID: [https://pubmed.ncbi.nlm.nih.gov/21788404 21788404]; doi: [https://dx.doi.org/10.1074/mcp.O111.011064 10.1074/mcp.O111.011064]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21788404 437].
 +
#Vranakis I, <i>et al.</i> (2011) &quot;Unraveling persistent host cell infection with Coxiella burnetii by quantitative proteomics.&quot; <i>J Proteome Res</i> <b>10</b>(9):4241&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/21790200 21790200]; doi: [https://dx.doi.org/10.1021/pr200422f 10.1021/pr200422f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21790200 1].
 +
#Weinert BT, <i>et al.</i> (2011) &quot;Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation.&quot; <i>Sci Signal</i> <b>4</b>(183):ra48; PMID: [https://pubmed.ncbi.nlm.nih.gov/21791702 21791702]; doi: [https://dx.doi.org/10.1126/scisignal.2001902 10.1126/scisignal.2001902]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21791702 46].
 +
#Chaerkady R, <i>et al.</i> (2011) &quot;A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry.&quot; <i>Genome Res</i> <b>21</b>(11):1872&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/21795387 21795387]; doi: [https://dx.doi.org/10.1101/gr.127951.111 10.1101/gr.127951.111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21795387 341].
 +
#Staes A, <i>et al.</i> (2011) &quot;Selecting protein N-terminal peptides by combined fractional diagonal chromatography.&quot; <i>Nat Protoc</i> <b>6</b>(8):1130&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/21799483 21799483]; doi: [https://dx.doi.org/10.1038/nprot.2011.355 10.1038/nprot.2011.355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21799483 1].
 +
#Hennrich ML, <i>et al.</i> (2011) &quot;Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.&quot; <i>Anal Chem</i> <b>83</b>(18):7137&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/21815630 21815630]; doi: [https://dx.doi.org/10.1021/ac2015068 10.1021/ac2015068]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21815630 119].
 +
#Pagliuca FW, <i>et al.</i> (2011) &quot;Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery.&quot; <i>Mol Cell</i> <b>43</b>(3):406&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/21816347 21816347]; doi: [https://dx.doi.org/10.1016/j.molcel.2011.05.031 10.1016/j.molcel.2011.05.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21816347 3].
 +
#Fisunov GY, <i>et al.</i> (2011) &quot;Core proteome of the minimal cell: comparative proteomics of three mollicute species.&quot; <i>PLoS One</i> <b>6</b>(7):e21964; PMID: [https://pubmed.ncbi.nlm.nih.gov/21818284 21818284]; doi: [https://dx.doi.org/10.1371/journal.pone.0021964 10.1371/journal.pone.0021964]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21818284 1].
 +
#Schilling O, <i>et al.</i> (2011) &quot;Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites.&quot; <i>Biol Chem</i> <b>392</b>(11):1031&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/21846260 21846260]; doi: [https://dx.doi.org/10.1515/BC.2011.158 10.1515/BC.2011.158]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21846260 2].
 +
#Blasius M, <i>et al.</i> (2011) &quot;A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1.&quot; <i>Genome Biol</i> <b>12</b>(8):R78; PMID: [https://pubmed.ncbi.nlm.nih.gov/21851590 21851590]; doi: [https://dx.doi.org/10.1186/gb-2011-12-8-r78 10.1186/gb-2011-12-8-r78]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21851590 2].
 +
#Grosstessner-Hain K, <i>et al.</i> (2011) &quot;Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(11):M111.008540; PMID: [https://pubmed.ncbi.nlm.nih.gov/21857030 21857030]; doi: [https://dx.doi.org/10.1074/mcp.M111.008540 10.1074/mcp.M111.008540]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21857030 27].
 +
#Galli M, <i>et al.</i> (2011) &quot;aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division.&quot; <i>Nat Cell Biol</i> <b>13</b>(9):1132&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/21857670 21857670]; doi: [https://dx.doi.org/10.1038/ncb2315 10.1038/ncb2315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21857670 57].
 +
#James R, <i>et al.</i> (2012) &quot;Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge.&quot; <i>J Cereb Blood Flow Metab</i> <b>32</b>(1):164&ndash;76; PMID: [https://pubmed.ncbi.nlm.nih.gov/21878944 21878944]; doi: [https://dx.doi.org/10.1038/jcbfm.2011.120 10.1038/jcbfm.2011.120]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21878944 29].
 +
#Peng L, <i>et al.</i> (2011) &quot;Characterization of the Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative Standard using SDS-PAGE shotgun proteomics.&quot; <i>Proteomics</i> <b>11</b>(22):4376&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/21887821 21887821]; doi: [https://dx.doi.org/10.1002/pmic.201100169 10.1002/pmic.201100169]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21887821 6].
 +
#Fischer JJ, <i>et al.</i> (2011) &quot;SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders.&quot; <i>Proteomics</i> <b>11</b>(20):4096&ndash;104; PMID: [https://pubmed.ncbi.nlm.nih.gov/21898820 21898820]; doi: [https://dx.doi.org/10.1002/pmic.201000717 10.1002/pmic.201000717]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21898820 18].
 +
#&Oslash;stergaard L, <i>et al.</i> (2011) &quot;Pulmonary pressure reduction attenuates expression of proteins identified by lung proteomic profiling in pulmonary hypertensive rats.&quot; <i>Proteomics</i> <b>11</b>(23):4492&ndash;502; PMID: [https://pubmed.ncbi.nlm.nih.gov/21905223 21905223]; doi: [https://dx.doi.org/10.1002/pmic.201100171 10.1002/pmic.201100171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21905223 1].
 +
#Kim W, <i>et al.</i> (2011) &quot;Systematic and quantitative assessment of the ubiquitin-modified proteome.&quot; <i>Mol Cell</i> <b>44</b>(2):325&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/21906983 21906983]; doi: [https://dx.doi.org/10.1016/j.molcel.2011.08.025 10.1016/j.molcel.2011.08.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21906983 90].
 +
#Nguyen HM, <i>et al.</i> (2011) &quot;Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.&quot; <i>Proteomics</i> <b>11</b>(21):4266&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/21928291 21928291]; doi: [https://dx.doi.org/10.1002/pmic.201100114 10.1002/pmic.201100114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21928291 1].
 +
#Rogers LD, <i>et al.</i> (2011) &quot;Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events.&quot; <i>Sci Signal</i> <b>4</b>(191):rs9; PMID: [https://pubmed.ncbi.nlm.nih.gov/21934108 21934108]; doi: [https://dx.doi.org/10.1126/scisignal.2001668 10.1126/scisignal.2001668]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21934108 9].
 +
#Boisvert FM, <i>et al.</i> (2012) &quot;A quantitative spatial proteomics analysis of proteome turnover in human cells.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.011429; PMID: [https://pubmed.ncbi.nlm.nih.gov/21937730 21937730]; doi: [https://dx.doi.org/10.1074/mcp.M111.011429 10.1074/mcp.M111.011429]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21937730 526].
 +
#Nishtala K, <i>et al.</i> (2011) &quot;Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes.&quot; <i>Proteomics</i> <b>11</b>(22):4310&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/21954127 21954127]; doi: [https://dx.doi.org/10.1002/pmic.201100229 10.1002/pmic.201100229]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21954127 91].
 +
#Zeiler M, <i>et al.</i> (2012) &quot;A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):O111.009613; PMID: [https://pubmed.ncbi.nlm.nih.gov/21964433 21964433]; doi: [https://dx.doi.org/10.1074/mcp.O111.009613 10.1074/mcp.O111.009613]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21964433 138].
 +
#Kelkar DS, <i>et al.</i> (2011) &quot;Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>10</b>(12):M111.011627; PMID: [https://pubmed.ncbi.nlm.nih.gov/21969609 21969609]; doi: [https://dx.doi.org/10.1074/mcp.M111.011445 10.1074/mcp.M111.011445]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21969609 52].
 +
#Burgener A, <i>et al.</i> (2011) &quot;Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers.&quot; <i>J Proteome Res</i> <b>10</b>(11):5139&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/21973077 21973077]; doi: [https://dx.doi.org/10.1021/pr200596r 10.1021/pr200596r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21973077 6].
 +
#Phanstiel DH, <i>et al.</i> (2011) &quot;Proteomic and phosphoproteomic comparison of human ES and iPS cells.&quot; <i>Nat Methods</i> <b>8</b>(10):821&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/21983960 21983960]; doi: [https://dx.doi.org/10.1038/nmeth.1699 10.1038/nmeth.1699]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21983960 88].
 +
#Guan JS, <i>et al.</i> (2011) &quot;Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway.&quot; <i>PLoS One</i> <b>6</b>(9):e25735; PMID: [https://pubmed.ncbi.nlm.nih.gov/21984943 21984943]; doi: [https://dx.doi.org/10.1371/journal.pone.0025735 10.1371/journal.pone.0025735]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21984943 26].
 +
#Fischer R, <i>et al.</i> (2012) &quot;Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(2):M111.013904; PMID: [https://pubmed.ncbi.nlm.nih.gov/21997733 21997733]; doi: [https://dx.doi.org/10.1074/mcp.M111.013904 10.1074/mcp.M111.013904]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/21997733 60].
 +
#Ng DW, <i>et al.</i> (2012) &quot;Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors.&quot; <i>Heredity (Edinb)</i> <b>108</b>(4):419&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/22009271 22009271]; doi: [https://dx.doi.org/10.1038/hdy.2011.92 10.1038/hdy.2011.92]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22009271 111].
 +
#Capuano F, <i>et al.</i> (2011) &quot;LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies.&quot; <i>Anal Chem</i> <b>83</b>(24):9267&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/22017570 22017570]; doi: [https://dx.doi.org/10.1021/ac201733m 10.1021/ac201733m]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22017570 3].
 +
#Nagaraj N, <i>et al.</i> (2012) &quot;System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.013722; PMID: [https://pubmed.ncbi.nlm.nih.gov/22021278 22021278]; doi: [https://dx.doi.org/10.1074/mcp.M111.013722 10.1074/mcp.M111.013722]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22021278 13].
 +
#Bedon F, <i>et al.</i> (2012) &quot;Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field.&quot; <i>Plant Cell Environ</i> <b>35</b>(4):790&ndash;805; PMID: [https://pubmed.ncbi.nlm.nih.gov/22026815 22026815]; doi: [https://dx.doi.org/10.1111/j.1365-3040.2011.02452.x 10.1111/j.1365-3040.2011.02452.x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22026815 145].
 +
#Inder KL, <i>et al.</i> (2012) &quot;Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(2):M111.012245; PMID: [https://pubmed.ncbi.nlm.nih.gov/22030351 22030351]; doi: [https://dx.doi.org/10.1074/mcp.M111.012245 10.1074/mcp.M111.012245]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22030351 16].
 +
#Dunne JC, <i>et al.</i> (2012) &quot;Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus.&quot; <i>J Proteome Res</i> <b>11</b>(1):131&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/22060546 22060546]; doi: [https://dx.doi.org/10.1021/pr200864j 10.1021/pr200864j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22060546 2].
 +
#Winck FV, <i>et al.</i> (2012) &quot;The nuclear proteome of the green alga Chlamydomonas reinhardtii.&quot; <i>Proteomics</i> <b>12</b>(1):95&ndash;100; PMID: [https://pubmed.ncbi.nlm.nih.gov/22065562 22065562]; doi: [https://dx.doi.org/10.1002/pmic.201000782 10.1002/pmic.201000782]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22065562 1].
 +
#Hegemann B, <i>et al.</i> (2011) &quot;Systematic phosphorylation analysis of human mitotic protein complexes.&quot; <i>Sci Signal</i> <b>4</b>(198):rs12; PMID: [https://pubmed.ncbi.nlm.nih.gov/22067460 22067460]; doi: [https://dx.doi.org/10.1126/scisignal.2001993 10.1126/scisignal.2001993]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22067460 213].
 +
#Glatter T, <i>et al.</i> (2011) &quot;Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome.&quot; <i>Mol Syst Biol</i> <b>7</b>:547; PMID: [https://pubmed.ncbi.nlm.nih.gov/22068330 22068330]; doi: [https://dx.doi.org/10.1038/msb.2011.79 10.1038/msb.2011.79]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22068330 138].
 +
#Nagaraj N, <i>et al.</i> (2011) &quot;Deep proteome and transcriptome mapping of a human cancer cell line.&quot; <i>Mol Syst Biol</i> <b>7</b>:548; PMID: [https://pubmed.ncbi.nlm.nih.gov/22068331 22068331]; doi: [https://dx.doi.org/10.1038/msb.2011.81 10.1038/msb.2011.81]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22068331 164].
 +
#Beck M, <i>et al.</i> (2011) &quot;The quantitative proteome of a human cell line.&quot; <i>Mol Syst Biol</i> <b>7</b>:549; PMID: [https://pubmed.ncbi.nlm.nih.gov/22068332 22068332]; doi: [https://dx.doi.org/10.1038/msb.2011.82 10.1038/msb.2011.82]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22068332 60].
 +
#Okamoto A, <i>et al.</i> (2011) &quot;Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome.&quot; <i>BMC Microbiol</i> <b>11</b>:249; PMID: [https://pubmed.ncbi.nlm.nih.gov/22070424 22070424]; doi: [https://dx.doi.org/10.1186/1471-2180-11-249 10.1186/1471-2180-11-249]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22070424 2].
 +
#Chevrier N, <i>et al.</i> (2011) &quot;Systematic discovery of TLR signaling components delineates viral-sensing circuits.&quot; <i>Cell</i> <b>147</b>(4):853&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/22078882 22078882]; doi: [https://dx.doi.org/10.1016/j.cell.2011.10.022 10.1016/j.cell.2011.10.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22078882 48].
 +
#Cappellini E, <i>et al.</i> (2012) &quot;Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins.&quot; <i>J Proteome Res</i> <b>11</b>(2):917&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/22103443 22103443]; doi: [https://dx.doi.org/10.1021/pr200721u 10.1021/pr200721u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22103443 13].
 +
#Schneider K, <i>et al.</i> (2012) &quot;The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate.&quot; <i>J Biol Chem</i> <b>287</b>(1):757&ndash;766; PMID: [https://pubmed.ncbi.nlm.nih.gov/22105076 22105076]; doi: [https://dx.doi.org/10.1074/jbc.M111.305219 10.1074/jbc.M111.305219]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22105076 6].
 +
#Rivera FE, <i>et al.</i> (2012) &quot;The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus.&quot; <i>Proteomics</i> <b>12</b>(2):263&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/22106056 22106056]; doi: [https://dx.doi.org/10.1002/pmic.201100298 10.1002/pmic.201100298]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22106056 6].
 +
#Munoz J, <i>et al.</i> (2011) &quot;The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells.&quot; <i>Mol Syst Biol</i> <b>7</b>:550; PMID: [https://pubmed.ncbi.nlm.nih.gov/22108792 22108792]; doi: [https://dx.doi.org/10.1038/msb.2011.84 10.1038/msb.2011.84]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22108792 220].
 +
#Barbhuiya MA, <i>et al.</i> (2011) &quot;Comprehensive proteomic analysis of human bile.&quot; <i>Proteomics</i> <b>11</b>(23):4443&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/22114102 22114102]; doi: [https://dx.doi.org/10.1002/pmic.201100197 10.1002/pmic.201100197]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22114102 37].
 +
#Wright B, <i>et al.</i> (2011) &quot;Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes.&quot; <i>Proteomics</i> <b>11</b>(23):4588&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/22114104 22114104]; doi: [https://dx.doi.org/10.1002/pmic.201100410 10.1002/pmic.201100410]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22114104 24].
 +
#Malmstr&ouml;m J, <i>et al.</i> (2012) &quot;Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics.&quot; <i>J Biol Chem</i> <b>287</b>(2):1415&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/22117078 22117078]; doi: [https://dx.doi.org/10.1074/jbc.M111.267674 10.1074/jbc.M111.267674]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22117078 41].
 +
#Christianson JC, <i>et al.</i> (2011) &quot;Defining human ERAD networks through an integrative mapping strategy.&quot; <i>Nat Cell Biol</i> <b>14</b>(1):93&ndash;105; PMID: [https://pubmed.ncbi.nlm.nih.gov/22119785 22119785]; doi: [https://dx.doi.org/10.1038/ncb2383 10.1038/ncb2383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22119785 94].
 +
#Journet A, <i>et al.</i> (2012) &quot;Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry.&quot; <i>Proteomics</i> <b>12</b>(2):241&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/22120990 22120990]; doi: [https://dx.doi.org/10.1002/pmic.201100313 10.1002/pmic.201100313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22120990 1].
 +
#Murray CI, <i>et al.</i> (2012) &quot;Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(2):M111.013441; PMID: [https://pubmed.ncbi.nlm.nih.gov/22126794 22126794]; doi: [https://dx.doi.org/10.1074/mcp.M111.013441 10.1074/mcp.M111.013441]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22126794 3].
 +
#Bischof S, <i>et al.</i> (2011) &quot;Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins.&quot; <i>Plant Cell</i> <b>23</b>(11):3911&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/22128122 22128122]; doi: [https://dx.doi.org/10.1105/tpc.111.092882 10.1105/tpc.111.092882]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22128122 6].
 +
#Prasad TS, <i>et al.</i> (2012) &quot;Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry.&quot; <i>J Proteome Res</i> <b>11</b>(1):247&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/22129275 22129275]; doi: [https://dx.doi.org/10.1021/pr200827k 10.1021/pr200827k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22129275 70].
 +
#Thomas L, <i>et al.</i> (2012) &quot;Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(2):M111.013797; PMID: [https://pubmed.ncbi.nlm.nih.gov/22147733 22147733]; doi: [https://dx.doi.org/10.1074/mcp.M111.013797 10.1074/mcp.M111.013797]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22147733 64].
 +
#Choi DS, <i>et al.</i> (2012) &quot;The protein interaction network of extracellular vesicles derived from human colorectal cancer cells.&quot; <i>J Proteome Res</i> <b>11</b>(2):1144&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/22149170 22149170]; doi: [https://dx.doi.org/10.1021/pr200842h 10.1021/pr200842h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22149170 1].
 +
#Naba A, <i>et al.</i> (2012) &quot;The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(4):M111.014647; PMID: [https://pubmed.ncbi.nlm.nih.gov/22159717 22159717]; doi: [https://dx.doi.org/10.1074/mcp.M111.014647 10.1074/mcp.M111.014647]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22159717 98].
 +
#Michalski A, <i>et al.</i> (2012) &quot;Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):O111.013698; PMID: [https://pubmed.ncbi.nlm.nih.gov/22159718 22159718]; doi: [https://dx.doi.org/10.1074/mcp.O111.013698 10.1074/mcp.O111.013698]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22159718 22].
 +
#Martins-de-Souza D, <i>et al.</i> (2012) &quot;Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometry-data-independent analyses.&quot; <i>Proteomics</i> <b>12</b>(3):500&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/22162416 22162416]; doi: [https://dx.doi.org/10.1002/pmic.201100476 10.1002/pmic.201100476]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22162416 26].
 +
#Burkhart JM, <i>et al.</i> (2012) &quot;Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics.&quot; <i>J Proteomics</i> <b>75</b>(4):1454&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/22166745 22166745]; doi: [https://dx.doi.org/10.1016/j.jprot.2011.11.016 10.1016/j.jprot.2011.11.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22166745 1].
 +
#Sharma K, <i>et al.</i> (2012) &quot;Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.014654; PMID: [https://pubmed.ncbi.nlm.nih.gov/22167270 22167270]; doi: [https://dx.doi.org/10.1074/mcp.M111.014654 10.1074/mcp.M111.014654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22167270 41].
 +
#Graumann J, <i>et al.</i> (2012) &quot;A framework for intelligent data acquisition and real-time database searching for shotgun proteomics.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.013185; PMID: [https://pubmed.ncbi.nlm.nih.gov/22171319 22171319]; doi: [https://dx.doi.org/10.1074/mcp.M111.013185 10.1074/mcp.M111.013185]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22171319 13].
 +
#Dresang LR, <i>et al.</i> (2011) &quot;Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes.&quot; <i>BMC Genomics</i> <b>12</b>:625; PMID: [https://pubmed.ncbi.nlm.nih.gov/22185355 22185355]; doi: [https://dx.doi.org/10.1186/1471-2164-12-625 10.1186/1471-2164-12-625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22185355 1].
 +
#Batruch I, <i>et al.</i> (2012) &quot;Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility.&quot; <i>J Proteome Res</i> <b>11</b>(3):1503&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/22188163 22188163]; doi: [https://dx.doi.org/10.1021/pr200812p 10.1021/pr200812p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22188163 12].
 +
#Altelaar AF, <i>et al.</i> (2012) &quot;Database independent proteomics analysis of the ostrich and human proteome.&quot; <i>Proc Natl Acad Sci U S A</i> <b>109</b>(2):407&ndash;12; PMID: [https://pubmed.ncbi.nlm.nih.gov/22198768 22198768]; doi: [https://dx.doi.org/10.1073/pnas.1108399108 10.1073/pnas.1108399108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22198768 21].
 +
#Oppermann FS, <i>et al.</i> (2012) &quot;Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(4):O111.012351; PMID: [https://pubmed.ncbi.nlm.nih.gov/22199227 22199227]; doi: [https://dx.doi.org/10.1074/mcp.O111.012351 10.1074/mcp.O111.012351]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22199227 96].
 +
#Mertins P, <i>et al.</i> (2012) &quot;iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(6):M111.014423; PMID: [https://pubmed.ncbi.nlm.nih.gov/22210691 22210691]; doi: [https://dx.doi.org/10.1074/mcp.M111.014423 10.1074/mcp.M111.014423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22210691 32].
 +
#Elmore JM, <i>et al.</i> (2012) &quot;Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(4):M111.014555; PMID: [https://pubmed.ncbi.nlm.nih.gov/22215637 22215637]; doi: [https://dx.doi.org/10.1074/mcp.M111.014555 10.1074/mcp.M111.014555]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22215637 90].
 +
#K&ouml;nig S, <i>et al.</i> (2012) &quot;Kinome analysis of receptor-induced phosphorylation in human natural killer cells.&quot; <i>PLoS One</i> <b>7</b>(1):e29672; PMID: [https://pubmed.ncbi.nlm.nih.gov/22238634 22238634]; doi: [https://dx.doi.org/10.1371/journal.pone.0029672 10.1371/journal.pone.0029672]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22238634 3].
 +
#Al-Hakim AK, <i>et al.</i> (2012) &quot;Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(6):M111.014233; PMID: [https://pubmed.ncbi.nlm.nih.gov/22261722 22261722]; doi: [https://dx.doi.org/10.1074/mcp.M111.014233 10.1074/mcp.M111.014233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22261722 18].
 +
#Franklin S, <i>et al.</i> (2012) &quot;Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(6):M111.014258; PMID: [https://pubmed.ncbi.nlm.nih.gov/22270000 22270000]; doi: [https://dx.doi.org/10.1074/mcp.M111.014258 10.1074/mcp.M111.014258]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22270000 75].
 +
#Capriotti AL, <i>et al.</i> (2013) &quot;Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins.&quot; <i>Anal Bioanal Chem</i> <b>405</b>(2-3):635&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/22274284 22274284]; doi: [https://dx.doi.org/10.1007/s00216-011-5691-y 10.1007/s00216-011-5691-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22274284 45].
 +
#Lundquist PK, <i>et al.</i> (2012) &quot;The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis.&quot; <i>Plant Physiol</i> <b>158</b>(3):1172&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/22274653 22274653]; doi: [https://dx.doi.org/10.1104/pp.111.193144 10.1104/pp.111.193144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22274653 20].
 +
#Geiger T, <i>et al.</i> (2012) &quot;Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.014050; PMID: [https://pubmed.ncbi.nlm.nih.gov/22278370 22278370]; doi: [https://dx.doi.org/10.1074/mcp.M111.014050 10.1074/mcp.M111.014050]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22278370 181].
 +
#Tauro BJ, <i>et al.</i> (2012) &quot;Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes.&quot; <i>Methods</i> <b>56</b>(2):293&ndash;304; PMID: [https://pubmed.ncbi.nlm.nih.gov/22285593 22285593]; doi: [https://dx.doi.org/10.1016/j.ymeth.2012.01.002 10.1016/j.ymeth.2012.01.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22285593 163].
 +
#Schaab C, <i>et al.</i> (2012) &quot;Analysis of high accuracy, quantitative proteomics data in the MaxQB database.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(3):M111.014068; PMID: [https://pubmed.ncbi.nlm.nih.gov/22301388 22301388]; doi: [https://dx.doi.org/10.1074/mcp.M111.014068 10.1074/mcp.M111.014068]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22301388 361].
 +
#Stokes MP, <i>et al.</i> (2012) &quot;PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(5):187&ndash;201; PMID: [https://pubmed.ncbi.nlm.nih.gov/22322096 22322096]; doi: [https://dx.doi.org/10.1074/mcp.M111.015883 10.1074/mcp.M111.015883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22322096 24].
 +
#Chen ZW, <i>et al.</i> (2012) &quot;Deep amino acid sequencing of native brain GABAA receptors using high-resolution mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(1):M111.011445; PMID: [https://pubmed.ncbi.nlm.nih.gov/22338125 22338125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22338125 16].
 +
#Bauer C, <i>et al.</i> (2012) &quot;PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios.&quot; <i>BMC Bioinformatics</i> <b>13</b>:34; PMID: [https://pubmed.ncbi.nlm.nih.gov/22340093 22340093]; doi: [https://dx.doi.org/10.1186/1471-2105-13-34 10.1186/1471-2105-13-34]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22340093 1].
 +
#Zhong J, <i>et al.</i> (2012) &quot;TSLP signaling network revealed by SILAC-based phosphoproteomics.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(6):M112.017764; PMID: [https://pubmed.ncbi.nlm.nih.gov/22345495 22345495]; doi: [https://dx.doi.org/10.1074/mcp.M112.017764 10.1074/mcp.M112.017764]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22345495 25].
 +
#Sandalakis V, <i>et al.</i> (2012) &quot;Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics.&quot; <i>J Proteome Res</i> <b>11</b>(4):2374&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/22360387 22360387]; doi: [https://dx.doi.org/10.1021/pr201122w 10.1021/pr201122w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22360387 1].
 +
#Schneider T, <i>et al.</i> (2012) &quot;Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions.&quot; <i>ISME J</i> <b>6</b>(9):1749&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/22402400 22402400]; doi: [https://dx.doi.org/10.1038/ismej.2012.11 10.1038/ismej.2012.11]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22402400 1].
 +
#Geiger T, <i>et al.</i> (2012) &quot;Proteomic portrait of human breast cancer progression identifies novel prognostic markers.&quot; <i>Cancer Res</i> <b>72</b>(9):2428&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/22414580 22414580]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-11-3711 10.1158/0008-5472.CAN-11-3711]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22414580 420].
 +
#Orr SJ, <i>et al.</i> (2012) &quot;Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry.&quot; <i>Mol Syst Biol</i> <b>8</b>:573; PMID: [https://pubmed.ncbi.nlm.nih.gov/22415777 22415777]; doi: [https://dx.doi.org/10.1038/msb.2012.5 10.1038/msb.2012.5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22415777 62].
 +
#Chen R, <i>et al.</i> (2012) &quot;Personal omics profiling reveals dynamic molecular and medical phenotypes.&quot; <i>Cell</i> <b>148</b>(6):1293&ndash;307; PMID: [https://pubmed.ncbi.nlm.nih.gov/22424236 22424236]; doi: [https://dx.doi.org/10.1016/j.cell.2012.02.009 10.1016/j.cell.2012.02.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22424236 165].
 +
#Vranakis I, <i>et al.</i> (2012) &quot;Quantitative proteome profiling of C. burnetii under tetracycline stress conditions.&quot; <i>PLoS One</i> <b>7</b>(3):e33599; PMID: [https://pubmed.ncbi.nlm.nih.gov/22438959 22438959]; doi: [https://dx.doi.org/10.1371/journal.pone.0033599 10.1371/journal.pone.0033599]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22438959 2].
 +
#Deeb SJ, <i>et al.</i> (2012) &quot;Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(5):77&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/22442255 22442255]; doi: [https://dx.doi.org/10.1074/mcp.M111.015362 10.1074/mcp.M111.015362]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22442255 60].
 +
#Tondeleir D, <i>et al.</i> (2012) &quot;Cells lacking &beta;-actin are genetically reprogrammed and maintain conditional migratory capacity.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(8):255&ndash;71; PMID: [https://pubmed.ncbi.nlm.nih.gov/22448045 22448045]; doi: [https://dx.doi.org/10.1074/mcp.M111.015099 10.1074/mcp.M111.015099]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22448045 2].
 +
#Schrimpe-Rutledge AC, <i>et al.</i> (2012) &quot;Comparative omics-driven genome annotation refinement: application across Yersiniae.&quot; <i>PLoS One</i> <b>7</b>(3):e33903; PMID: [https://pubmed.ncbi.nlm.nih.gov/22479471 22479471]; doi: [https://dx.doi.org/10.1371/journal.pone.0033903 10.1371/journal.pone.0033903]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22479471 226].
 +
#Wright JC, <i>et al.</i> (2012) &quot;Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(8):478&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/22493177 22493177]; doi: [https://dx.doi.org/10.1074/mcp.O111.014522 10.1074/mcp.O111.014522]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22493177 8].
 +
#Franz-Wachtel M, <i>et al.</i> (2012) &quot;Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(5):160&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/22496350 22496350]; doi: [https://dx.doi.org/10.1074/mcp.M111.016014 10.1074/mcp.M111.016014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22496350 18].
 +
#Ferrando IM, <i>et al.</i> (2012) &quot;Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(8):355&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/22499769 22499769]; doi: [https://dx.doi.org/10.1074/mcp.M111.015750 10.1074/mcp.M111.015750]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22499769 7].
 +
#Udeshi ND, <i>et al.</i> (2012) &quot;Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(5):148&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/22505724 22505724]; doi: [https://dx.doi.org/10.1074/mcp.M111.016857 10.1074/mcp.M111.016857]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22505724 113].
 +
#Yao L, <i>et al.</i> (2012) &quot;Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues.&quot; <i>J Proteome Res</i> <b>11</b>(6):3281&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/22506683 22506683]; doi: [https://dx.doi.org/10.1021/pr300020p 10.1021/pr300020p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22506683 12].
 +
#Fonslow BR, <i>et al.</i> (2012) &quot;Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT.&quot; <i>J Proteome Res</i> <b>11</b>(5):2697&ndash;709; PMID: [https://pubmed.ncbi.nlm.nih.gov/22509746 22509746]; doi: [https://dx.doi.org/10.1021/pr300200x 10.1021/pr300200x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22509746 77].
 +
#Urbaniak MD, <i>et al.</i> (2012) &quot;Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages.&quot; <i>PLoS One</i> <b>7</b>(5):e36619; PMID: [https://pubmed.ncbi.nlm.nih.gov/22574199 22574199]; doi: [https://dx.doi.org/10.1371/journal.pone.0036619 10.1371/journal.pone.0036619]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22574199 11].
 +
#Ivaldi C, <i>et al.</i> (2012) &quot;Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23.&quot; <i>PLoS One</i> <b>7</b>(5):e37187; PMID: [https://pubmed.ncbi.nlm.nih.gov/22615937 22615937]; doi: [https://dx.doi.org/10.1371/journal.pone.0037187 10.1371/journal.pone.0037187]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22615937 2].
 +
#Byron A, <i>et al.</i> (2012) &quot;Proteomic analysis of &alpha;4&beta;1 integrin adhesion complexes reveals &alpha;-subunit-dependent protein recruitment.&quot; <i>Proteomics</i> <b>12</b>(13):2107&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/22623428 22623428]; doi: [https://dx.doi.org/10.1002/pmic.201100487 10.1002/pmic.201100487]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22623428 18].
 +
#Pisitkun T, <i>et al.</i> (2012) &quot;Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation.&quot; <i>Proteomics Clin Appl</i> <b>6</b>(5-6):268&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/22641613 22641613]; doi: [https://dx.doi.org/10.1002/prca.201100108 10.1002/prca.201100108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22641613 7].
 +
#Coffill CR, <i>et al.</i> (2012) &quot;Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion.&quot; <i>EMBO Rep</i> <b>13</b>(7):638&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/22653443 22653443]; doi: [https://dx.doi.org/10.1038/embor.2012.74 10.1038/embor.2012.74]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22653443 154].
 +
#Castello A, <i>et al.</i> (2012) &quot;Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.&quot; <i>Cell</i> <b>149</b>(6):1393&ndash;406; PMID: [https://pubmed.ncbi.nlm.nih.gov/22658674 22658674]; doi: [https://dx.doi.org/10.1016/j.cell.2012.04.031 10.1016/j.cell.2012.04.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22658674 6].
 +
#Rose CM, <i>et al.</i> (2012) &quot;Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(9):724&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/22683509 22683509]; doi: [https://dx.doi.org/10.1074/mcp.M112.019208 10.1074/mcp.M112.019208]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22683509 382].
 +
#Vial&aacute;s V, <i>et al.</i> (2012) &quot;Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells.&quot; <i>Proteomics</i> <b>12</b>(14):2331&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/22685022 22685022]; doi: [https://dx.doi.org/10.1002/pmic.201100588 10.1002/pmic.201100588]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22685022 1].
 +
#Mu&ntilde;oz J, <i>et al.</i> (2012) &quot;The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent &#39;+4&#39; cell markers.&quot; <i>EMBO J</i> <b>31</b>(14):3079&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/22692129 22692129]; doi: [https://dx.doi.org/10.1038/emboj.2012.166 10.1038/emboj.2012.166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22692129 106].
 +
#Rashid ST, <i>et al.</i> (2012) &quot;Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver.&quot; <i>J Proteome Res</i> <b>11</b>(8):4052&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/22694338 22694338]; doi: [https://dx.doi.org/10.1021/pr3000927 10.1021/pr3000927]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22694338 6].
 +
#Guyonnet B, <i>et al.</i> (2012) &quot;Isolation and proteomic characterization of the mouse sperm acrosomal matrix.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(9):758&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/22707618 22707618]; doi: [https://dx.doi.org/10.1074/mcp.M112.020339 10.1074/mcp.M112.020339]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22707618 5].
 +
#Bordbar A, <i>et al.</i> (2012) &quot;Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation.&quot; <i>Mol Syst Biol</i> <b>8</b>:558; PMID: [https://pubmed.ncbi.nlm.nih.gov/22735334 22735334]; doi: [https://dx.doi.org/10.1038/msb.2012.21 10.1038/msb.2012.21]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22735334 42].
 +
#Graham NA, <i>et al.</i> (2012) &quot;Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death.&quot; <i>Mol Syst Biol</i> <b>8</b>:589; PMID: [https://pubmed.ncbi.nlm.nih.gov/22735335 22735335]; doi: [https://dx.doi.org/10.1038/msb.2012.20 10.1038/msb.2012.20]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22735335 20].
 +
#Lim JW, <i>et al.</i> (2012) &quot;Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4.&quot; <i>Electrophoresis</i> <b>33</b>(12):1873&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/22740476 22740476]; doi: [https://dx.doi.org/10.1002/elps.201100687 10.1002/elps.201100687]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22740476 129].
 +
#Enany S, <i>et al.</i> (2012) &quot;Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone.&quot; <i>Peptides</i> <b>37</b>(1):128&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/22750914 22750914]; doi: [https://dx.doi.org/10.1016/j.peptides.2012.06.011 10.1016/j.peptides.2012.06.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22750914 2].
 +
#Miura N, <i>et al.</i> (2012) &quot;Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion.&quot; <i>Eukaryot Cell</i> <b>11</b>(8):1075&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/22753847 22753847]; doi: [https://dx.doi.org/10.1128/EC.00075-12 10.1128/EC.00075-12]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22753847 1].
 +
#Arike L, <i>et al.</i> (2012) &quot;Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli.&quot; <i>J Proteomics</i> <b>75</b>(17):5437&ndash;48; PMID: [https://pubmed.ncbi.nlm.nih.gov/22771841 22771841]; doi: [https://dx.doi.org/10.1016/j.jprot.2012.06.020 10.1016/j.jprot.2012.06.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22771841 6].
 +
#Bonhomme L, <i>et al.</i> (2012) &quot;Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(10):957&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/22787273 22787273]; doi: [https://dx.doi.org/10.1074/mcp.M111.015867 10.1074/mcp.M111.015867]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22787273 1598].
 +
#Gibbons JG, <i>et al.</i> (2012) &quot;The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae.&quot; <i>Curr Biol</i> <b>22</b>(15):1403&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/22795693 22795693]; doi: [https://dx.doi.org/10.1016/j.cub.2012.05.033 10.1016/j.cub.2012.05.033]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22795693 8].
 +
#Goswami T, <i>et al.</i> (2012) &quot;Comparative phosphoproteomic analysis of neonatal and adult murine brain.&quot; <i>Proteomics</i> <b>12</b>(13):2185&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/22807455 22807455]; doi: [https://dx.doi.org/10.1002/pmic.201200003 10.1002/pmic.201200003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22807455 3].
 +
#Yuan Y, <i>et al.</i> (2012) &quot;Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans.&quot; <i>J Biol Chem</i> <b>287</b>(37):31414&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/22810224 22810224]; doi: [https://dx.doi.org/10.1074/jbc.M112.377275 10.1074/jbc.M112.377275]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22810224 40].
 +
#Dix MM, <i>et al.</i> (2012) &quot;Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome.&quot; <i>Cell</i> <b>150</b>(2):426&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/22817901 22817901]; doi: [https://dx.doi.org/10.1016/j.cell.2012.05.040 10.1016/j.cell.2012.05.040]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22817901 234].
 +
#Burgener A, <i>et al.</i> (2012) &quot;Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men.&quot; <i>AIDS</i> <b>26</b>(15):1857&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/22824632 22824632]; doi: [https://dx.doi.org/10.1097/QAD.0b013e328357f79c 10.1097/QAD.0b013e328357f79c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22824632 2].
 +
#Wejda M, <i>et al.</i> (2012) &quot;Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike.&quot; <i>J Biol Chem</i> <b>287</b>(41):33983&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/22825847 22825847]; doi: [https://dx.doi.org/10.1074/jbc.M112.384552 10.1074/jbc.M112.384552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22825847 1].
 +
#Corthals A, <i>et al.</i> (2012) &quot;Detecting the immune system response of a 500 year-old Inca mummy.&quot; <i>PLoS One</i> <b>7</b>(7):e41244; PMID: [https://pubmed.ncbi.nlm.nih.gov/22848450 22848450]; doi: [https://dx.doi.org/10.1371/journal.pone.0041244 10.1371/journal.pone.0041244]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22848450 12].
 +
#Zijnge V, <i>et al.</i> (2012) &quot;Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans.&quot; <i>PLoS One</i> <b>7</b>(7):e41662; PMID: [https://pubmed.ncbi.nlm.nih.gov/22848560 22848560]; doi: [https://dx.doi.org/10.1371/journal.pone.0041662 10.1371/journal.pone.0041662]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22848560 171].
 +
#Wen Q, <i>et al.</i> (2012) &quot;Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL.&quot; <i>Cell</i> <b>150</b>(3):575&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/22863010 22863010]; doi: [https://dx.doi.org/10.1016/j.cell.2012.06.032 10.1016/j.cell.2012.06.032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22863010 24].
 +
#Kohr MJ, <i>et al.</i> (2012) &quot;Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication.&quot; <i>Circ Res</i> <b>111</b>(10):1308&ndash;12; PMID: [https://pubmed.ncbi.nlm.nih.gov/22865876 22865876]; doi: [https://dx.doi.org/10.1161/CIRCRESAHA.112.271320 10.1161/CIRCRESAHA.112.271320]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22865876 32].
 +
#Henriksen P, <i>et al.</i> (2012) &quot;Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(11):1510&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/22865919 22865919]; doi: [https://dx.doi.org/10.1074/mcp.M112.017251 10.1074/mcp.M112.017251]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22865919 64].
 +
#Uhlmann T, <i>et al.</i> (2012) &quot;A method for large-scale identification of protein arginine methylation.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(11):1489&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/22865923 22865923]; doi: [https://dx.doi.org/10.1074/mcp.M112.020743 10.1074/mcp.M112.020743]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22865923 133].
 +
#Burkhart JM, <i>et al.</i> (2012) &quot;The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways.&quot; <i>Blood</i> <b>120</b>(15):e73&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/22869793 22869793]; doi: [https://dx.doi.org/10.1182/blood-2012-04-416594 10.1182/blood-2012-04-416594]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22869793 4].
 +
#Vaudel M, <i>et al.</i> (2012) &quot;Integral quantification accuracy estimation for reporter ion-based quantitative proteomics (iQuARI).&quot; <i>J Proteome Res</i> <b>11</b>(10):5072&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/22874012 22874012]; doi: [https://dx.doi.org/10.1021/pr300247u 10.1021/pr300247u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22874012 8].
 +
#Veitinger M, <i>et al.</i> (2012) &quot;A combined proteomic and genetic analysis of the highly variable platelet proteome: from plasmatic proteins and SNPs.&quot; <i>J Proteomics</i> <b>75</b>(18):5848&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/22885077 22885077]; doi: [https://dx.doi.org/10.1016/j.jprot.2012.07.042 10.1016/j.jprot.2012.07.042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22885077 19].
 +
#Brown RN, <i>et al.</i> (2012) &quot;A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions.&quot; <i>Int J Proteomics</i> <b>2012</b>:123076; PMID: [https://pubmed.ncbi.nlm.nih.gov/22900174 22900174]; doi: [https://dx.doi.org/10.1155/2012/123076 10.1155/2012/123076]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22900174 78].
 +
#Jones ML, <i>et al.</i> (2012) &quot;Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis.&quot; <i>Cell Host Microbe</i> <b>12</b>(2):246&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/22901544 22901544]; doi: [https://dx.doi.org/10.1016/j.chom.2012.06.005 10.1016/j.chom.2012.06.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22901544 10].
 +
#Toyofuku M, <i>et al.</i> (2012) &quot;Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.&quot; <i>J Proteome Res</i> <b>11</b>(10):4906&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/22909304 22909304]; doi: [https://dx.doi.org/10.1021/pr300395j 10.1021/pr300395j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22909304 4].
 +
#Jerebtsova M, <i>et al.</i> (2012) &quot;Adenoviral E4 gene stimulates secretion of pigmental epithelium derived factor (PEDF) that maintains long-term survival of human glomerulus-derived endothelial cells.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(11):1378&ndash;88; PMID: [https://pubmed.ncbi.nlm.nih.gov/22915824 22915824]; doi: [https://dx.doi.org/10.1074/mcp.M112.020313 10.1074/mcp.M112.020313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22915824 20].
 +
#Baerenfaller K, <i>et al.</i> (2012) &quot;Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit.&quot; <i>Mol Syst Biol</i> <b>8</b>:606; PMID: [https://pubmed.ncbi.nlm.nih.gov/22929616 22929616]; doi: [https://dx.doi.org/10.1038/msb.2012.39 10.1038/msb.2012.39]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22929616 24].
 +
#Havugimana PC, <i>et al.</i> (2012) &quot;A census of human soluble protein complexes.&quot; <i>Cell</i> <b>150</b>(5):1068&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/22939629 22939629]; doi: [https://dx.doi.org/10.1016/j.cell.2012.08.011 10.1016/j.cell.2012.08.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22939629 2355].
 +
#MacDonald ML, <i>et al.</i> (2012) &quot;Biochemical fractionation and stable isotope dilution liquid chromatography-mass spectrometry for targeted and microdomain-specific protein quantification in human postmortem brain tissue.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(12):1670&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/22942359 22942359]; doi: [https://dx.doi.org/10.1074/mcp.M112.021766 10.1074/mcp.M112.021766]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22942359 14].
 +
#V&ouml;gtle FN, <i>et al.</i> (2012) &quot;Intermembrane space proteome of yeast mitochondria.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(12):1840&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/22984289 22984289]; doi: [https://dx.doi.org/10.1074/mcp.M112.021105 10.1074/mcp.M112.021105]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22984289 30].
 +
#Kim Y, <i>et al.</i> (2012) &quot;Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer.&quot; <i>Mol Cell Proteomics</i> <b>11</b>(12):1870&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/22986220 22986220]; doi: [https://dx.doi.org/10.1074/mcp.M112.017889 10.1074/mcp.M112.017889]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22986220 320].
 +
#Ene IV, <i>et al.</i> (2012) &quot;Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans.&quot; <i>Proteomics</i> <b>12</b>(21):3164&ndash;79; PMID: [https://pubmed.ncbi.nlm.nih.gov/22997008 22997008]; doi: [https://dx.doi.org/10.1002/pmic.201200228 10.1002/pmic.201200228]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22997008 50].
 +
#Michalski A, <i>et al.</i> (2012) &quot;A systematic investigation into the nature of tryptic HCD spectra.&quot; <i>J Proteome Res</i> <b>11</b>(11):5479&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/22998608 22998608]; doi: [https://dx.doi.org/10.1021/pr3007045 10.1021/pr3007045]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/22998608 35].
 +
#Bleijerveld OB, <i>et al.</i> (2012) &quot;Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis.&quot; <i>J Proteome Res</i> <b>11</b>(11):5235&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/23020738 23020738]; doi: [https://dx.doi.org/10.1021/pr3004375 10.1021/pr3004375]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23020738 163].
 +
#Ren YR, <i>et al.</i> (2012) &quot;Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin.&quot; <i>J Proteome Res</i> <b>11</b>(11):5301&ndash;10; PMID: [https://pubmed.ncbi.nlm.nih.gov/23025254 23025254]; doi: [https://dx.doi.org/10.1021/pr300797v 10.1021/pr300797v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23025254 67].
 +
#Motohashi R, <i>et al.</i> (2012) &quot;Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level.&quot; <i>Plant Physiol</i> <b>160</b>(4):2189&ndash;201; PMID: [https://pubmed.ncbi.nlm.nih.gov/23027667 23027667]; doi: [https://dx.doi.org/10.1104/pp.112.204032 10.1104/pp.112.204032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23027667 4].
 +
#Hu CW, <i>et al.</i> (2012) &quot;Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production.&quot; <i>J Proteome Res</i> <b>11</b>(11):5362&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/23030682 23030682]; doi: [https://dx.doi.org/10.1021/pr300582p 10.1021/pr300582p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23030682 12].
 +
#Ubaida Mohien C, <i>et al.</i> (2013) &quot;A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(1):120&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/23082028 23082028]; doi: [https://dx.doi.org/10.1074/mcp.M112.019596 10.1074/mcp.M112.019596]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23082028 97].
 +
#Mathew R, <i>et al.</i> (2012) &quot;BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs.&quot; <i>Nature</i> <b>491</b>(7425):618&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/23086144 23086144]; doi: [https://dx.doi.org/10.1038/nature11548 10.1038/nature11548]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23086144 8].
 +
#Butter F, <i>et al.</i> (2013) &quot;Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite&#39;s host adaptation machinery.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(1):172&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/23090971 23090971]; doi: [https://dx.doi.org/10.1074/mcp.M112.019224 10.1074/mcp.M112.019224]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23090971 94].
 +
#Marguerat S, <i>et al.</i> (2012) &quot;Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells.&quot; <i>Cell</i> <b>151</b>(3):671&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/23101633 23101633]; doi: [https://dx.doi.org/10.1016/j.cell.2012.09.019 10.1016/j.cell.2012.09.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23101633 33].
 +
#Pointner J, <i>et al.</i> (2012) &quot;CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe.&quot; <i>EMBO J</i> <b>31</b>(23):4388&ndash;403; PMID: [https://pubmed.ncbi.nlm.nih.gov/23103765 23103765]; doi: [https://dx.doi.org/10.1038/emboj.2012.289 10.1038/emboj.2012.289]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23103765 30].
 +
#Oliveira AP, <i>et al.</i> (2012) &quot;Regulation of yeast central metabolism by enzyme phosphorylation.&quot; <i>Mol Syst Biol</i> <b>8</b>:623; PMID: [https://pubmed.ncbi.nlm.nih.gov/23149688 23149688]; doi: [https://dx.doi.org/10.1038/msb.2012.55 10.1038/msb.2012.55]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23149688 26].
 +
#Muraoka S, <i>et al.</i> (2013) &quot;In-depth membrane proteomic study of breast cancer tissues for the generation of a chromosome-based protein list.&quot; <i>J Proteome Res</i> <b>12</b>(1):208&ndash;13; PMID: [https://pubmed.ncbi.nlm.nih.gov/23153008 23153008]; doi: [https://dx.doi.org/10.1021/pr300824m 10.1021/pr300824m]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23153008 36].
 +
#Fonslow BR, <i>et al.</i> (2013) &quot;Digestion and depletion of abundant proteins improves proteomic coverage.&quot; <i>Nat Methods</i> <b>10</b>(1):54&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/23160281 23160281]; doi: [https://dx.doi.org/10.1038/nmeth.2250 10.1038/nmeth.2250]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23160281 132].
 +
#Kliemt S, <i>et al.</i> (2013) &quot;Sulfated hyaluronan containing collagen matrices enhance cell-matrix-interaction, endocytosis, and osteogenic differentiation of human mesenchymal stromal cells.&quot; <i>J Proteome Res</i> <b>12</b>(1):378&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/23170904 23170904]; doi: [https://dx.doi.org/10.1021/pr300640h 10.1021/pr300640h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23170904 30].
 +
#Hoehenwarter W, <i>et al.</i> (2013) &quot;Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(2):369&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/23172892 23172892]; doi: [https://dx.doi.org/10.1074/mcp.M112.020560 10.1074/mcp.M112.020560]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23172892 6].
 +
#Yamana R, <i>et al.</i> (2013) &quot;Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot NanoLC-MS/MS analysis with meter-scale monolithic silica columns.&quot; <i>J Proteome Res</i> <b>12</b>(1):214&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/23210603 23210603]; doi: [https://dx.doi.org/10.1021/pr300837u 10.1021/pr300837u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23210603 129].
 +
#Meding S, <i>et al.</i> (2013) &quot;Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues.&quot; <i>J Proteome Res</i> <b>12</b>(1):308&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/23214983 23214983]; doi: [https://dx.doi.org/10.1021/pr300996x 10.1021/pr300996x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23214983 31].
 +
#Tauro BJ, <i>et al.</i> (2013) &quot;Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(3):587&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/23230278 23230278]; doi: [https://dx.doi.org/10.1074/mcp.M112.021303 10.1074/mcp.M112.021303]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23230278 20].
 +
#Segura V, <i>et al.</i> (2013) &quot;Spanish human proteome project: dissection of chromosome 16.&quot; <i>J Proteome Res</i> <b>12</b>(1):112&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/23234512 23234512]; doi: [https://dx.doi.org/10.1021/pr300898u 10.1021/pr300898u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23234512 43].
 +
#Farcas AM, <i>et al.</i> (2012) &quot;KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands.&quot; <i>Elife</i> <b>1</b>:e00205; PMID: [https://pubmed.ncbi.nlm.nih.gov/23256043 23256043]; doi: [https://dx.doi.org/10.7554/eLife.00205 10.7554/eLife.00205]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23256043 5].
 +
#Udeshi ND, <i>et al.</i> (2013) &quot;Refined preparation and use of anti-diglycine remnant (K-&epsilon;-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(3):825&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/23266961 23266961]; doi: [https://dx.doi.org/10.1074/mcp.O112.027094 10.1074/mcp.O112.027094]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23266961 72].
 +
#Maccarrone G, <i>et al.</i> (2013) &quot;Proteome profiling of peripheral mononuclear cells from human blood.&quot; <i>Proteomics</i> <b>13</b>(5):893&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/23281267 23281267]; doi: [https://dx.doi.org/10.1002/pmic.201200377 10.1002/pmic.201200377]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23281267 3].
 +
#Kentsis A, <i>et al.</i> (2013) &quot;Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease.&quot; <i>EMBO Mol Med</i> <b>5</b>(2):210&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/23281308 23281308]; doi: [https://dx.doi.org/10.1002/emmm.201201494 10.1002/emmm.201201494]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23281308 145].
 +
#Chen JS, <i>et al.</i> (2013) &quot;Comprehensive proteomics analysis reveals new substrates and regulators of the fission yeast clp1/cdc14 phosphatase.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1074&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/23297348 23297348]; doi: [https://dx.doi.org/10.1074/mcp.M112.025924 10.1074/mcp.M112.025924]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23297348 190].
 +
#Holewinski RJ, <i>et al.</i> (2013) &quot;A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid.&quot; <i>Proteomics</i> <b>13</b>(5):743&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/23300121 23300121]; doi: [https://dx.doi.org/10.1002/pmic.201200192 10.1002/pmic.201200192]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23300121 27].
 +
#Hahne H, <i>et al.</i> (2013) &quot;Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry.&quot; <i>J Proteome Res</i> <b>12</b>(2):927&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/23301498 23301498]; doi: [https://dx.doi.org/10.1021/pr300967y 10.1021/pr300967y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23301498 9].
 +
#Strader MB, <i>et al.</i> (2013) &quot;A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12.&quot; <i>J Proteome Res</i> <b>12</b>(3):1289&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/23305560 23305560]; doi: [https://dx.doi.org/10.1021/pr3009435 10.1021/pr3009435]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23305560 209].
 +
#Shiromizu T, <i>et al.</i> (2013) &quot;Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>12</b>(6):2414&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/23312004 23312004]; doi: [https://dx.doi.org/10.1021/pr300825v 10.1021/pr300825v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23312004 232].
 +
#Krahmer N, <i>et al.</i> (2013) &quot;Protein correlation profiles identify lipid droplet proteins with high confidence.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1115&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/23319140 23319140]; doi: [https://dx.doi.org/10.1074/mcp.M112.020230 10.1074/mcp.M112.020230]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23319140 18].
 +
#Wenger CD, <i>et al.</i> (2013) &quot;A proteomics search algorithm specifically designed for high-resolution tandem mass spectra.&quot; <i>J Proteome Res</i> <b>12</b>(3):1377&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/23323968 23323968]; doi: [https://dx.doi.org/10.1021/pr301024c 10.1021/pr301024c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23323968 15].
 +
#Lindner SE, <i>et al.</i> (2013) &quot;Total and putative surface proteomics of malaria parasite salivary gland sporozoites.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1127&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/23325771 23325771]; doi: [https://dx.doi.org/10.1074/mcp.M112.024505 10.1074/mcp.M112.024505]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23325771 72].
 +
#Zhang H, <i>et al.</i> (2013) &quot;Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1158&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/23328941 23328941]; doi: [https://dx.doi.org/10.1074/mcp.M112.021220 10.1074/mcp.M112.021220]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23328941 11].
 +
#Wang F, <i>et al.</i> (2013) &quot;Phosphoproteome analysis of an early onset mouse model (TgCRND8) of Alzheimer&#39;s disease reveals temporal changes in neuronal and glia signaling pathways.&quot; <i>Proteomics</i> <b>13</b>(8):1292&ndash;305; PMID: [https://pubmed.ncbi.nlm.nih.gov/23335269 23335269]; doi: [https://dx.doi.org/10.1002/pmic.201200415 10.1002/pmic.201200415]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23335269 63].
 +
#Albrethsen J, <i>et al.</i> (2013) &quot;Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1180&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/23345537 23345537]; doi: [https://dx.doi.org/10.1074/mcp.M112.018846 10.1074/mcp.M112.018846]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23345537 59].
 +
#Hau&szlig;mann U, <i>et al.</i> (2013) &quot;Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates.&quot; <i>J Proteome Res</i> <b>12</b>(3):1188&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/23360181 23360181]; doi: [https://dx.doi.org/10.1021/pr300816n 10.1021/pr300816n]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23360181 220].
 +
#Lee HJ, <i>et al.</i> (2013) &quot;Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>12</b>(6):2458&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/23362793 23362793]; doi: [https://dx.doi.org/10.1021/pr301040g 10.1021/pr301040g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23362793 47].
 +
#Rhee HW, <i>et al.</i> (2013) &quot;Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging.&quot; <i>Science</i> <b>339</b>(6125):1328&ndash;1331; PMID: [https://pubmed.ncbi.nlm.nih.gov/23371551 23371551]; doi: [https://dx.doi.org/10.1126/science.1230593 10.1126/science.1230593]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23371551 64].
 +
#Zanivan S, <i>et al.</i> (2013) &quot;In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis.&quot; <i>Cell Rep</i> <b>3</b>(2):552&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/23375375 23375375]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.01.003 10.1016/j.celrep.2013.01.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23375375 315].
 +
#Ekkebus R, <i>et al.</i> (2013) &quot;On terminal alkynes that can react with active-site cysteine nucleophiles in proteases.&quot; <i>J Am Chem Soc</i> <b>135</b>(8):2867&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/23387960 23387960]; doi: [https://dx.doi.org/10.1021/ja309802n 10.1021/ja309802n]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23387960 1].
 +
#Cho CK, <i>et al.</i> (2013) &quot;Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome.&quot; <i>Clin Proteomics</i> <b>10</b>(1):2; PMID: [https://pubmed.ncbi.nlm.nih.gov/23394617 23394617]; doi: [https://dx.doi.org/10.1186/1559-0275-10-2 10.1186/1559-0275-10-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23394617 30].
 +
#de Graaf EL, <i>et al.</i> (2013) &quot;Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(5):1350&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/23399551 23399551]; doi: [https://dx.doi.org/10.1074/mcp.M112.024950 10.1074/mcp.M112.024950]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23399551 120].
 +
#Mohammed H, <i>et al.</i> (2013) &quot;Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor.&quot; <i>Cell Rep</i> <b>3</b>(2):342&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/23403292 23403292]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.01.010 10.1016/j.celrep.2013.01.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23403292 9].
 +
#Sun B, <i>et al.</i> (2013) &quot;N-glycoproteome of E14.Tg2a mouse embryonic stem cells.&quot; <i>PLoS One</i> <b>8</b>(2):e55722; PMID: [https://pubmed.ncbi.nlm.nih.gov/23405203 23405203]; doi: [https://dx.doi.org/10.1371/journal.pone.0055722 10.1371/journal.pone.0055722]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23405203 40].
 +
#Colinet H, <i>et al.</i> (2013) &quot;Proteomic profiling of thermal acclimation in Drosophila melanogaster.&quot; <i>Insect Biochem Mol Biol</i> <b>43</b>(4):352&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/23416132 23416132]; doi: [https://dx.doi.org/10.1016/j.ibmb.2013.01.006 10.1016/j.ibmb.2013.01.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23416132 50].
 +
#Spruijt CG, <i>et al.</i> (2013) &quot;Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives.&quot; <i>Cell</i> <b>152</b>(5):1146&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/23434322 23434322]; doi: [https://dx.doi.org/10.1016/j.cell.2013.02.004 10.1016/j.cell.2013.02.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23434322 249].
 +
#Chapel A, <i>et al.</i> (2013) &quot;An extended proteome map of the lysosomal membrane reveals novel potential transporters.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(6):1572&ndash;88; PMID: [https://pubmed.ncbi.nlm.nih.gov/23436907 23436907]; doi: [https://dx.doi.org/10.1074/mcp.M112.021980 10.1074/mcp.M112.021980]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23436907 1].
 +
#Fabietti A, <i>et al.</i> (2013) &quot;Shotgun proteomic analysis of two Bartonella quintana strains.&quot; <i>Proteomics</i> <b>13</b>(8):1375&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23450663 23450663]; doi: [https://dx.doi.org/10.1002/pmic.201200165 10.1002/pmic.201200165]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23450663 8].
 +
#Varjosalo M, <i>et al.</i> (2013) &quot;Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS.&quot; <i>Nat Methods</i> <b>10</b>(4):307&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/23455922 23455922]; doi: [https://dx.doi.org/10.1038/nmeth.2400 10.1038/nmeth.2400]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23455922 288].
 +
#Fanayan S, <i>et al.</i> (2013) &quot;Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405.&quot; <i>J Proteome Res</i> <b>12</b>(4):1732&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/23458625 23458625]; doi: [https://dx.doi.org/10.1021/pr3010869 10.1021/pr3010869]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23458625 136].
 +
#Rao SA, <i>et al.</i> (2013) &quot;Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.&quot; <i>PLoS One</i> <b>8</b>(2):e57413; PMID: [https://pubmed.ncbi.nlm.nih.gov/23460852 23460852]; doi: [https://dx.doi.org/10.1371/journal.pone.0057413 10.1371/journal.pone.0057413]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23460852 16].
 +
#Gunaratne J, <i>et al.</i> (2013) &quot;Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(6):1741&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/23462206 23462206]; doi: [https://dx.doi.org/10.1074/mcp.M112.023754 10.1074/mcp.M112.023754]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23462206 384].
 +
#Hassan C, <i>et al.</i> (2013) &quot;The human leukocyte antigen-presented ligandome of B lymphocytes.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(7):1829&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/23481700 23481700]; doi: [https://dx.doi.org/10.1074/mcp.M112.024810 10.1074/mcp.M112.024810]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23481700 191].
 +
#Urbaniak MD, <i>et al.</i> (2013) &quot;Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei.&quot; <i>J Proteome Res</i> <b>12</b>(5):2233&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/23485197 23485197]; doi: [https://dx.doi.org/10.1021/pr400086y 10.1021/pr400086y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23485197 148].
 +
#van Nuland R, <i>et al.</i> (2013) &quot;Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes.&quot; <i>Mol Cell Biol</i> <b>33</b>(10):2067&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/23508102 23508102]; doi: [https://dx.doi.org/10.1128/MCB.01742-12 10.1128/MCB.01742-12]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23508102 52].
 +
#Papachristou EK, <i>et al.</i> (2013) &quot;The shotgun proteomic study of the human ThinPrep cervical smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS: the detection of the human papillomavirus at the protein level.&quot; <i>J Proteome Res</i> <b>12</b>(5):2078&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/23510160 23510160]; doi: [https://dx.doi.org/10.1021/pr301067r 10.1021/pr301067r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23510160 3].
 +
#Ori A, <i>et al.</i> (2013) &quot;Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.&quot; <i>Mol Syst Biol</i> <b>9</b>:648; PMID: [https://pubmed.ncbi.nlm.nih.gov/23511206 23511206]; doi: [https://dx.doi.org/10.1038/msb.2013.4 10.1038/msb.2013.4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23511206 30].
 +
#Bendz M, <i>et al.</i> (2013) &quot;Membrane protein shaving with thermolysin can be used to evaluate topology predictors.&quot; <i>Proteomics</i> <b>13</b>(9):1467&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/23512833 23512833]; doi: [https://dx.doi.org/10.1002/pmic.201200517 10.1002/pmic.201200517]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23512833 8].
 +
#Cramer GR, <i>et al.</i> (2013) &quot;Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit.&quot; <i>BMC Plant Biol</i> <b>13</b>:49; PMID: [https://pubmed.ncbi.nlm.nih.gov/23514573 23514573]; doi: [https://dx.doi.org/10.1186/1471-2229-13-49 10.1186/1471-2229-13-49]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23514573 96].
 +
#Bradshaw E, <i>et al.</i> (2013) &quot;Proteomic survey of the Streptomyces coelicolor nucleoid.&quot; <i>J Proteomics</i> <b>83</b>:37&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/23523638 23523638]; doi: [https://dx.doi.org/10.1016/j.jprot.2013.02.033 10.1016/j.jprot.2013.02.033]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23523638 6].
 +
#Casado P, <i>et al.</i> (2013) &quot;Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells.&quot; <i>Sci Signal</i> <b>6</b>(268):rs6; PMID: [https://pubmed.ncbi.nlm.nih.gov/23532336 23532336]; doi: [https://dx.doi.org/10.1126/scisignal.2003573 10.1126/scisignal.2003573]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23532336 160].
 +
#Webb KJ, <i>et al.</i> (2013) &quot;Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast.&quot; <i>J Proteome Res</i> <b>12</b>(5):2177&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/23540446 23540446]; doi: [https://dx.doi.org/10.1021/pr400027m 10.1021/pr400027m]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23540446 135].
 +
#Sun B, <i>et al.</i> (2013) &quot;Glycocapture-assisted global quantitative proteomics (gagQP) reveals multiorgan responses in serum toxicoproteome.&quot; <i>J Proteome Res</i> <b>12</b>(5):2034&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/23540550 23540550]; doi: [https://dx.doi.org/10.1021/pr301178a 10.1021/pr301178a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23540550 58].
 +
#Kim J, <i>et al.</i> (2013) &quot;Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis.&quot; <i>Plant Physiol</i> <b>162</b>(1):157&ndash;79; PMID: [https://pubmed.ncbi.nlm.nih.gov/23548781 23548781]; doi: [https://dx.doi.org/10.1104/pp.113.215699 10.1104/pp.113.215699]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23548781 118].
 +
#Ji H, <i>et al.</i> (2013) &quot;Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components.&quot; <i>Proteomics</i> <b>13</b>(10-11):1672&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/23585443 23585443]; doi: [https://dx.doi.org/10.1002/pmic.201200562 10.1002/pmic.201200562]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23585443 51].
 +
#Biarc J, <i>et al.</i> (2013) &quot;Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors.&quot; <i>J Biol Chem</i> <b>288</b>(23):16606&ndash;16618; PMID: [https://pubmed.ncbi.nlm.nih.gov/23589303 23589303]; doi: [https://dx.doi.org/10.1074/jbc.M113.475285 10.1074/jbc.M113.475285]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23589303 210].
 +
#Zhuang G, <i>et al.</i> (2013) &quot;Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases.&quot; <i>Sci Signal</i> <b>6</b>(271):ra25; PMID: [https://pubmed.ncbi.nlm.nih.gov/23592840 23592840]; doi: [https://dx.doi.org/10.1126/scisignal.2003572 10.1126/scisignal.2003572]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23592840 7].
 +
#Varjosalo M, <i>et al.</i> (2013) &quot;The protein interaction landscape of the human CMGC kinase group.&quot; <i>Cell Rep</i> <b>3</b>(4):1306&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/23602568 23602568]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.03.027 10.1016/j.celrep.2013.03.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23602568 114].
 +
#Marcone S, <i>et al.</i> (2013) &quot;Proteomic identification of the candidate target proteins of 15-deoxy-delta12,14-prostaglandin J2.&quot; <i>Proteomics</i> <b>13</b>(14):2135&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/23606334 23606334]; doi: [https://dx.doi.org/10.1002/pmic.201200289 10.1002/pmic.201200289]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23606334 62].
 +
#Halim VA, <i>et al.</i> (2013) &quot;Comparative phosphoproteomic analysis of checkpoint recovery identifies new regulators of the DNA damage response.&quot; <i>Sci Signal</i> <b>6</b>(272):rs9; PMID: [https://pubmed.ncbi.nlm.nih.gov/23612710 23612710]; doi: [https://dx.doi.org/10.1126/scisignal.2003664 10.1126/scisignal.2003664]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23612710 247].
 +
#Kooij V, <i>et al.</i> (2013) &quot;Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts.&quot; <i>J Mol Cell Cardiol</i> <b>60</b>:116&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/23619294 23619294]; doi: [https://dx.doi.org/10.1016/j.yjmcc.2013.04.012 10.1016/j.yjmcc.2013.04.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23619294 87].
 +
#Casado P, <i>et al.</i> (2013) &quot;Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors.&quot; <i>Genome Biol</i> <b>14</b>(4):R37; PMID: [https://pubmed.ncbi.nlm.nih.gov/23628362 23628362]; doi: [https://dx.doi.org/10.1186/gb-2013-14-4-r37 10.1186/gb-2013-14-4-r37]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23628362 75].
 +
#Sheynkman GM, <i>et al.</i> (2013) &quot;Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(8):2341&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/23629695 23629695]; doi: [https://dx.doi.org/10.1074/mcp.O113.028142 10.1074/mcp.O113.028142]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23629695 28].
 +
#Wijten P, <i>et al.</i> (2013) &quot;High precision platelet releasate definition by quantitative reversed protein profiling--brief report.&quot; <i>Arterioscler Thromb Vasc Biol</i> <b>33</b>(7):1635&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23640497 23640497]; doi: [https://dx.doi.org/10.1161/ATVBAHA.113.301147 10.1161/ATVBAHA.113.301147]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23640497 82].
 +
#Tauro BJ, <i>et al.</i> (2013) &quot;Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(8):2148&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/23645497 23645497]; doi: [https://dx.doi.org/10.1074/mcp.M112.027086 10.1074/mcp.M112.027086]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23645497 187].
 +
#M&uuml;ller SA, <i>et al.</i> (2013) &quot;Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics.&quot; <i>J Proteomics</i> <b>86</b>:27&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/23665149 23665149]; doi: [https://dx.doi.org/10.1016/j.jprot.2013.04.036 10.1016/j.jprot.2013.04.036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23665149 63].
 +
#Marimuthu A, <i>et al.</i> (2013) &quot;Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome.&quot; <i>Biochim Biophys Acta</i> <b>1834</b>(11):2308&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/23665456 23665456]; doi: [https://dx.doi.org/10.1016/j.bbapap.2013.04.029 10.1016/j.bbapap.2013.04.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23665456 23].
 +
#Chen Z, <i>et al.</i> (2013) &quot;Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(8):2266&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/23665590 23665590]; doi: [https://dx.doi.org/10.1074/mcp.M112.025817 10.1074/mcp.M112.025817]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23665590 84].
 +
#Wu L, <i>et al.</i> (2013) &quot;Variation and genetic control of protein abundance in humans.&quot; <i>Nature</i> <b>499</b>(7456):79&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/23676674 23676674]; doi: [https://dx.doi.org/10.1038/nature12223 10.1038/nature12223]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23676674 51].
 +
#Greening DW, <i>et al.</i> (2013) &quot;Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment.&quot; <i>Biochim Biophys Acta</i> <b>1834</b>(11):2396&ndash;407; PMID: [https://pubmed.ncbi.nlm.nih.gov/23684732 23684732]; doi: [https://dx.doi.org/10.1016/j.bbapap.2013.05.006 10.1016/j.bbapap.2013.05.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23684732 4].
 +
#Zhang L, <i>et al.</i> (2013) &quot;Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.&quot; <i>J Proteome Res</i> <b>12</b>(7):3104&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/23692254 23692254]; doi: [https://dx.doi.org/10.1021/pr3008495 10.1021/pr3008495]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23692254 106].
 +
#Courcelles M, <i>et al.</i> (2013) &quot;Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions.&quot; <i>Mol Syst Biol</i> <b>9</b>:669; PMID: [https://pubmed.ncbi.nlm.nih.gov/23712012 23712012]; doi: [https://dx.doi.org/10.1038/msb.2013.25 10.1038/msb.2013.25]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23712012 124].
 +
#Darville LN, <i>et al.</i> (2013) &quot;In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry.&quot; <i>J Proteome Res</i> <b>12</b>(8):3620&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/23721421 23721421]; doi: [https://dx.doi.org/10.1021/pr4001338 10.1021/pr4001338]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23721421 160].
 +
#Villamor JG, <i>et al.</i> (2013) &quot;Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(9):2481&ndash;96; PMID: [https://pubmed.ncbi.nlm.nih.gov/23722185 23722185]; doi: [https://dx.doi.org/10.1074/mcp.M112.026278 10.1074/mcp.M112.026278]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23722185 30].
 +
#Liberski AR, <i>et al.</i> (2013) &quot;Adaptation of a commonly used, chemically defined medium for human embryonic stem cells to stable isotope labeling with amino acids in cell culture.&quot; <i>J Proteome Res</i> <b>12</b>(7):3233&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/23734825 23734825]; doi: [https://dx.doi.org/10.1021/pr400099j 10.1021/pr400099j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23734825 13].
 +
#Casabona MG, <i>et al.</i> (2013) &quot;Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane.&quot; <i>Proteomics</i> <b>13</b>(16):2419&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/23744604 23744604]; doi: [https://dx.doi.org/10.1002/pmic.201200565 10.1002/pmic.201200565]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23744604 6].
 +
#Ross BD, <i>et al.</i> (2013) &quot;Stepwise evolution of essential centromere function in a Drosophila neogene.&quot; <i>Science</i> <b>340</b>(6137):1211&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/23744945 23744945]; doi: [https://dx.doi.org/10.1126/science.1234393 10.1126/science.1234393]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23744945 18].
 +
#Miura N, <i>et al.</i> (2013) &quot;Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia.&quot; <i>Eukaryot Cell</i> <b>12</b>(8):1106&ndash;19; PMID: [https://pubmed.ncbi.nlm.nih.gov/23748432 23748432]; doi: [https://dx.doi.org/10.1128/EC.00093-13 10.1128/EC.00093-13]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23748432 8].
 +
#Swaney DL, <i>et al.</i> (2013) &quot;Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation.&quot; <i>Nat Methods</i> <b>10</b>(7):676&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/23749301 23749301]; doi: [https://dx.doi.org/10.1038/nmeth.2519 10.1038/nmeth.2519]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23749301 137].
 +
#Mertins P, <i>et al.</i> (2013) &quot;Integrated proteomic analysis of post-translational modifications by serial enrichment.&quot; <i>Nat Methods</i> <b>10</b>(7):634&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/23749302 23749302]; doi: [https://dx.doi.org/10.1038/nmeth.2518 10.1038/nmeth.2518]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23749302 231].
 +
#Joshi P, <i>et al.</i> (2013) &quot;The functional interactome landscape of the human histone deacetylase family.&quot; <i>Mol Syst Biol</i> <b>9</b>:672; PMID: [https://pubmed.ncbi.nlm.nih.gov/23752268 23752268]; doi: [https://dx.doi.org/10.1038/msb.2013.26 10.1038/msb.2013.26]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23752268 75].
 +
#Wierer M, <i>et al.</i> (2013) &quot;PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription.&quot; <i>Cell Rep</i> <b>3</b>(6):2021&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/23770244 23770244]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.05.024 10.1016/j.celrep.2013.05.024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23770244 7].
 +
#Takahashi Y, <i>et al.</i> (2013) &quot;bHLH transcription factors that facilitate K&#x207A; uptake during stomatal opening are repressed by abscisic acid through phosphorylation.&quot; <i>Sci Signal</i> <b>6</b>(280):ra48; PMID: [https://pubmed.ncbi.nlm.nih.gov/23779086 23779086]; doi: [https://dx.doi.org/10.1126/scisignal.2003760 10.1126/scisignal.2003760]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23779086 2].
 +
#Freund DM, <i>et al.</i> (2013) &quot;Proteomic profiling of the mitochondrial inner membrane of rat renal proximal convoluted tubules.&quot; <i>Proteomics</i> <b>13</b>(16):2495&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/23780708 23780708]; doi: [https://dx.doi.org/10.1002/pmic.201200558 10.1002/pmic.201200558]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23780708 10].
 +
#Maier SK, <i>et al.</i> (2013) &quot;Comprehensive identification of proteins from MALDI imaging.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(10):2901&ndash;10; PMID: [https://pubmed.ncbi.nlm.nih.gov/23782541 23782541]; doi: [https://dx.doi.org/10.1074/mcp.M113.027599 10.1074/mcp.M113.027599]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23782541 215].
 +
#Tanca A, <i>et al.</i> (2013) &quot;Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome.&quot; <i>Proteomics</i> <b>13</b>(17):2597&ndash;607; PMID: [https://pubmed.ncbi.nlm.nih.gov/23784971 23784971]; doi: [https://dx.doi.org/10.1002/pmic.201200478 10.1002/pmic.201200478]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23784971 131].
 +
#Hansen AM, <i>et al.</i> (2013) &quot;The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence.&quot; <i>PLoS Pathog</i> <b>9</b>(6):e1003403; PMID: [https://pubmed.ncbi.nlm.nih.gov/23785281 23785281]; doi: [https://dx.doi.org/10.1371/journal.ppat.1003403 10.1371/journal.ppat.1003403]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23785281 24].
 +
#Prewitz MC, <i>et al.</i> (2013) &quot;Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments.&quot; <i>Nat Methods</i> <b>10</b>(8):788&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/23793238 23793238]; doi: [https://dx.doi.org/10.1038/nmeth.2523 10.1038/nmeth.2523]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23793238 108].
 +
#Xiang F, <i>et al.</i> (2013) &quot;Proteomics analysis of human pericardial fluid.&quot; <i>Proteomics</i> <b>13</b>(17):2692&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/23797974 23797974]; doi: [https://dx.doi.org/10.1002/pmic.201200317 10.1002/pmic.201200317]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23797974 59].
 +
#Kosanam H, <i>et al.</i> (2013) &quot;Laminin, gamma 2 (LAMC2): a promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(10):2820&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/23798558 23798558]; doi: [https://dx.doi.org/10.1074/mcp.M112.023507 10.1074/mcp.M112.023507]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23798558 112].
 +
#Vialas V, <i>et al.</i> (2014) &quot;A Candida albicans PeptideAtlas.&quot; <i>J Proteomics</i> <b>97</b>:62&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23811049 23811049]; doi: [https://dx.doi.org/10.1016/j.jprot.2013.06.020 10.1016/j.jprot.2013.06.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23811049 148].
 +
#H&ouml;hner R, <i>et al.</i> (2013) &quot;The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(10):2774&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/23820728 23820728]; doi: [https://dx.doi.org/10.1074/mcp.M113.029991 10.1074/mcp.M113.029991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23820728 669].
 +
#Stout GJ, <i>et al.</i> (2013) &quot;Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism.&quot; <i>Mol Syst Biol</i> <b>9</b>:679; PMID: [https://pubmed.ncbi.nlm.nih.gov/23820781 23820781]; doi: [https://dx.doi.org/10.1038/msb.2013.35 10.1038/msb.2013.35]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23820781 66].
 +
#Bottermann K, <i>et al.</i> (2013) &quot;Systematic Analysis Reveals Elongation Factor 2 and &alpha;-Enolase as Novel Interaction Partners of AKT2.&quot; <i>PLoS One</i> <b>8</b>(6):e66045; PMID: [https://pubmed.ncbi.nlm.nih.gov/23823123 23823123]; doi: [https://dx.doi.org/10.1371/journal.pone.0066045 10.1371/journal.pone.0066045]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23823123 4].
 +
#Rodr&iacute;guez-Pi&ntilde;eiro AM, <i>et al.</i> (2013) &quot;Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins.&quot; <i>Am J Physiol Gastrointest Liver Physiol</i> <b>305</b>(5):G348&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/23832517 23832517]; doi: [https://dx.doi.org/10.1152/ajpgi.00047.2013 10.1152/ajpgi.00047.2013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23832517 72].
 +
#Konvalinka A, <i>et al.</i> (2013) &quot;Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC).&quot; <i>J Biol Chem</i> <b>288</b>(34):24834&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/23846697 23846697]; doi: [https://dx.doi.org/10.1074/jbc.M113.485326 10.1074/jbc.M113.485326]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23846697 204].
 +
#Zhou F, <i>et al.</i> (2013) &quot;Genome-scale proteome quantification by DEEP SEQ mass spectrometry.&quot; <i>Nat Commun</i> <b>4</b>:2171; PMID: [https://pubmed.ncbi.nlm.nih.gov/23863870 23863870]; doi: [https://dx.doi.org/10.1038/ncomms3171 10.1038/ncomms3171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23863870 60].
 +
#Johansson HJ, <i>et al.</i> (2013) &quot;Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer.&quot; <i>Nat Commun</i> <b>4</b>:2175; PMID: [https://pubmed.ncbi.nlm.nih.gov/23868472 23868472]; doi: [https://dx.doi.org/10.1038/ncomms3175 10.1038/ncomms3175]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23868472 144].
 +
#Prasad TS, <i>et al.</i> (2013) &quot;Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis.&quot; <i>Clin Proteomics</i> <b>10</b>(1):8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23870090 23870090]; doi: [https://dx.doi.org/10.1186/1559-0275-10-8 10.1186/1559-0275-10-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23870090 1].
 +
#Omasits U, <i>et al.</i> (2013) &quot;Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome.&quot; <i>Genome Res</i> <b>23</b>(11):1916&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/23878158 23878158]; doi: [https://dx.doi.org/10.1101/gr.151035.112 10.1101/gr.151035.112]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23878158 26].
 +
#Xia L, <i>et al.</i> (2013) &quot;Phosphoproteomics study on the activated PKC&delta;-induced cell death.&quot; <i>J Proteome Res</i> <b>12</b>(10):4280&ndash;301; PMID: [https://pubmed.ncbi.nlm.nih.gov/23879269 23879269]; doi: [https://dx.doi.org/10.1021/pr400089v 10.1021/pr400089v]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23879269 385].
 +
#Chen YY, <i>et al.</i> (2013) &quot;IDPQuantify: combining precursor intensity with spectral counts for protein and peptide quantification.&quot; <i>J Proteome Res</i> <b>12</b>(9):4111&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/23879310 23879310]; doi: [https://dx.doi.org/10.1021/pr400438q 10.1021/pr400438q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23879310 23].
 +
#Chamr&aacute;d I, <i>et al.</i> (2013) &quot;A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies.&quot; <i>J Proteome Res</i> <b>12</b>(9):4005&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/23901793 23901793]; doi: [https://dx.doi.org/10.1021/pr400309p 10.1021/pr400309p]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23901793 56].
 +
#Oosterkamp MJ, <i>et al.</i> (2013) &quot;Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.&quot; <i>Proteomics</i> <b>13</b>(18-19):2886&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/23907812 23907812]; doi: [https://dx.doi.org/10.1002/pmic.201200571 10.1002/pmic.201200571]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23907812 16].
 +
#Kwon SC, <i>et al.</i> (2013) &quot;The RNA-binding protein repertoire of embryonic stem cells.&quot; <i>Nat Struct Mol Biol</i> <b>20</b>(9):1122&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/23912277 23912277]; doi: [https://dx.doi.org/10.1038/nsmb.2638 10.1038/nsmb.2638]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23912277 36].
 +
#Gholami AM, <i>et al.</i> (2013) &quot;Global proteome analysis of the NCI-60 cell line panel.&quot; <i>Cell Rep</i> <b>4</b>(3):609&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/23933261 23933261]; doi: [https://dx.doi.org/10.1016/j.celrep.2013.07.018 10.1016/j.celrep.2013.07.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23933261 899].
 +
#Krishnappa L, <i>et al.</i> (2013) &quot;Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis.&quot; <i>J Proteome Res</i> <b>12</b>(9):4101&ndash;10; PMID: [https://pubmed.ncbi.nlm.nih.gov/23937099 23937099]; doi: [https://dx.doi.org/10.1021/pr400433h 10.1021/pr400433h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23937099 112].
 +
#Han D, <i>et al.</i> (2013) &quot;In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.&quot; <i>Proteomics</i> <b>13</b>(20):2984&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23943505 23943505]; doi: [https://dx.doi.org/10.1002/pmic.201300091 10.1002/pmic.201300091]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23943505 36].
 +
#Edwards AV, <i>et al.</i> (2014) &quot;Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain.&quot; <i>J Proteome Res</i> <b>13</b>(1):260&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/23947802 23947802]; doi: [https://dx.doi.org/10.1021/pr4002977 10.1021/pr4002977]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23947802 11].
 +
#Ulrich C, <i>et al.</i> (2013) &quot;The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor.&quot; <i>Am J Physiol Cell Physiol</i> <b>305</b>(8):C803&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/23948706 23948706]; doi: [https://dx.doi.org/10.1152/ajpcell.00198.2013 10.1152/ajpcell.00198.2013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23948706 9].
 +
#Liu NQ, <i>et al.</i> (2013) &quot;Quantitative proteomic analysis of microdissected breast cancer tissues: comparison of label-free and SILAC-based quantification with shotgun, directed, and targeted MS approaches.&quot; <i>J Proteome Res</i> <b>12</b>(10):4627&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/23957277 23957277]; doi: [https://dx.doi.org/10.1021/pr4005794 10.1021/pr4005794]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23957277 57].
 +
#Hahne H, <i>et al.</i> (2013) &quot;DMSO enhances electrospray response, boosting sensitivity of proteomic experiments.&quot; <i>Nat Methods</i> <b>10</b>(10):989&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/23975139 23975139]; doi: [https://dx.doi.org/10.1038/nmeth.2610 10.1038/nmeth.2610]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23975139 64].
 +
#Lewandowska D, <i>et al.</i> (2013) &quot;Plant SILAC: stable-isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics.&quot; <i>PLoS One</i> <b>8</b>(8):e72207; PMID: [https://pubmed.ncbi.nlm.nih.gov/23977254 23977254]; doi: [https://dx.doi.org/10.1371/journal.pone.0072207 10.1371/journal.pone.0072207]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23977254 50].
 +
#Zanivan S, <i>et al.</i> (2013) &quot;SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(12):3599&ndash;611; PMID: [https://pubmed.ncbi.nlm.nih.gov/23979707 23979707]; doi: [https://dx.doi.org/10.1074/mcp.M113.031344 10.1074/mcp.M113.031344]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23979707 452].
 +
#Lichtman JS, <i>et al.</i> (2013) &quot;Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(11):3310&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/23982161 23982161]; doi: [https://dx.doi.org/10.1074/mcp.M113.029967 10.1074/mcp.M113.029967]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23982161 289].
 +
#Ueda K, <i>et al.</i> (2013) &quot;Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide.&quot; <i>J Proteome Res</i> <b>12</b>(10):4497&ndash;506; PMID: [https://pubmed.ncbi.nlm.nih.gov/23991666 23991666]; doi: [https://dx.doi.org/10.1021/pr400547s 10.1021/pr400547s]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/23991666 116].
 +
#Depuydt G, <i>et al.</i> (2013) &quot;Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(12):3624&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/24002365 24002365]; doi: [https://dx.doi.org/10.1074/mcp.M113.027383 10.1074/mcp.M113.027383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24002365 64].
 +
#Jones KA, <i>et al.</i> (2013) &quot;Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers.&quot; <i>J Proteome Res</i> <b>12</b>(10):4351&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/24004147 24004147]; doi: [https://dx.doi.org/10.1021/pr400307u 10.1021/pr400307u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24004147 149].
 +
#Salmon CR, <i>et al.</i> (2013) &quot;Proteomic analysis of human dental cementum and alveolar bone.&quot; <i>J Proteomics</i> <b>91</b>:544&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/24007660 24007660]; doi: [https://dx.doi.org/10.1016/j.jprot.2013.08.016 10.1016/j.jprot.2013.08.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24007660 42].
 +
#Mart&iacute;nez-F&aacute;bregas J, <i>et al.</i> (2013) &quot;New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(12):3666&ndash;76; PMID: [https://pubmed.ncbi.nlm.nih.gov/24019145 24019145]; doi: [https://dx.doi.org/10.1074/mcp.M113.030692 10.1074/mcp.M113.030692]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24019145 8].
 +
#Bai B, <i>et al.</i> (2013) &quot;U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer&#39;s disease.&quot; <i>Proc Natl Acad Sci U S A</i> <b>110</b>(41):16562&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/24023061 24023061]; doi: [https://dx.doi.org/10.1073/pnas.1310249110 10.1073/pnas.1310249110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24023061 80].
 +
#Kirkwood KJ, <i>et al.</i> (2013) &quot;Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.&quot; <i>Mol Cell Proteomics</i> <b>12</b>(12):3851&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/24043423 24043423]; doi: [https://dx.doi.org/10.1074/mcp.M113.032367 10.1074/mcp.M113.032367]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24043423 120].
 +
#Miranda HV, <i>et al.</i> (2014) &quot;Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(1):220&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/24097257 24097257]; doi: [https://dx.doi.org/10.1074/mcp.M113.029652 10.1074/mcp.M113.029652]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24097257 35].
 +
#Hartmann EM, <i>et al.</i> (2014) &quot;Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1.&quot; <i>Environ Microbiol</i> <b>16</b>(1):162&ndash;76; PMID: [https://pubmed.ncbi.nlm.nih.gov/24118890 24118890]; doi: [https://dx.doi.org/10.1111/1462-2920.12264 10.1111/1462-2920.12264]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24118890 84].
 +
#Puttamallesh VN, <i>et al.</i> (2013) &quot;Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response.&quot; <i>Clin Proteomics</i> <b>10</b>(1):14; PMID: [https://pubmed.ncbi.nlm.nih.gov/24124767 24124767]; doi: [https://dx.doi.org/10.1186/1559-0275-10-14 10.1186/1559-0275-10-14]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24124767 23].
 +
#Wang W, <i>et al.</i> (2014) &quot;Defining the protein-protein interaction network of the human hippo pathway.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(1):119&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/24126142 24126142]; doi: [https://dx.doi.org/10.1074/mcp.M113.030049 10.1074/mcp.M113.030049]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24126142 66].
 +
#Khan Z, <i>et al.</i> (2013) &quot;Primate transcript and protein expression levels evolve under compensatory selection pressures.&quot; <i>Science</i> <b>342</b>(6162):1100&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/24136357 24136357]; doi: [https://dx.doi.org/10.1126/science.1242379 10.1126/science.1242379]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24136357 173].
 +
#Segura V, <i>et al.</i> (2014) &quot;Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome.&quot; <i>J Proteome Res</i> <b>13</b>(1):158&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/24138474 24138474]; doi: [https://dx.doi.org/10.1021/pr400721r 10.1021/pr400721r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24138474 106].
 +
#Hebert AS, <i>et al.</i> (2014) &quot;The one hour yeast proteome.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(1):339&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/24143002 24143002]; doi: [https://dx.doi.org/10.1074/mcp.M113.034769 10.1074/mcp.M113.034769]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24143002 7].
 +
#Gorbachev AY, <i>et al.</i> (2013) &quot;DNA repair in Mycoplasma gallisepticum.&quot; <i>BMC Genomics</i> <b>14</b>:726; PMID: [https://pubmed.ncbi.nlm.nih.gov/24148612 24148612]; doi: [https://dx.doi.org/10.1186/1471-2164-14-726 10.1186/1471-2164-14-726]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24148612 1].
 +
#McKnight H, <i>et al.</i> (2014) &quot;Proteomic analyses of human gingival and periodontal ligament fibroblasts.&quot; <i>J Periodontol</i> <b>85</b>(6):810&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/24171499 24171499]; doi: [https://dx.doi.org/10.1902/jop.2013.130161 10.1902/jop.2013.130161]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24171499 8].
 +
#Deeb SJ, <i>et al.</i> (2014) &quot;N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(1):240&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/24190977 24190977]; doi: [https://dx.doi.org/10.1074/mcp.M113.033977 10.1074/mcp.M113.033977]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24190977 40].
 +
#English JA, <i>et al.</i> (2013) &quot;Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus.&quot; <i>Front Genet</i> <b>4</b>:208; PMID: [https://pubmed.ncbi.nlm.nih.gov/24194745 24194745]; doi: [https://dx.doi.org/10.3389/fgene.2013.00208 10.3389/fgene.2013.00208]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24194745 48].
 +
#Fujita T, <i>et al.</i> (2013) &quot;Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP).&quot; <i>Sci Rep</i> <b>3</b>:3171; PMID: [https://pubmed.ncbi.nlm.nih.gov/24201379 24201379]; doi: [https://dx.doi.org/10.1038/srep03171 10.1038/srep03171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24201379 30].
 +
#Salek M, <i>et al.</i> (2013) &quot;Quantitative phosphoproteome analysis unveils LAT as a modulator of CD3&zeta; and ZAP-70 tyrosine phosphorylation.&quot; <i>PLoS One</i> <b>8</b>(10):e77423; PMID: [https://pubmed.ncbi.nlm.nih.gov/24204825 24204825]; doi: [https://dx.doi.org/10.1371/journal.pone.0077423 10.1371/journal.pone.0077423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24204825 162].
 +
#Sandberg A, <i>et al.</i> (2014) &quot;Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference.&quot; <i>J Proteomics</i> <b>96</b>:133&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/24211767 24211767]; doi: [https://dx.doi.org/10.1016/j.jprot.2013.10.035 10.1016/j.jprot.2013.10.035]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24211767 27].
 +
#Caruthers NJ, <i>et al.</i> (2014) &quot;Mercury alters B-cell protein phosphorylation profiles.&quot; <i>J Proteome Res</i> <b>13</b>(2):496&ndash;505; PMID: [https://pubmed.ncbi.nlm.nih.gov/24224561 24224561]; doi: [https://dx.doi.org/10.1021/pr400657k 10.1021/pr400657k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24224561 21].
 +
#Sancak Y, <i>et al.</i> (2013) &quot;EMRE is an essential component of the mitochondrial calcium uniporter complex.&quot; <i>Science</i> <b>342</b>(6164):1379&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/24231807 24231807]; doi: [https://dx.doi.org/10.1126/science.1242993 10.1126/science.1242993]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24231807 7].
 +
#Thomae AW, <i>et al.</i> (2013) &quot;A pair of centromeric proteins mediates reproductive isolation in Drosophila species.&quot; <i>Dev Cell</i> <b>27</b>(4):412&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/24239514 24239514]; doi: [https://dx.doi.org/10.1016/j.devcel.2013.10.001 10.1016/j.devcel.2013.10.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24239514 51].
 +
#Branca RM, <i>et al.</i> (2014) &quot;HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics.&quot; <i>Nat Methods</i> <b>11</b>(1):59&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/24240322 24240322]; doi: [https://dx.doi.org/10.1038/nmeth.2732 10.1038/nmeth.2732]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24240322 2592].
 +
#Schaab C, <i>et al.</i> (2014) &quot;Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib.&quot; <i>Leukemia</i> <b>28</b>(3):716&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24247654 24247654]; doi: [https://dx.doi.org/10.1038/leu.2013.347 10.1038/leu.2013.347]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24247654 22].
 +
#Drake JM, <i>et al.</i> (2013) &quot;Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets.&quot; <i>Proc Natl Acad Sci U S A</i> <b>110</b>(49):E4762&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24248375 24248375]; doi: [https://dx.doi.org/10.1073/pnas.1319948110 10.1073/pnas.1319948110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24248375 87].
 +
#Chang C, <i>et al.</i> (2014) &quot;Systematic analyses of the transcriptome, translatome, and proteome provide a global view and potential strategy for the C-HPP.&quot; <i>J Proteome Res</i> <b>13</b>(1):38&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/24256510 24256510]; doi: [https://dx.doi.org/10.1021/pr4009018 10.1021/pr4009018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24256510 216].
 +
#Dagley LF, <i>et al.</i> (2014) &quot;Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain.&quot; <i>Proteomics</i> <b>14</b>(2-3):241&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/24259518 24259518]; doi: [https://dx.doi.org/10.1002/pmic.201300196 10.1002/pmic.201300196]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24259518 56].
 +
#Xing X, <i>et al.</i> (2014) &quot;Qualitative and quantitative analysis of the adult Drosophila melanogaster proteome.&quot; <i>Proteomics</i> <b>14</b>(2-3):286&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/24259522 24259522]; doi: [https://dx.doi.org/10.1002/pmic.201300121 10.1002/pmic.201300121]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24259522 125].
 +
#Lichti CF, <i>et al.</i> (2014) &quot;Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines.&quot; <i>J Proteome Res</i> <b>13</b>(1):191&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24266786 24266786]; doi: [https://dx.doi.org/10.1021/pr400786s 10.1021/pr400786s]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24266786 66].
 +
#Grolimund L, <i>et al.</i> (2013) &quot;A quantitative telomeric chromatin isolation protocol identifies different telomeric states.&quot; <i>Nat Commun</i> <b>4</b>:2848; PMID: [https://pubmed.ncbi.nlm.nih.gov/24270157 24270157]; doi: [https://dx.doi.org/10.1038/ncomms3848 10.1038/ncomms3848]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24270157 177].
 +
#Martins-de-Souza D, <i>et al.</i> (2014) &quot;Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>13</b>(1):147&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/24274931 24274931]; doi: [https://dx.doi.org/10.1021/pr4009157 10.1021/pr4009157]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24274931 80].
 +
#Schlage P, <i>et al.</i> (2014) &quot;Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):580&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/24281761 24281761]; doi: [https://dx.doi.org/10.1074/mcp.M113.035139 10.1074/mcp.M113.035139]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24281761 34].
 +
#Aquino PF, <i>et al.</i> (2014) &quot;Exploring the proteomic landscape of a gastric cancer biopsy with the shotgun imaging analyzer.&quot; <i>J Proteome Res</i> <b>13</b>(1):314&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/24283986 24283986]; doi: [https://dx.doi.org/10.1021/pr400919k 10.1021/pr400919k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24283986 152].
 +
#Nensa FM, <i>et al.</i> (2014) &quot;Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):475&ndash;88; PMID: [https://pubmed.ncbi.nlm.nih.gov/24284412 24284412]; doi: [https://dx.doi.org/10.1074/mcp.M113.029280 10.1074/mcp.M113.029280]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24284412 60].
 +
#J&uuml;schke C, <i>et al.</i> (2013) &quot;Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation.&quot; <i>Genome Biol</i> <b>14</b>(11):r133; PMID: [https://pubmed.ncbi.nlm.nih.gov/24289286 24289286]; doi: [https://dx.doi.org/10.1186/gb-2013-14-11-r133 10.1186/gb-2013-14-11-r133]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24289286 203].
 +
#Wang C, <i>et al.</i> (2014) &quot;A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles.&quot; <i>Nat Methods</i> <b>11</b>(1):79&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/24292485 24292485]; doi: [https://dx.doi.org/10.1038/nmeth.2759 10.1038/nmeth.2759]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24292485 180].
 +
#Kr&ouml;nke J, <i>et al.</i> (2014) &quot;Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.&quot; <i>Science</i> <b>343</b>(6168):301&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/24292625 24292625]; doi: [https://dx.doi.org/10.1126/science.1244851 10.1126/science.1244851]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24292625 90].
 +
#Poulsen ET, <i>et al.</i> (2014) &quot;Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene.&quot; <i>Proteomics Clin Appl</i> <b>8</b>(3-4):168&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/24302499 24302499]; doi: [https://dx.doi.org/10.1002/prca.201300058 10.1002/prca.201300058]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24302499 10].
 +
#Macleod AK, <i>et al.</i> (2014) &quot;A targeted in vivo SILAC approach for quantification of drug metabolism enzymes: regulation by the constitutive androstane receptor.&quot; <i>J Proteome Res</i> <b>13</b>(2):866&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/24303842 24303842]; doi: [https://dx.doi.org/10.1021/pr400897t 10.1021/pr400897t]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24303842 44].
 +
#Aguilera L, <i>et al.</i> (2014) &quot;Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917.&quot; <i>Proteomics</i> <b>14</b>(2-3):222&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24307187 24307187]; doi: [https://dx.doi.org/10.1002/pmic.201300328 10.1002/pmic.201300328]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24307187 44].
 +
#de la Tour CB, <i>et al.</i> (2013) &quot;Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage.&quot; <i>Proteomics</i> <b>13</b>(23-24):3457&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/24307635 24307635]; doi: [https://dx.doi.org/10.1002/pmic.201300249 10.1002/pmic.201300249]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24307635 24].
 +
#Carlson SM, <i>et al.</i> (2014) &quot;Proteome-wide enrichment of proteins modified by lysine methylation.&quot; <i>Nat Protoc</i> <b>9</b>(1):37&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/24309976 24309976]; doi: [https://dx.doi.org/10.1038/nprot.2013.164 10.1038/nprot.2013.164]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24309976 8].
 +
#Fierro-Monti I, <i>et al.</i> (2013) &quot;Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy.&quot; <i>PLoS One</i> <b>8</b>(11):e80425; PMID: [https://pubmed.ncbi.nlm.nih.gov/24312219 24312219]; doi: [https://dx.doi.org/10.1371/journal.pone.0080425 10.1371/journal.pone.0080425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24312219 293].
 +
#Bland C, <i>et al.</i> (2014) &quot;Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides.&quot; <i>J Proteome Res</i> <b>13</b>(2):668&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/24313271 24313271]; doi: [https://dx.doi.org/10.1021/pr400774z 10.1021/pr400774z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313271 9].
 +
#Tsai CF, <i>et al.</i> (2014) &quot;Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography.&quot; <i>Anal Chem</i> <b>86</b>(1):685&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/24313913 24313913]; doi: [https://dx.doi.org/10.1021/ac4031175 10.1021/ac4031175]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24313913 27].
 +
#Kennedy JJ, <i>et al.</i> (2014) &quot;Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins.&quot; <i>Nat Methods</i> <b>11</b>(2):149&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/24317253 24317253]; doi: [https://dx.doi.org/10.1038/nmeth.2763 10.1038/nmeth.2763]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24317253 221].
 +
#Kao L, <i>et al.</i> (2014) &quot;Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):594&ndash;605; PMID: [https://pubmed.ncbi.nlm.nih.gov/24319056 24319056]; doi: [https://dx.doi.org/10.1074/mcp.M113.032680 10.1074/mcp.M113.032680]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24319056 9].
 +
#Beck F, <i>et al.</i> (2014) &quot;Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways.&quot; <i>Blood</i> <b>123</b>(5):e1&ndash;e10; PMID: [https://pubmed.ncbi.nlm.nih.gov/24324209 24324209]; doi: [https://dx.doi.org/10.1182/blood-2013-07-512384 10.1182/blood-2013-07-512384]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24324209 19].
 +
#Lv DW, <i>et al.</i> (2014) &quot;Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(2):632&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/24335353 24335353]; doi: [https://dx.doi.org/10.1074/mcp.M113.030171 10.1074/mcp.M113.030171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24335353 87].
 +
#Hauri S, <i>et al.</i> (2013) &quot;Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1.&quot; <i>Mol Syst Biol</i> <b>9</b>:713; PMID: [https://pubmed.ncbi.nlm.nih.gov/24366813 24366813]; doi: [https://dx.doi.org/10.1002/msb.201304750 10.1002/msb.201304750]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24366813 96].
 +
#Hoffmann C, <i>et al.</i> (2014) &quot;Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages.&quot; <i>Cell Microbiol</i> <b>16</b>(7):1034&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/24373249 24373249]; doi: [https://dx.doi.org/10.1111/cmi.12256 10.1111/cmi.12256]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24373249 120].
 +
#Robles MS, <i>et al.</i> (2014) &quot;In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism.&quot; <i>PLoS Genet</i> <b>10</b>(1):e1004047; PMID: [https://pubmed.ncbi.nlm.nih.gov/24391516 24391516]; doi: [https://dx.doi.org/10.1371/journal.pgen.1004047 10.1371/journal.pgen.1004047]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24391516 282].
 +
#Faso C, <i>et al.</i> (2013) &quot;The proteome landscape of Giardia lamblia encystation.&quot; <i>PLoS One</i> <b>8</b>(12):e83207; PMID: [https://pubmed.ncbi.nlm.nih.gov/24391747 24391747]; doi: [https://dx.doi.org/10.1371/journal.pone.0083207 10.1371/journal.pone.0083207]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24391747 125].
 +
#Forterre A, <i>et al.</i> (2014) &quot;Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?&quot; <i>PLoS One</i> <b>9</b>(1):e84153; PMID: [https://pubmed.ncbi.nlm.nih.gov/24392111 24392111]; doi: [https://dx.doi.org/10.1371/journal.pone.0084153 10.1371/journal.pone.0084153]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24392111 6].
 +
#Eichelbaum K, <i>et al.</i> (2014) &quot;Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(3):792&ndash;810; PMID: [https://pubmed.ncbi.nlm.nih.gov/24396086 24396086]; doi: [https://dx.doi.org/10.1074/mcp.M113.030916 10.1074/mcp.M113.030916]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24396086 48].
 +
#Liu NQ, <i>et al.</i> (2014) &quot;Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer.&quot; <i>J Natl Cancer Inst</i> <b>106</b>(2):djt376; PMID: [https://pubmed.ncbi.nlm.nih.gov/24399849 24399849]; doi: [https://dx.doi.org/10.1093/jnci/djt376 10.1093/jnci/djt376]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24399849 126].
 +
#Van Damme P, <i>et al.</i> (2014) &quot;A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(8):2031&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/24408909 24408909]; doi: [https://dx.doi.org/10.1074/mcp.M113.035402 10.1074/mcp.M113.035402]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24408909 192].
 +
#Sinha A, <i>et al.</i> (2014) &quot;In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome.&quot; <i>Biochem Biophys Res Commun</i> <b>445</b>(4):694&ndash;701; PMID: [https://pubmed.ncbi.nlm.nih.gov/24434149 24434149]; doi: [https://dx.doi.org/10.1016/j.bbrc.2013.12.070 10.1016/j.bbrc.2013.12.070]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24434149 14].
 +
#Lennon R, <i>et al.</i> (2014) &quot;Global analysis reveals the complexity of the human glomerular extracellular matrix.&quot; <i>J Am Soc Nephrol</i> <b>25</b>(5):939&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/24436468 24436468]; doi: [https://dx.doi.org/10.1681/ASN.2013030233 10.1681/ASN.2013030233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24436468 89].
 +
#Byron A, <i>et al.</i> (2014) &quot;Glomerular cell cross-talk influences composition and assembly of extracellular matrix.&quot; <i>J Am Soc Nephrol</i> <b>25</b>(5):953&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/24436469 24436469]; doi: [https://dx.doi.org/10.1681/ASN.2013070795 10.1681/ASN.2013070795]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24436469 180].
 +
#Licker V, <i>et al.</i> (2014) &quot;Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson&#39;s disease pathogenesis.&quot; <i>Proteomics</i> <b>14</b>(6):784&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/24449343 24449343]; doi: [https://dx.doi.org/10.1002/pmic.201300342 10.1002/pmic.201300342]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24449343 48].
 +
#Pesciotta EN, <i>et al.</i> (2014) &quot;Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.&quot; <i>PLoS One</i> <b>9</b>(1):e85504; PMID: [https://pubmed.ncbi.nlm.nih.gov/24454878 24454878]; doi: [https://dx.doi.org/10.1371/journal.pone.0085504 10.1371/journal.pone.0085504]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24454878 346].
 +
#Ferreira R, <i>et al.</i> (2014) &quot;Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats.&quot; <i>J Proteome Res</i> <b>13</b>(4):2045&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/24467267 24467267]; doi: [https://dx.doi.org/10.1021/pr4011926 10.1021/pr4011926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24467267 20].
 +
#Barth J, <i>et al.</i> (2014) &quot;The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(4):969&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/24482124 24482124]; doi: [https://dx.doi.org/10.1074/mcp.M113.032771 10.1074/mcp.M113.032771]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24482124 198].
 +
#Kulak NA, <i>et al.</i> (2014) &quot;Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells.&quot; <i>Nat Methods</i> <b>11</b>(3):319&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/24487582 24487582]; doi: [https://dx.doi.org/10.1038/nmeth.2834 10.1038/nmeth.2834]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24487582 59].
 +
#Weinert BT, <i>et al.</i> (2014) &quot;Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.&quot; <i>Mol Syst Biol</i> <b>10</b>:716; PMID: [https://pubmed.ncbi.nlm.nih.gov/24489116 24489116]; doi: [https://dx.doi.org/10.1002/msb.134766 10.1002/msb.134766]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24489116 88].
 +
#Kjellin H, <i>et al.</i> (2014) &quot;Differentially expressed proteins in malignant and benign adrenocortical tumors.&quot; <i>PLoS One</i> <b>9</b>(2):e87951; PMID: [https://pubmed.ncbi.nlm.nih.gov/24498411 24498411]; doi: [https://dx.doi.org/10.1371/journal.pone.0087951 10.1371/journal.pone.0087951]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24498411 2].
 +
#van den Biggelaar M, <i>et al.</i> (2014) &quot;Quantitative phosphoproteomics unveils temporal dynamics of thrombin signaling in human endothelial cells.&quot; <i>Blood</i> <b>123</b>(12):e22&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/24501219 24501219]; doi: [https://dx.doi.org/10.1182/blood-2013-12-546036 10.1182/blood-2013-12-546036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24501219 87].
 +
#Eguren M, <i>et al.</i> (2014) &quot;A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens.&quot; <i>Cell Rep</i> <b>6</b>(4):670&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/24508461 24508461]; doi: [https://dx.doi.org/10.1016/j.celrep.2014.01.017 10.1016/j.celrep.2014.01.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24508461 119].
 +
#Rinschen MM, <i>et al.</i> (2014) &quot;Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier.&quot; <i>J Am Soc Nephrol</i> <b>25</b>(7):1509&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/24511133 24511133]; doi: [https://dx.doi.org/10.1681/ASN.2013070760 10.1681/ASN.2013070760]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24511133 34].
 +
#Tao D, <i>et al.</i> (2014) &quot;The acute transcriptomic and proteomic response of HC-04 hepatoma cells to hepatocyte growth factor and its implications for Plasmodium falciparum sporozoite invasion.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(5):1153&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/24532842 24532842]; doi: [https://dx.doi.org/10.1074/mcp.M113.035584 10.1074/mcp.M113.035584]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24532842 51].
 +
#Kustatscher G, <i>et al.</i> (2014) &quot;Proteomics of a fuzzy organelle: interphase chromatin.&quot; <i>EMBO J</i> <b>33</b>(6):648&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/24534090 24534090]; doi: [https://dx.doi.org/10.1002/embj.201387614 10.1002/embj.201387614]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24534090 519].
 +
#Bland C, <i>et al.</i> (2014) &quot;N-Terminal-oriented proteogenomics of the marine bacterium roseobacter denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(5):1369&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/24536027 24536027]; doi: [https://dx.doi.org/10.1074/mcp.O113.032854 10.1074/mcp.O113.032854]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24536027 4].
 +
#Zufferey A, <i>et al.</i> (2014) &quot;Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules.&quot; <i>J Proteomics</i> <b>101</b>:130&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/24549006 24549006]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.02.008 10.1016/j.jprot.2014.02.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24549006 8].
 +
#Depuydt G, <i>et al.</i> (2014) &quot;LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism.&quot; <i>J Proteome Res</i> <b>13</b>(4):1938&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/24555535 24555535]; doi: [https://dx.doi.org/10.1021/pr401081b 10.1021/pr401081b]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24555535 40].
 +
#Lange PF, <i>et al.</i> (2014) &quot;Annotating N termini for the human proteome project: N termini and N&alpha;-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome.&quot; <i>J Proteome Res</i> <b>13</b>(4):2028&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/24555563 24555563]; doi: [https://dx.doi.org/10.1021/pr401191w 10.1021/pr401191w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24555563 101].
 +
#Plohnke N, <i>et al.</i> (2014) &quot;Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms.&quot; <i>Exp Gerontol</i> <b>56</b>:13&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/24556281 24556281]; doi: [https://dx.doi.org/10.1016/j.exger.2014.02.008 10.1016/j.exger.2014.02.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24556281 36].
 +
#Kolinko I, <i>et al.</i> (2014) &quot;Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters.&quot; <i>Nat Nanotechnol</i> <b>9</b>(3):193&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/24561353 24561353]; doi: [https://dx.doi.org/10.1038/nnano.2014.13 10.1038/nnano.2014.13]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24561353 1].
 +
#Warinner C, <i>et al.</i> (2014) &quot;Pathogens and host immunity in the ancient human oral cavity.&quot; <i>Nat Genet</i> <b>46</b>(4):336&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/24562188 24562188]; doi: [https://dx.doi.org/10.1038/ng.2906 10.1038/ng.2906]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24562188 18].
 +
#Sigdel TK, <i>et al.</i> (2014) &quot;Optimization for peptide sample preparation for urine peptidomics.&quot; <i>Clin Proteomics</i> <b>11</b>(1):7; PMID: [https://pubmed.ncbi.nlm.nih.gov/24568099 24568099]; doi: [https://dx.doi.org/10.1186/1559-0275-11-7 10.1186/1559-0275-11-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24568099 8].
 +
#Husi H, <i>et al.</i> (2014) &quot;Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease.&quot; <i>Circ Cardiovasc Genet</i> <b>7</b>(2):161&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/24573165 24573165]; doi: [https://dx.doi.org/10.1161/CIRCGENETICS.113.000196 10.1161/CIRCGENETICS.113.000196]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24573165 14].
 +
#Talamantes T, <i>et al.</i> (2014) &quot;Label-free LC-MS/MS identification of phosphatidylglycerol-regulated proteins in Synechocystis sp. PCC6803.&quot; <i>Proteomics</i> <b>14</b>(9):1053&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/24574175 24574175]; doi: [https://dx.doi.org/10.1002/pmic.201300372 10.1002/pmic.201300372]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24574175 30].
 +
#Benevento M, <i>et al.</i> (2014) &quot;Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics.&quot; <i>J Biol Chem</i> <b>289</b>(16):11421&ndash;11430; PMID: [https://pubmed.ncbi.nlm.nih.gov/24591515 24591515]; doi: [https://dx.doi.org/10.1074/jbc.M113.537498 10.1074/jbc.M113.537498]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24591515 5].
 +
#Legendre M, <i>et al.</i> (2014) &quot;Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology.&quot; <i>Proc Natl Acad Sci U S A</i> <b>111</b>(11):4274&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24591590 24591590]; doi: [https://dx.doi.org/10.1073/pnas.1320670111 10.1073/pnas.1320670111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24591590 1].
 +
#Ly T, <i>et al.</i> (2014) &quot;A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.&quot; <i>Elife</i> <b>3</b>:e01630; PMID: [https://pubmed.ncbi.nlm.nih.gov/24596151 24596151]; doi: [https://dx.doi.org/10.7554/eLife.01630 10.7554/eLife.01630]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24596151 98].
 +
#Bailey DJ, <i>et al.</i> (2014) &quot;Intelligent data acquisition blends targeted and discovery methods.&quot; <i>J Proteome Res</i> <b>13</b>(4):2152&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/24611583 24611583]; doi: [https://dx.doi.org/10.1021/pr401278j 10.1021/pr401278j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24611583 37].
 +
#Dai DF, <i>et al.</i> (2014) &quot;Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart.&quot; <i>Aging Cell</i> <b>13</b>(3):529&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/24612461 24612461]; doi: [https://dx.doi.org/10.1111/acel.12203 10.1111/acel.12203]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24612461 140].
 +
#Naba A, <i>et al.</i> (2014) &quot;Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters.&quot; <i>Elife</i> <b>3</b>:e01308; PMID: [https://pubmed.ncbi.nlm.nih.gov/24618895 24618895]; doi: [https://dx.doi.org/10.7554/eLife.01308 10.7554/eLife.01308]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24618895 44].
 +
#Peebo K, <i>et al.</i> (2014) &quot;Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.&quot; <i>Appl Microbiol Biotechnol</i> <b>98</b>(11):5131&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/24633370 24633370]; doi: [https://dx.doi.org/10.1007/s00253-014-5613-y 10.1007/s00253-014-5613-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24633370 10].
 +
#Clark CG, <i>et al.</i> (2014) &quot;The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts.&quot; <i>BMC Microbiol</i> <b>14</b>:70; PMID: [https://pubmed.ncbi.nlm.nih.gov/24641125 24641125]; doi: [https://dx.doi.org/10.1186/1471-2180-14-70 10.1186/1471-2180-14-70]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24641125 163].
 +
#Zhang Q, <i>et al.</i> (2014) &quot;High and low doses of ionizing radiation induce different secretome profiles in a human skin model.&quot; <i>PLoS One</i> <b>9</b>(3):e92332; PMID: [https://pubmed.ncbi.nlm.nih.gov/24642900 24642900]; doi: [https://dx.doi.org/10.1371/journal.pone.0092332 10.1371/journal.pone.0092332]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24642900 85].
 +
#de Groot RE, <i>et al.</i> (2014) &quot;Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway.&quot; <i>Sci Signal</i> <b>7</b>(317):ra26; PMID: [https://pubmed.ncbi.nlm.nih.gov/24643799 24643799]; doi: [https://dx.doi.org/10.1126/scisignal.2004985 10.1126/scisignal.2004985]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24643799 10].
 +
#Sahasrabuddhe NA, <i>et al.</i> (2014) &quot;Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics.&quot; <i>Biochem Biophys Res Commun</i> <b>446</b>(4):863&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24657443 24657443]; doi: [https://dx.doi.org/10.1016/j.bbrc.2014.03.017 10.1016/j.bbrc.2014.03.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24657443 29].
 +
#Schwarzer C, <i>et al.</i> (2014) &quot;Maternal age effect on mouse oocytes: new biological insight from proteomic analysis.&quot; <i>Reproduction</i> <b>148</b>(1):55&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/24686459 24686459]; doi: [https://dx.doi.org/10.1530/REP-14-0126 10.1530/REP-14-0126]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24686459 3].
 +
#Kume H, <i>et al.</i> (2014) &quot;Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(6):1471&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/24687888 24687888]; doi: [https://dx.doi.org/10.1074/mcp.M113.037093 10.1074/mcp.M113.037093]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24687888 6].
 +
#Guo X, <i>et al.</i> (2014) &quot;Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(6):1573&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/24696503 24696503]; doi: [https://dx.doi.org/10.1074/mcp.M113.035170 10.1074/mcp.M113.035170]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24696503 99].
 +
#Hiemstra TF, <i>et al.</i> (2014) &quot;Human urinary exosomes as innate immune effectors.&quot; <i>J Am Soc Nephrol</i> <b>25</b>(9):2017&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/24700864 24700864]; doi: [https://dx.doi.org/10.1681/ASN.2013101066 10.1681/ASN.2013101066]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24700864 489].
 +
#Shevchuk O, <i>et al.</i> (2014) &quot;HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies.&quot; <i>J Proteome Res</i> <b>13</b>(11):5230&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24702127 24702127]; doi: [https://dx.doi.org/10.1021/pr500096a 10.1021/pr500096a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24702127 4].
 +
#Tsai CM, <i>et al.</i> (2014) &quot;Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling.&quot; <i>J Proteomics</i> <b>103</b>:241&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/24704852 24704852]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.03.031 10.1016/j.jprot.2014.03.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24704852 15].
 +
#MacLean AM, <i>et al.</i> (2014) &quot;Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.&quot; <i>PLoS Biol</i> <b>12</b>(4):e1001835; PMID: [https://pubmed.ncbi.nlm.nih.gov/24714165 24714165]; doi: [https://dx.doi.org/10.1371/journal.pbio.1001835 10.1371/journal.pbio.1001835]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24714165 20].
 +
#Bourdetsky D, <i>et al.</i> (2014) &quot;The nature and extent of contributions by defective ribosome products to the HLA peptidome.&quot; <i>Proc Natl Acad Sci U S A</i> <b>111</b>(16):E1591&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24715725 24715725]; doi: [https://dx.doi.org/10.1073/pnas.1321902111 10.1073/pnas.1321902111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24715725 16].
 +
#Azimi A, <i>et al.</i> (2014) &quot;Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance.&quot; <i>Br J Cancer</i> <b>110</b>(10):2489&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/24722184 24722184]; doi: [https://dx.doi.org/10.1038/bjc.2014.169 10.1038/bjc.2014.169]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24722184 146].
 +
#Svozil J, <i>et al.</i> (2014) &quot;Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(6):1523&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/24732913 24732913]; doi: [https://dx.doi.org/10.1074/mcp.M113.036269 10.1074/mcp.M113.036269]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24732913 128].
 +
#Farrelly LA, <i>et al.</i> (2014) &quot;Adolescent Risperidone treatment alters protein expression associated with protein trafficking and cellular metabolism in the adult rat prefrontal cortex.&quot; <i>Proteomics</i> <b>14</b>(12):1574&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/24733778 24733778]; doi: [https://dx.doi.org/10.1002/pmic.201300466 10.1002/pmic.201300466]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24733778 30].
 +
#Tran DT, <i>et al.</i> (2014) &quot;StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(7):1800&ndash;13; PMID: [https://pubmed.ncbi.nlm.nih.gov/24741112 24741112]; doi: [https://dx.doi.org/10.1074/mcp.M113.034702 10.1074/mcp.M113.034702]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24741112 27].
 +
#Kuhlmann K, <i>et al.</i> (2014) &quot;The membrane proteome of sensory cilia to the depth of olfactory receptors.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(7):1828&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/24748648 24748648]; doi: [https://dx.doi.org/10.1074/mcp.M113.035378 10.1074/mcp.M113.035378]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24748648 91].
 +
#Sansoni V, <i>et al.</i> (2014) &quot;The histone variant H2A.Bbd is enriched at sites of DNA synthesis.&quot; <i>Nucleic Acids Res</i> <b>42</b>(10):6405&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/24753410 24753410]; doi: [https://dx.doi.org/10.1093/nar/gku303 10.1093/nar/gku303]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24753410 96].
 +
#Han D, <i>et al.</i> (2014) &quot;Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.&quot; <i>Proteomics</i> <b>14</b>(13-14):1604&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/24753479 24753479]; doi: [https://dx.doi.org/10.1002/pmic.201300495 10.1002/pmic.201300495]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24753479 107].
 +
#Chiasserini D, <i>et al.</i> (2014) &quot;Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset.&quot; <i>J Proteomics</i> <b>106</b>:191&ndash;204; PMID: [https://pubmed.ncbi.nlm.nih.gov/24769233 24769233]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.04.028 10.1016/j.jprot.2014.04.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24769233 36].
 +
#Renvois&eacute; M, <i>et al.</i> (2014) &quot;Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae.&quot; <i>J Proteomics</i> <b>106</b>:140&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/24769239 24769239]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.04.022 10.1016/j.jprot.2014.04.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24769239 48].
 +
#Eravci M, <i>et al.</i> (2014) &quot;IPG strip-based peptide fractionation for shotgun proteomics.&quot; <i>Methods Mol Biol</i> <b>1156</b>:67&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/24791982 24791982]; doi: [https://dx.doi.org/10.1007/978-1-4939-0685-7_5 10.1007/978-1-4939-0685-7_5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24791982 41].
 +
#G&uuml;ther ML, <i>et al.</i> (2014) &quot;High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics.&quot; <i>J Proteome Res</i> <b>13</b>(6):2796&ndash;806; PMID: [https://pubmed.ncbi.nlm.nih.gov/24792668 24792668]; doi: [https://dx.doi.org/10.1021/pr401209w 10.1021/pr401209w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24792668 154].
 +
#Guyonnet B, <i>et al.</i> (2014) &quot;Functional amyloids in the mouse sperm acrosome.&quot; <i>Mol Cell Biol</i> <b>34</b>(14):2624&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/24797071 24797071]; doi: [https://dx.doi.org/10.1128/MCB.00073-14 10.1128/MCB.00073-14]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24797071 12].
 +
#Tong J, <i>et al.</i> (2014) &quot;Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(7):1644&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/24797263 24797263]; doi: [https://dx.doi.org/10.1074/mcp.M114.038596 10.1074/mcp.M114.038596]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24797263 69].
 +
#Giansanti P, <i>et al.</i> (2014) &quot;Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics.&quot; <i>ACS Chem Biol</i> <b>9</b>(7):1490&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/24804581 24804581]; doi: [https://dx.doi.org/10.1021/cb500116c 10.1021/cb500116c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24804581 71].
 +
#Rowshanravan B, <i>et al.</i> (2014) &quot;RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis.&quot; <i>J Cell Sci</i> <b>127</b>(Pt 13):2849&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/24816559 24816559]; doi: [https://dx.doi.org/10.1242/jcs.139329 10.1242/jcs.139329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24816559 42].
 +
#Bracht T, <i>et al.</i> (2014) &quot;Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.&quot; <i>J Proteome Res</i> <b>13</b>(6):2771&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/24818710 24818710]; doi: [https://dx.doi.org/10.1021/pr401188r 10.1021/pr401188r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24818710 68].
 +
#Siljam&auml;ki P, <i>et al.</i> (2014) &quot;Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence.&quot; <i>J Proteome Res</i> <b>13</b>(7):3249&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/24840314 24840314]; doi: [https://dx.doi.org/10.1021/pr500075j 10.1021/pr500075j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24840314 94].
 +
#Barth TK, <i>et al.</i> (2014) &quot;Identification of novel Drosophila centromere-associated proteins.&quot; <i>Proteomics</i> <b>14</b>(19):2167&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/24841622 24841622]; doi: [https://dx.doi.org/10.1002/pmic.201400052 10.1002/pmic.201400052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24841622 72].
 +
#Poulsen ET, <i>et al.</i> (2014) &quot;Proteomics of Fuchs&#39; endothelial corneal dystrophy support that the extracellular matrix of Descemet&#39;s membrane is disordered.&quot; <i>J Proteome Res</i> <b>13</b>(11):4659&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/24846694 24846694]; doi: [https://dx.doi.org/10.1021/pr500252r 10.1021/pr500252r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24846694 66].
 +
#Leong HS, <i>et al.</i> (2014) &quot;A global non-coding RNA system modulates fission yeast protein levels in response to stress.&quot; <i>Nat Commun</i> <b>5</b>:3947; PMID: [https://pubmed.ncbi.nlm.nih.gov/24853205 24853205]; doi: [https://dx.doi.org/10.1038/ncomms4947 10.1038/ncomms4947]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24853205 60].
 +
#Kim MS, <i>et al.</i> (2014) &quot;A draft map of the human proteome.&quot; <i>Nature</i> <b>509</b>(7502):575&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/24870542 24870542]; doi: [https://dx.doi.org/10.1038/nature13302 10.1038/nature13302]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24870542 88].
 +
#Wilhelm M, <i>et al.</i> (2014) &quot;Mass-spectrometry-based draft of the human proteome.&quot; <i>Nature</i> <b>509</b>(7502):582&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/24870543 24870543]; doi: [https://dx.doi.org/10.1038/nature13319 10.1038/nature13319]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24870543 1257].
 +
#van der Post S, <i>et al.</i> (2014) &quot;Membrane protein profiling of human colon reveals distinct regional differences.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(9):2277&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/24889196 24889196]; doi: [https://dx.doi.org/10.1074/mcp.M114.040204 10.1074/mcp.M114.040204]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24889196 16].
 +
#Kim MS, <i>et al.</i> (2014) &quot;Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):2803&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/24895378 24895378]; doi: [https://dx.doi.org/10.1074/mcp.M114.038547 10.1074/mcp.M114.038547]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24895378 24].
 +
#Siljam&auml;ki P, <i>et al.</i> (2014) &quot;Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins.&quot; <i>Proteomics</i> <b>14</b>(16):1890&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/24909406 24909406]; doi: [https://dx.doi.org/10.1002/pmic.201300275 10.1002/pmic.201300275]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24909406 3].
 +
#K&ouml;cher T, <i>et al.</i> (2014) &quot;Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up.&quot; <i>Proteomics</i> <b>14</b>(17-18):1999&ndash;2007; PMID: [https://pubmed.ncbi.nlm.nih.gov/24920484 24920484]; doi: [https://dx.doi.org/10.1002/pmic.201300418 10.1002/pmic.201300418]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24920484 39].
 +
#Corradini E, <i>et al.</i> (2014) &quot;Alterations in the cerebellar (Phospho)proteome of a cyclic guanosine monophosphate (cGMP)-dependent protein kinase knockout mouse.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(8):2004&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/24925903 24925903]; doi: [https://dx.doi.org/10.1074/mcp.M113.035154 10.1074/mcp.M113.035154]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24925903 6].
 +
#Kukuczka B, <i>et al.</i> (2014) &quot;Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation.&quot; <i>Plant Physiol</i> <b>165</b>(4):1604&ndash;1617; PMID: [https://pubmed.ncbi.nlm.nih.gov/24948831 24948831]; doi: [https://dx.doi.org/10.1104/pp.114.240648 10.1104/pp.114.240648]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24948831 79].
 +
#Cuello F, <i>et al.</i> (2014) &quot;Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2545&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/24958171 24958171]; doi: [https://dx.doi.org/10.1074/mcp.M114.039446 10.1074/mcp.M114.039446]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24958171 384].
 +
#de Graaf EL, <i>et al.</i> (2014) &quot;Phosphoproteome dynamics in onset and maintenance of oncogene-induced senescence.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(8):2089&ndash;100; PMID: [https://pubmed.ncbi.nlm.nih.gov/24961811 24961811]; doi: [https://dx.doi.org/10.1074/mcp.M113.035436 10.1074/mcp.M113.035436]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24961811 223].
 +
#Iesmantavicius V, <i>et al.</i> (2014) &quot;Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(8):1979&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/24961812 24961812]; doi: [https://dx.doi.org/10.1074/mcp.O113.035683 10.1074/mcp.O113.035683]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24961812 71].
 +
#Jefferson M, <i>et al.</i> (2014) &quot;Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex.&quot; <i>J Virol</i> <b>88</b>(18):10340&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/24965446 24965446]; doi: [https://dx.doi.org/10.1128/JVI.00984-14 10.1128/JVI.00984-14]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24965446 30].
 +
#Milbradt J, <i>et al.</i> (2014) &quot;Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(8):2132&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/24969177 24969177]; doi: [https://dx.doi.org/10.1074/mcp.M113.035782 10.1074/mcp.M113.035782]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24969177 24].
 +
#Fischer MG, <i>et al.</i> (2014) &quot;The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair.&quot; <i>Virology</i> <b>466-467</b>:82&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/24973308 24973308]; doi: [https://dx.doi.org/10.1016/j.virol.2014.05.029 10.1016/j.virol.2014.05.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24973308 10].
 +
#Chiva C, <i>et al.</i> (2014) &quot;Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation.&quot; <i>J Proteome Res</i> <b>13</b>(9):3979&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/24986539 24986539]; doi: [https://dx.doi.org/10.1021/pr500294d 10.1021/pr500294d]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24986539 89].
 +
#Uechi G, <i>et al.</i> (2014) &quot;Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules.&quot; <i>J Proteome Res</i> <b>13</b>(8):3693&ndash;3705; PMID: [https://pubmed.ncbi.nlm.nih.gov/24990792 24990792]; doi: [https://dx.doi.org/10.1021/pr5002065 10.1021/pr5002065]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24990792 315].
 +
#Zhang H, <i>et al.</i> (2014) &quot;SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells.&quot; <i>Proteomics</i> <b>14</b>(17-18):1977&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/24995952 24995952]; doi: [https://dx.doi.org/10.1002/pmic.201300539 10.1002/pmic.201300539]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24995952 30].
 +
#Pasillas MP, <i>et al.</i> (2015) &quot;Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(1):1&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/24997994 24997994]; doi: [https://dx.doi.org/10.1074/mcp.M114.037697 10.1074/mcp.M114.037697]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24997994 51].
 +
#Chopra T, <i>et al.</i> (2014) &quot;Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3014&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/24997995 24997995]; doi: [https://dx.doi.org/10.1074/mcp.M113.034082 10.1074/mcp.M113.034082]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24997995 28].
 +
#&Ouml;hman T, <i>et al.</i> (2014) &quot;Phosphoproteomics combined with quantitative 14-3-3-affinity capture identifies SIRT1 and RAI as novel regulators of cytosolic double-stranded RNA recognition pathway.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2604&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/24997996 24997996]; doi: [https://dx.doi.org/10.1074/mcp.M114.038968 10.1074/mcp.M114.038968]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24997996 44].
 +
#Sangar V, <i>et al.</i> (2014) &quot;Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2618&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/24997998 24997998]; doi: [https://dx.doi.org/10.1074/mcp.M114.040428 10.1074/mcp.M114.040428]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/24997998 8].
 +
#Savijoki K, <i>et al.</i> (2014) &quot;Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains.&quot; <i>J Proteome Res</i> <b>13</b>(8):3748&ndash;3762; PMID: [https://pubmed.ncbi.nlm.nih.gov/25014494 25014494]; doi: [https://dx.doi.org/10.1021/pr500322d 10.1021/pr500322d]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25014494 8].
 +
#de Keijzer J, <i>et al.</i> (2014) &quot;Disclosure of selective advantages in the &quot;modern&quot; sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2632&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/25022876 25022876]; doi: [https://dx.doi.org/10.1074/mcp.M114.038380 10.1074/mcp.M114.038380]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25022876 152].
 +
#Engel E, <i>et al.</i> (2014) &quot;Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome.&quot; <i>Cell Commun Signal</i> <b>12</b>:41; PMID: [https://pubmed.ncbi.nlm.nih.gov/25027767 25027767]; doi: [https://dx.doi.org/10.1186/s12964-014-0041-2 10.1186/s12964-014-0041-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25027767 2].
 +
#Padden J, <i>et al.</i> (2014) &quot;Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2661&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/25034945 25034945]; doi: [https://dx.doi.org/10.1074/mcp.M113.034942 10.1074/mcp.M113.034942]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25034945 16].
 +
#Naba A, <i>et al.</i> (2014) &quot;Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver.&quot; <i>BMC Cancer</i> <b>14</b>:518; PMID: [https://pubmed.ncbi.nlm.nih.gov/25037231 25037231]; doi: [https://dx.doi.org/10.1186/1471-2407-14-518 10.1186/1471-2407-14-518]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25037231 176].
 +
#Guldbrandsen A, <i>et al.</i> (2014) &quot;In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR).&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3152&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/25038066 25038066]; doi: [https://dx.doi.org/10.1074/mcp.M114.038554 10.1074/mcp.M114.038554]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25038066 88].
 +
#Chen YJ, <i>et al.</i> (2014) &quot;Decoding the s-nitrosoproteomic atlas in individualized human colorectal cancer tissues using a label-free quantitation strategy.&quot; <i>J Proteome Res</i> <b>13</b>(11):4942&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/25040305 25040305]; doi: [https://dx.doi.org/10.1021/pr5002675 10.1021/pr5002675]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25040305 54].
 +
#Zhang B, <i>et al.</i> (2014) &quot;Proteogenomic characterization of human colon and rectal cancer.&quot; <i>Nature</i> <b>513</b>(7518):382&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/25043054 25043054]; doi: [https://dx.doi.org/10.1038/nature13438 10.1038/nature13438]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25043054 1381].
 +
#An E, <i>et al.</i> (2014) &quot;Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2687&ndash;704; PMID: [https://pubmed.ncbi.nlm.nih.gov/25044017 25044017]; doi: [https://dx.doi.org/10.1074/mcp.M113.034371 10.1074/mcp.M113.034371]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25044017 73].
 +
#V&eacute;gh MJ, <i>et al.</i> (2014) &quot;Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):2975&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/25044018 25044018]; doi: [https://dx.doi.org/10.1074/mcp.M113.032086 10.1074/mcp.M113.032086]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25044018 8].
 +
#Heo S, <i>et al.</i> (2014) &quot;Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro.&quot; <i>Proteomics</i> <b>14</b>(17-18):2084&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25044505 25044505]; doi: [https://dx.doi.org/10.1002/pmic.201400077 10.1002/pmic.201400077]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25044505 60].
 +
#Aaseb&oslash; E, <i>et al.</i> (2014) &quot;Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines.&quot; <i>Proteomics</i> <b>14</b>(17-18):1971&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/25044641 25044641]; doi: [https://dx.doi.org/10.1002/pmic.201300448 10.1002/pmic.201300448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25044641 186].
 +
#Soleilhavoup C, <i>et al.</i> (2014) &quot;Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa.&quot; <i>J Proteomics</i> <b>109</b>:245&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/25053255 25053255]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.07.007 10.1016/j.jprot.2014.07.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25053255 114].
 +
#Smits AH, <i>et al.</i> (2014) &quot;Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs.&quot; <i>Nucleic Acids Res</i> <b>42</b>(15):9880&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/25056316 25056316]; doi: [https://dx.doi.org/10.1093/nar/gku661 10.1093/nar/gku661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25056316 62].
 +
#Tao D, <i>et al.</i> (2014) &quot;Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(10):2705&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/25056935 25056935]; doi: [https://dx.doi.org/10.1074/mcp.M114.040956 10.1074/mcp.M114.040956]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25056935 10].
 +
#Klaubauf S, <i>et al.</i> (2014) &quot;Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi.&quot; <i>Fungal Genet Biol</i> <b>72</b>:73&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/25064064 25064064]; doi: [https://dx.doi.org/10.1016/j.fgb.2014.07.007 10.1016/j.fgb.2014.07.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25064064 40].
 +
#Putker M, <i>et al.</i> (2015) &quot;Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling.&quot; <i>Antioxid Redox Signal</i> <b>22</b>(1):15&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/25069953 25069953]; doi: [https://dx.doi.org/10.1089/ars.2014.6056 10.1089/ars.2014.6056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25069953 41].
 +
#Dephoure N, <i>et al.</i> (2014) &quot;Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast.&quot; <i>Elife</i> <b>3</b>:e03023; PMID: [https://pubmed.ncbi.nlm.nih.gov/25073701 25073701]; doi: [https://dx.doi.org/10.7554/eLife.03023 10.7554/eLife.03023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25073701 10].
 +
#Yang W, <i>et al.</i> (2014) &quot;Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells.&quot; <i>Cell Commun Signal</i> <b>12</b>:44; PMID: [https://pubmed.ncbi.nlm.nih.gov/25080971 25080971]; doi: [https://dx.doi.org/10.1186/s12964-014-0044-z 10.1186/s12964-014-0044-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25080971 30].
 +
#Labas V, <i>et al.</i> (2015) &quot;Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen.&quot; <i>J Proteomics</i> <b>112</b>:313&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/25086240 25086240]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.07.024 10.1016/j.jprot.2014.07.024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25086240 44].
 +
#Berlin C, <i>et al.</i> (2015) &quot;Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy.&quot; <i>Leukemia</i> <b>29</b>(3):647&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/25092142 25092142]; doi: [https://dx.doi.org/10.1038/leu.2014.233 10.1038/leu.2014.233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25092142 146].
 +
#Alqahtani A, <i>et al.</i> (2014) &quot;Analysis of purified wild type and mutant adenovirus particles by SILAC based quantitative proteomics.&quot; <i>J Gen Virol</i> <b>95</b>(Pt 11):2504&ndash;2511; PMID: [https://pubmed.ncbi.nlm.nih.gov/25096814 25096814]; doi: [https://dx.doi.org/10.1099/vir.0.068221-0 10.1099/vir.0.068221-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096814 22].
 +
#Jin L, <i>et al.</i> (2014) &quot;Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3138&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/25096996 25096996]; doi: [https://dx.doi.org/10.1074/mcp.M113.033217 10.1074/mcp.M113.033217]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25096996 11].
 +
#Zhang B, <i>et al.</i> (2014) &quot;DeMix workflow for efficient identification of cofragmented peptides in high resolution data-dependent tandem mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(11):3211&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/25100859 25100859]; doi: [https://dx.doi.org/10.1074/mcp.O114.038877 10.1074/mcp.O114.038877]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25100859 7].
 +
#Wallin MT, <i>et al.</i> (2015) &quot;Serum proteomic analysis of a pre-symptomatic multiple sclerosis cohort.&quot; <i>Eur J Neurol</i> <b>22</b>(3):591&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/25104396 25104396]; doi: [https://dx.doi.org/10.1111/ene.12534 10.1111/ene.12534]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25104396 104].
 +
#Perdomo D, <i>et al.</i> (2015) &quot;Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica.&quot; <i>J Proteomics</i> <b>112</b>:125&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/25109464 25109464]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.07.034 10.1016/j.jprot.2014.07.034]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25109464 3].
 +
#Talman AM, <i>et al.</i> (2014) &quot;Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.&quot; <i>Malar J</i> <b>13</b>:315; PMID: [https://pubmed.ncbi.nlm.nih.gov/25124718 25124718]; doi: [https://dx.doi.org/10.1186/1475-2875-13-315 10.1186/1475-2875-13-315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25124718 3].
 +
#Carvalho AS, <i>et al.</i> (2014) &quot;Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3294&ndash;307; PMID: [https://pubmed.ncbi.nlm.nih.gov/25128556 25128556]; doi: [https://dx.doi.org/10.1074/mcp.M113.034363 10.1074/mcp.M113.034363]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25128556 18].
 +
#Surmann K, <i>et al.</i> (2014) &quot;Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells.&quot; <i>Front Microbiol</i> <b>5</b>:392; PMID: [https://pubmed.ncbi.nlm.nih.gov/25136337 25136337]; doi: [https://dx.doi.org/10.3389/fmicb.2014.00392 10.3389/fmicb.2014.00392]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25136337 71].
 +
#Worboys JD, <i>et al.</i> (2014) &quot;Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome.&quot; <i>Nat Methods</i> <b>11</b>(10):1041&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/25152083 25152083]; doi: [https://dx.doi.org/10.1038/nmeth.3072 10.1038/nmeth.3072]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25152083 12].
 +
#Moczulska KE, <i>et al.</i> (2014) &quot;Deep and precise quantification of the mouse synaptosomal proteome reveals substantial remodeling during postnatal maturation.&quot; <i>J Proteome Res</i> <b>13</b>(10):4310&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/25157418 25157418]; doi: [https://dx.doi.org/10.1021/pr500456t 10.1021/pr500456t]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25157418 100].
 +
#Han D, <i>et al.</i> (2015) &quot;Integrated approach using multistep enzyme digestion, TiO2 enrichment, and database search for in-depth phosphoproteomic profiling.&quot; <i>Proteomics</i> <b>15</b>(2-3):618&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/25159016 25159016]; doi: [https://dx.doi.org/10.1002/pmic.201400102 10.1002/pmic.201400102]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25159016 36].
 +
#Sharma K, <i>et al.</i> (2014) &quot;Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.&quot; <i>Cell Rep</i> <b>8</b>(5):1583&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/25159151 25159151]; doi: [https://dx.doi.org/10.1016/j.celrep.2014.07.036 10.1016/j.celrep.2014.07.036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25159151 276].
 +
#Bennike T, <i>et al.</i> (2014) &quot;A normative study of the synovial fluid proteome from healthy porcine knee joints.&quot; <i>J Proteome Res</i> <b>13</b>(10):4377&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/25160569 25160569]; doi: [https://dx.doi.org/10.1021/pr500587x 10.1021/pr500587x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25160569 57].
 +
#Reinartz M, <i>et al.</i> (2014) &quot;AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes.&quot; <i>J Proteome Res</i> <b>13</b>(10):4232&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/25162660 25162660]; doi: [https://dx.doi.org/10.1021/pr500131g 10.1021/pr500131g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25162660 8].
 +
#Dyrlund TF, <i>et al.</i> (2014) &quot;Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis.&quot; <i>Hum Reprod</i> <b>29</b>(11):2421&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/25164020 25164020]; doi: [https://dx.doi.org/10.1093/humrep/deu220 10.1093/humrep/deu220]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25164020 63].
 +
#Yang J, <i>et al.</i> (2014) &quot;Site-specific mapping and quantification of protein S-sulphenylation in cells.&quot; <i>Nat Commun</i> <b>5</b>:4776; PMID: [https://pubmed.ncbi.nlm.nih.gov/25175731 25175731]; doi: [https://dx.doi.org/10.1038/ncomms5776 10.1038/ncomms5776]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25175731 24].
 +
#Liao BM, <i>et al.</i> (2014) &quot;Proteomic analysis of livers from fat-fed mice deficient in either PKC&delta; or PKC&epsilon; identifies Htatip2 as a regulator of lipid metabolism.&quot; <i>Proteomics</i> <b>14</b>(21-22):2578&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/25175814 25175814]; doi: [https://dx.doi.org/10.1002/pmic.201400202 10.1002/pmic.201400202]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25175814 222].
 +
#Van den Bossche A, <i>et al.</i> (2014) &quot;Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa.&quot; <i>J Proteome Res</i> <b>13</b>(10):4446&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/25185497 25185497]; doi: [https://dx.doi.org/10.1021/pr500796n 10.1021/pr500796n]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25185497 600].
 +
#Hornburg D, <i>et al.</i> (2014) &quot;Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3410&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/25193168 25193168]; doi: [https://dx.doi.org/10.1074/mcp.M113.037291 10.1074/mcp.M113.037291]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25193168 29].
 +
#Wang X, <i>et al.</i> (2014) &quot;JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3663&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/25202125 25202125]; doi: [https://dx.doi.org/10.1074/mcp.O114.039586 10.1074/mcp.O114.039586]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25202125 13].
 +
#Zeiler M, <i>et al.</i> (2014) &quot;Copy number analysis of the murine platelet proteome spanning the complete abundance range.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3435&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/25205226 25205226]; doi: [https://dx.doi.org/10.1074/mcp.M114.038513 10.1074/mcp.M114.038513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25205226 9].
 +
#Chocu S, <i>et al.</i> (2014) &quot;Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells.&quot; <i>Biol Reprod</i> <b>91</b>(5):123; PMID: [https://pubmed.ncbi.nlm.nih.gov/25210130 25210130]; doi: [https://dx.doi.org/10.1095/biolreprod.114.122416 10.1095/biolreprod.114.122416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25210130 6].
 +
#Frenk S, <i>et al.</i> (2014) &quot;The nuclear exosome is active and important during budding yeast meiosis.&quot; <i>PLoS One</i> <b>9</b>(9):e107648; PMID: [https://pubmed.ncbi.nlm.nih.gov/25210768 25210768]; doi: [https://dx.doi.org/10.1371/journal.pone.0107648 10.1371/journal.pone.0107648]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25210768 12].
 +
#Laouami S, <i>et al.</i> (2014) &quot;Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.&quot; <i>PLoS One</i> <b>9</b>(9):e107354; PMID: [https://pubmed.ncbi.nlm.nih.gov/25216269 25216269]; doi: [https://dx.doi.org/10.1371/journal.pone.0107354 10.1371/journal.pone.0107354]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25216269 12].
 +
#Shin J, <i>et al.</i> (2014) &quot;Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics.&quot; <i>J Proteome Res</i> <b>13</b>(11):4919&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/25216327 25216327]; doi: [https://dx.doi.org/10.1021/pr500790f 10.1021/pr500790f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25216327 34].
 +
#Hendriks IA, <i>et al.</i> (2014) &quot;Uncovering global SUMOylation signaling networks in a site-specific manner.&quot; <i>Nat Struct Mol Biol</i> <b>21</b>(10):927&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/25218447 25218447]; doi: [https://dx.doi.org/10.1038/nsmb.2890 10.1038/nsmb.2890]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25218447 32].
 +
#Wiese H, <i>et al.</i> (2015) &quot;Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells.&quot; <i>Biochim Biophys Acta</i> <b>1854</b>(6):632&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/25219547 25219547]; doi: [https://dx.doi.org/10.1016/j.bbapap.2014.09.002 10.1016/j.bbapap.2014.09.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25219547 191].
 +
#Negroni L, <i>et al.</i> (2014) &quot;Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3473&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/25225353 25225353]; doi: [https://dx.doi.org/10.1074/mcp.M114.043174 10.1074/mcp.M114.043174]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25225353 8].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2014) &quot;A &quot;proteomic ruler&quot; for protein copy number and concentration estimation without spike-in standards.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3497&ndash;506; PMID: [https://pubmed.ncbi.nlm.nih.gov/25225357 25225357]; doi: [https://dx.doi.org/10.1074/mcp.M113.037309 10.1074/mcp.M113.037309]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25225357 69].
 +
#Adachi J, <i>et al.</i> (2014) &quot;Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.&quot; <i>J Proteome Res</i> <b>13</b>(12):5461&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/25230287 25230287]; doi: [https://dx.doi.org/10.1021/pr500845u 10.1021/pr500845u]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25230287 37].
 +
#Alli Shaik A, <i>et al.</i> (2014) &quot;Functional mapping of the zebrafish early embryo proteome and transcriptome.&quot; <i>J Proteome Res</i> <b>13</b>(12):5536&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/25230361 25230361]; doi: [https://dx.doi.org/10.1021/pr5005136 10.1021/pr5005136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25230361 24].
 +
#Tape CJ, <i>et al.</i> (2014) &quot;Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC.&quot; <i>Anal Chem</i> <b>86</b>(20):10296&ndash;302; PMID: [https://pubmed.ncbi.nlm.nih.gov/25233145 25233145]; doi: [https://dx.doi.org/10.1021/ac5025842 10.1021/ac5025842]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25233145 103].
 +
#Groessl M, <i>et al.</i> (2014) &quot;Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.&quot; <i>J Proteome Res</i> <b>13</b>(11):4773&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/25238572 25238572]; doi: [https://dx.doi.org/10.1021/pr500727h 10.1021/pr500727h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25238572 281].
 +
#Song Z, <i>et al.</i> (2014) &quot;A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3519&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/25239498 25239498]; doi: [https://dx.doi.org/10.1074/mcp.M113.035675 10.1074/mcp.M113.035675]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25239498 21].
 +
#Schwenk J, <i>et al.</i> (2014) &quot;Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain.&quot; <i>Neuron</i> <b>84</b>(1):41&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/25242221 25242221]; doi: [https://dx.doi.org/10.1016/j.neuron.2014.08.044 10.1016/j.neuron.2014.08.044]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25242221 95].
 +
#Wu X, <i>et al.</i> (2014) &quot;Activation of diverse signalling pathways by oncogenic PIK3CA mutations.&quot; <i>Nat Commun</i> <b>5</b>:4961; PMID: [https://pubmed.ncbi.nlm.nih.gov/25247763 25247763]; doi: [https://dx.doi.org/10.1038/ncomms5961 10.1038/ncomms5961]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25247763 91].
 +
#van der Lelij P, <i>et al.</i> (2014) &quot;SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs.&quot; <i>EMBO J</i> <b>33</b>(22):2643&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/25257309 25257309]; doi: [https://dx.doi.org/10.15252/embj.201488202 10.15252/embj.201488202]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25257309 2].
 +
#Cortes LK, <i>et al.</i> (2014) &quot;Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment.&quot; <i>Proteomics</i> <b>14</b>(21-22):2471&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/25262930 25262930]; doi: [https://dx.doi.org/10.1002/pmic.201400148 10.1002/pmic.201400148]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25262930 36].
 +
#Zhong J, <i>et al.</i> (2015) &quot;Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway.&quot; <i>Proteomics</i> <b>15</b>(2-3):591&ndash;607; PMID: [https://pubmed.ncbi.nlm.nih.gov/25263469 25263469]; doi: [https://dx.doi.org/10.1002/pmic.201400339 10.1002/pmic.201400339]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25263469 6].
 +
#Navarro MN, <i>et al.</i> (2014) &quot;Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3544&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/25266776 25266776]; doi: [https://dx.doi.org/10.1074/mcp.M113.037242 10.1074/mcp.M113.037242]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25266776 274].
 +
#Zhang G, <i>et al.</i> (2014) &quot;In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor.&quot; <i>J Proteome Res</i> <b>13</b>(12):5707&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/25271054 25271054]; doi: [https://dx.doi.org/10.1021/pr5006982 10.1021/pr5006982]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25271054 8].
 +
#Shender VO, <i>et al.</i> (2014) &quot;Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3558&ndash;71; PMID: [https://pubmed.ncbi.nlm.nih.gov/25271300 25271300]; doi: [https://dx.doi.org/10.1074/mcp.M114.041194 10.1074/mcp.M114.041194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25271300 17].
 +
#Savitski MM, <i>et al.</i> (2014) &quot;Tracking cancer drugs in living cells by thermal profiling of the proteome.&quot; <i>Science</i> <b>346</b>(6205):1255784; PMID: [https://pubmed.ncbi.nlm.nih.gov/25278616 25278616]; doi: [https://dx.doi.org/10.1126/science.1255784 10.1126/science.1255784]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25278616 403].
 +
#Handtke S, <i>et al.</i> (2014) &quot;Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach.&quot; <i>J Biotechnol</i> <b>192 Pt A</b>:204&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/25281541 25281541]; doi: [https://dx.doi.org/10.1016/j.jbiotec.2014.08.028 10.1016/j.jbiotec.2014.08.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25281541 120].
 +
#Bhargava M, <i>et al.</i> (2014) &quot;Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors.&quot; <i>PLoS One</i> <b>9</b>(10):e109713; PMID: [https://pubmed.ncbi.nlm.nih.gov/25290099 25290099]; doi: [https://dx.doi.org/10.1371/journal.pone.0109713 10.1371/journal.pone.0109713]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25290099 15].
 +
#Qi L, <i>et al.</i> (2014) &quot;Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3626&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/25293948 25293948]; doi: [https://dx.doi.org/10.1074/mcp.M114.039073 10.1074/mcp.M114.039073]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25293948 59].
 +
#Tan H, <i>et al.</i> (2015) &quot;Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome.&quot; <i>Proteomics</i> <b>15</b>(2-3):500&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/25307156 25307156]; doi: [https://dx.doi.org/10.1002/pmic.201400171 10.1002/pmic.201400171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25307156 3].
 +
#Carney KE, <i>et al.</i> (2014) &quot;Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins.&quot; <i>J Proteome Res</i> <b>13</b>(12):5918&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/25308431 25308431]; doi: [https://dx.doi.org/10.1021/pr500829z 10.1021/pr500829z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25308431 42].
 +
#Yin X, <i>et al.</i> (2014) &quot;Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.&quot; <i>J Proteome Res</i> <b>13</b>(12):5618&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/25316100 25316100]; doi: [https://dx.doi.org/10.1021/pr500621c 10.1021/pr500621c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25316100 54].
 +
#Gopinath RK, <i>et al.</i> (2014) &quot;The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity.&quot; <i>Genome Biol Evol</i> <b>6</b>(10):2851&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/25316598 25316598]; doi: [https://dx.doi.org/10.1093/gbe/evu226 10.1093/gbe/evu226]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25316598 2].
 +
#Herbst FA, <i>et al.</i> (2015) &quot;Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1.&quot; <i>J Proteome Res</i> <b>14</b>(1):72&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/25317949 25317949]; doi: [https://dx.doi.org/10.1021/pr500938x 10.1021/pr500938x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25317949 282].
 +
#Syed N, <i>et al.</i> (2015) &quot;Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma.&quot; <i>Proteomics</i> <b>15</b>(2-3):383&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/25327479 25327479]; doi: [https://dx.doi.org/10.1002/pmic.201400338 10.1002/pmic.201400338]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25327479 1].
 +
#Helgeland E, <i>et al.</i> (2014) &quot;Exploring the human plasma proteome for humoral mediators of remote ischemic preconditioning--a word of caution.&quot; <i>PLoS One</i> <b>9</b>(10):e109279; PMID: [https://pubmed.ncbi.nlm.nih.gov/25333471 25333471]; doi: [https://dx.doi.org/10.1371/journal.pone.0109279 10.1371/journal.pone.0109279]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25333471 146].
 +
#Batth TS, <i>et al.</i> (2014) &quot;Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.&quot; <i>J Proteome Res</i> <b>13</b>(12):6176&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/25338131 25338131]; doi: [https://dx.doi.org/10.1021/pr500893m 10.1021/pr500893m]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25338131 11].
 +
#Fang NN, <i>et al.</i> (2014) &quot;Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress.&quot; <i>Nat Cell Biol</i> <b>16</b>(12):1227&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/25344756 25344756]; doi: [https://dx.doi.org/10.1038/ncb3054 10.1038/ncb3054]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25344756 9].
 +
#Renuse S, <i>et al.</i> (2014) &quot;Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host.&quot; <i>Proteomics</i> <b>14</b>(23-24):2769&ndash;79; PMID: [https://pubmed.ncbi.nlm.nih.gov/25346215 25346215]; doi: [https://dx.doi.org/10.1002/pmic.201400267 10.1002/pmic.201400267]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25346215 105].
 +
#Marino F, <i>et al.</i> (2014) &quot;Characterization and usage of the EASY-spray technology as part of an online 2D SCX-RP ultra-high pressure system.&quot; <i>Analyst</i> <b>139</b>(24):6520&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25346955 25346955]; doi: [https://dx.doi.org/10.1039/c4an01568a 10.1039/c4an01568a]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25346955 38].
 +
#Bileck A, <i>et al.</i> (2014) &quot;Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells.&quot; <i>J Proteome Res</i> <b>13</b>(12):5989&ndash;6000; PMID: [https://pubmed.ncbi.nlm.nih.gov/25347463 25347463]; doi: [https://dx.doi.org/10.1021/pr5008625 10.1021/pr5008625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25347463 48].
 +
#Kelstrup CD, <i>et al.</i> (2014) &quot;Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer.&quot; <i>J Proteome Res</i> <b>13</b>(12):6187&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/25349961 25349961]; doi: [https://dx.doi.org/10.1021/pr500985w 10.1021/pr500985w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25349961 36].
 +
#Huang TC, <i>et al.</i> (2015) &quot;Identification of miR-145 targets through an integrated omics analysis.&quot; <i>Mol Biosyst</i> <b>11</b>(1):197&ndash;207; PMID: [https://pubmed.ncbi.nlm.nih.gov/25354783 25354783]; doi: [https://dx.doi.org/10.1039/c4mb00585f 10.1039/c4mb00585f]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25354783 10].
 +
#Hughes CS, <i>et al.</i> (2014) &quot;Ultrasensitive proteome analysis using paramagnetic bead technology.&quot; <i>Mol Syst Biol</i> <b>10</b>:757; PMID: [https://pubmed.ncbi.nlm.nih.gov/25358341 25358341]; doi: [https://dx.doi.org/10.15252/msb.20145625 10.15252/msb.20145625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25358341 163].
 +
#Yang YS, <i>et al.</i> (2015) &quot;Prioritizing targets for structural biology through the lens of proteomics: the archaeal protein TGAM_1934 from Thermococcus gammatolerans.&quot; <i>Proteomics</i> <b>15</b>(1):114&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/25359407 25359407]; doi: [https://dx.doi.org/10.1002/pmic.201300535 10.1002/pmic.201300535]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25359407 4].
 +
#Scheltema RA, <i>et al.</i> (2014) &quot;The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer.&quot; <i>Mol Cell Proteomics</i> <b>13</b>(12):3698&ndash;708; PMID: [https://pubmed.ncbi.nlm.nih.gov/25360005 25360005]; doi: [https://dx.doi.org/10.1074/mcp.M114.043489 10.1074/mcp.M114.043489]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25360005 99].
 +
#Mazin PV, <i>et al.</i> (2014) &quot;Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium.&quot; <i>Nucleic Acids Res</i> <b>42</b>(21):13254&ndash;68; PMID: [https://pubmed.ncbi.nlm.nih.gov/25361977 25361977]; doi: [https://dx.doi.org/10.1093/nar/gku976 10.1093/nar/gku976]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25361977 12].
 +
#Keilhauer EC, <i>et al.</i> (2015) &quot;Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS).&quot; <i>Mol Cell Proteomics</i> <b>14</b>(1):120&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/25363814 25363814]; doi: [https://dx.doi.org/10.1074/mcp.M114.041012 10.1074/mcp.M114.041012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25363814 196].
 +
#Bourderioux M, <i>et al.</i> (2015) &quot;A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients.&quot; <i>J Proteome Res</i> <b>14</b>(1):567&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/25365230 25365230]; doi: [https://dx.doi.org/10.1021/pr501003q 10.1021/pr501003q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25365230 340].
 +
#Pinto SM, <i>et al.</i> (2015) &quot;Quantitative phosphoproteomic analysis of IL-33-mediated signaling.&quot; <i>Proteomics</i> <b>15</b>(2-3):532&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/25367039 25367039]; doi: [https://dx.doi.org/10.1002/pmic.201400303 10.1002/pmic.201400303]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25367039 4].
 +
#Cube&ntilde;as-Potts C, <i>et al.</i> (2015) &quot;Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes.&quot; <i>Proteomics</i> <b>15</b>(4):763&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/25367092 25367092]; doi: [https://dx.doi.org/10.1002/pmic.201400400 10.1002/pmic.201400400]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25367092 8].
 +
#Pfeiffer MJ, <i>et al.</i> (2015) &quot;Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice.&quot; <i>Proteomics</i> <b>15</b>(4):675&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/25367296 25367296]; doi: [https://dx.doi.org/10.1002/pmic.201400334 10.1002/pmic.201400334]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25367296 4].
 +
#Lamoliatte F, <i>et al.</i> (2014) &quot;Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling.&quot; <i>Nat Commun</i> <b>5</b>:5409; PMID: [https://pubmed.ncbi.nlm.nih.gov/25391492 25391492]; doi: [https://dx.doi.org/10.1038/ncomms6409 10.1038/ncomms6409]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25391492 6].
 +
#Ruprecht B, <i>et al.</i> (2015) &quot;Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(1):205&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/25394399 25394399]; doi: [https://dx.doi.org/10.1074/mcp.M114.043109 10.1074/mcp.M114.043109]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25394399 152].
 +
#G&ouml;tzke H, <i>et al.</i> (2015) &quot;Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(1):216&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/25403562 25403562]; doi: [https://dx.doi.org/10.1074/mcp.M114.043216 10.1074/mcp.M114.043216]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25403562 9].
 +
#Nirujogi RS, <i>et al.</i> (2015) &quot;Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats.&quot; <i>Proteomics</i> <b>15</b>(2-3):487&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/25403869 25403869]; doi: [https://dx.doi.org/10.1002/pmic.201400371 10.1002/pmic.201400371]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25403869 12].
 +
#Sap KA, <i>et al.</i> (2015) &quot;Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster.&quot; <i>Proteomics</i> <b>15</b>(4):725&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/25403936 25403936]; doi: [https://dx.doi.org/10.1002/pmic.201400308 10.1002/pmic.201400308]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25403936 8].
 +
#Zhang X, <i>et al.</i> (2015) &quot;Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics.&quot; <i>Proteomics</i> <b>15</b>(2-3):340&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/25404012 25404012]; doi: [https://dx.doi.org/10.1002/pmic.201400315 10.1002/pmic.201400315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25404012 73].
 +
#Loroch S, <i>et al.</i> (2015) &quot;Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.&quot; <i>Anal Chem</i> <b>87</b>(3):1596&ndash;604; PMID: [https://pubmed.ncbi.nlm.nih.gov/25405705 25405705]; doi: [https://dx.doi.org/10.1021/ac502708m 10.1021/ac502708m]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25405705 84].
 +
#Chawade A, <i>et al.</i> (2015) &quot;Data processing has major impact on the outcome of quantitative label-free LC-MS analysis.&quot; <i>J Proteome Res</i> <b>14</b>(2):676&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/25407311 25407311]; doi: [https://dx.doi.org/10.1021/pr500665j 10.1021/pr500665j]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25407311 12].
 +
#Zhang P, <i>et al.</i> (2015) &quot;The proteome of human retina.&quot; <i>Proteomics</i> <b>15</b>(4):836&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/25407473 25407473]; doi: [https://dx.doi.org/10.1002/pmic.201400397 10.1002/pmic.201400397]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25407473 60].
 +
#Gruber AR, <i>et al.</i> (2014) &quot;Global 3&#39; UTR shortening has a limited effect on protein abundance in proliferating T cells.&quot; <i>Nat Commun</i> <b>5</b>:5465; PMID: [https://pubmed.ncbi.nlm.nih.gov/25413384 25413384]; doi: [https://dx.doi.org/10.1038/ncomms6465 10.1038/ncomms6465]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25413384 13].
 +
#Huesgen PF, <i>et al.</i> (2015) &quot;LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification.&quot; <i>Nat Methods</i> <b>12</b>(1):55&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25419962 25419962]; doi: [https://dx.doi.org/10.1038/nmeth.3177 10.1038/nmeth.3177]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25419962 60].
 +
#Rinschen MM, <i>et al.</i> (2015) &quot;Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture.&quot; <i>Proteomics</i> <b>15</b>(7):1326&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/25420462 25420462]; doi: [https://dx.doi.org/10.1002/pmic.201400235 10.1002/pmic.201400235]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25420462 40].
 +
#Li L, <i>et al.</i> (2014) &quot;Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact.&quot; <i>Nat Commun</i> <b>5</b>:5469; PMID: [https://pubmed.ncbi.nlm.nih.gov/25429762 25429762]; doi: [https://dx.doi.org/10.1038/ncomms6469 10.1038/ncomms6469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25429762 33].
 +
#Hagen L, <i>et al.</i> (2015) &quot;Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection.&quot; <i>Biochim Biophys Acta</i> <b>1854</b>(1):84&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/25448019 25448019]; doi: [https://dx.doi.org/10.1016/j.bbapap.2014.10.016 10.1016/j.bbapap.2014.10.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25448019 27].
 +
#Tummala KS, <i>et al.</i> (2014) &quot;Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.&quot; <i>Cancer Cell</i> <b>26</b>(6):826&ndash;839; PMID: [https://pubmed.ncbi.nlm.nih.gov/25453901 25453901]; doi: [https://dx.doi.org/10.1016/j.ccell.2014.10.002 10.1016/j.ccell.2014.10.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25453901 46].
 +
#Guo Z, <i>et al.</i> (2014) &quot;E-cadherin interactome complexity and robustness resolved by quantitative proteomics.&quot; <i>Sci Signal</i> <b>7</b>(354):rs7; PMID: [https://pubmed.ncbi.nlm.nih.gov/25468996 25468996]; doi: [https://dx.doi.org/10.1126/scisignal.2005473 10.1126/scisignal.2005473]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25468996 90].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2015) &quot;Absolute protein quantification allows differentiation of cell-specific metabolic routes and functions.&quot; <i>Proteomics</i> <b>15</b>(7):1316&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/25475432 25475432]; doi: [https://dx.doi.org/10.1002/pmic.201400456 10.1002/pmic.201400456]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25475432 44].
 +
#Schnell G, <i>et al.</i> (2015) &quot;Proteomic analysis of three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for Lyme vaccine design.&quot; <i>Proteomics</i> <b>15</b>(7):1280&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/25475896 25475896]; doi: [https://dx.doi.org/10.1002/pmic.201400177 10.1002/pmic.201400177]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25475896 6].
 +
#Yang X, <i>et al.</i> (2015) &quot;Proteomic analysis of N-glycosylation of human seminal plasma.&quot; <i>Proteomics</i> <b>15</b>(7):1255&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25476145 25476145]; doi: [https://dx.doi.org/10.1002/pmic.201400203 10.1002/pmic.201400203]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25476145 3].
 +
#Binai NA, <i>et al.</i> (2015) &quot;Rapid analyses of proteomes and interactomes using an integrated solid-phase extraction-liquid chromatography-MS/MS system.&quot; <i>J Proteome Res</i> <b>14</b>(2):977&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/25485597 25485597]; doi: [https://dx.doi.org/10.1021/pr501011z 10.1021/pr501011z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25485597 71].
 +
#Vaga S, <i>et al.</i> (2014) &quot;Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast.&quot; <i>Mol Syst Biol</i> <b>10</b>:767; PMID: [https://pubmed.ncbi.nlm.nih.gov/25492886 25492886]; doi: [https://dx.doi.org/10.15252/msb.20145112 10.15252/msb.20145112]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25492886 108].
 +
#Selvam RM, <i>et al.</i> (2015) &quot;Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease.&quot; <i>J Proteomics</i> <b>115</b>:23&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/25497218 25497218]; doi: [https://dx.doi.org/10.1016/j.jprot.2014.11.017 10.1016/j.jprot.2014.11.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25497218 10].
 +
#Bergseng E, <i>et al.</i> (2015) &quot;Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires.&quot; <i>Immunogenetics</i> <b>67</b>(2):73&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/25502872 25502872]; doi: [https://dx.doi.org/10.1007/s00251-014-0819-9 10.1007/s00251-014-0819-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25502872 51].
 +
#Guo M, <i>et al.</i> (2015) &quot;High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages.&quot; <i>Proteomics</i> <b>15</b>(18):3169&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/25504905 25504905]; doi: [https://dx.doi.org/10.1002/pmic.201400431 10.1002/pmic.201400431]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25504905 6].
 +
#Gomes-Alves P, <i>et al.</i> (2015) &quot;Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome.&quot; <i>Proteomics</i> <b>15</b>(7):1332&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/25504917 25504917]; doi: [https://dx.doi.org/10.1002/pmic.201400318 10.1002/pmic.201400318]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25504917 2].
 +
#Baert Y, <i>et al.</i> (2015) &quot;Derivation and characterization of a cytocompatible scaffold from human testis.&quot; <i>Hum Reprod</i> <b>30</b>(2):256&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/25505010 25505010]; doi: [https://dx.doi.org/10.1093/humrep/deu330 10.1093/humrep/deu330]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25505010 1].
 +
#Pel&aacute;ez-Garc&iacute;a A, <i>et al.</i> (2015) &quot;A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(2):303&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/25505127 25505127]; doi: [https://dx.doi.org/10.1074/mcp.M114.045328 10.1074/mcp.M114.045328]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25505127 2].
 +
#Gao L, <i>et al.</i> (2015) &quot;Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs).&quot; <i>Mol Cell Proteomics</i> <b>14</b>(2):340&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/25505158 25505158]; doi: [https://dx.doi.org/10.1074/mcp.M114.044800 10.1074/mcp.M114.044800]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25505158 24].
 +
#Low TY, <i>et al.</i> (2014) &quot;A systems-wide screen identifies substrates of the SCF&beta;TrCP ubiquitin ligase.&quot; <i>Sci Signal</i> <b>7</b>(356):rs8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25515538 25515538]; doi: [https://dx.doi.org/10.1126/scisignal.2005882 10.1126/scisignal.2005882]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25515538 120].
 +
#Park JJ, <i>et al.</i> (2015) &quot;The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis.&quot; <i>Plant J</i> <b>81</b>(4):611&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/25515814 25515814]; doi: [https://dx.doi.org/10.1111/tpj.12747 10.1111/tpj.12747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25515814 6].
 +
#Ferl RJ, <i>et al.</i> (2015) &quot;Spaceflight induces specific alterations in the proteomes of Arabidopsis.&quot; <i>Astrobiology</i> <b>15</b>(1):32&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/25517942 25517942]; doi: [https://dx.doi.org/10.1089/ast.2014.1210 10.1089/ast.2014.1210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25517942 15].
 +
#Mathias RA, <i>et al.</i> (2014) &quot;Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity.&quot; <i>Cell</i> <b>159</b>(7):1615&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/25525879 25525879]; doi: [https://dx.doi.org/10.1016/j.cell.2014.11.046 10.1016/j.cell.2014.11.046]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25525879 24].
 +
#Gueugneau M, <i>et al.</i> (2014) &quot;Proteomics of muscle chronological ageing in post-menopausal women.&quot; <i>BMC Genomics</i> <b>15</b>:1165; PMID: [https://pubmed.ncbi.nlm.nih.gov/25532418 25532418]; doi: [https://dx.doi.org/10.1186/1471-2164-15-1165 10.1186/1471-2164-15-1165]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25532418 98].
 +
#Rotival M, <i>et al.</i> (2015) &quot;Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(3):484&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/25532521 25532521]; doi: [https://dx.doi.org/10.1074/mcp.M114.043836 10.1074/mcp.M114.043836]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25532521 15].
 +
#Hustedt N, <i>et al.</i> (2015) &quot;Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling.&quot; <i>Mol Cell</i> <b>57</b>(2):273&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/25533186 25533186]; doi: [https://dx.doi.org/10.1016/j.molcel.2014.11.016 10.1016/j.molcel.2014.11.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25533186 12].
 +
#Paster W, <i>et al.</i> (2015) &quot;A THEMIS:SHP1 complex promotes T-cell survival.&quot; <i>EMBO J</i> <b>34</b>(3):393&ndash;409; PMID: [https://pubmed.ncbi.nlm.nih.gov/25535246 25535246]; doi: [https://dx.doi.org/10.15252/embj.201387725 10.15252/embj.201387725]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25535246 15].
 +
#Hubner NC, <i>et al.</i> (2015) &quot;A quantitative proteomics tool to identify DNA-protein interactions in primary cells or blood.&quot; <i>J Proteome Res</i> <b>14</b>(2):1315&ndash;29; PMID: [https://pubmed.ncbi.nlm.nih.gov/25546135 25546135]; doi: [https://dx.doi.org/10.1021/pr5009515 10.1021/pr5009515]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25546135 82].
 +
#Chang HY, <i>et al.</i> (2015) &quot;Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.&quot; <i>J Proteome Res</i> <b>14</b>(2):1250&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/25556991 25556991]; doi: [https://dx.doi.org/10.1021/pr5011873 10.1021/pr5011873]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25556991 1].
 +
#Boj SF, <i>et al.</i> (2015) &quot;Organoid models of human and mouse ductal pancreatic cancer.&quot; <i>Cell</i> <b>160</b>(1-2):324&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/25557080 25557080]; doi: [https://dx.doi.org/10.1016/j.cell.2014.12.021 10.1016/j.cell.2014.12.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25557080 4].
 +
#Selevsek N, <i>et al.</i> (2015) &quot;Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(3):739&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/25561506 25561506]; doi: [https://dx.doi.org/10.1074/mcp.M113.035550 10.1074/mcp.M113.035550]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25561506 46].
 +
#Fabre B, <i>et al.</i> (2015) &quot;Deciphering preferential interactions within supramolecular protein complexes: the proteasome case.&quot; <i>Mol Syst Biol</i> <b>11</b>(1):771; PMID: [https://pubmed.ncbi.nlm.nih.gov/25561571 25561571]; doi: [https://dx.doi.org/10.15252/msb.20145497 10.15252/msb.20145497]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25561571 84].
 +
#Kershaw CJ, <i>et al.</i> (2015) &quot;The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response.&quot; <i>PLoS Genet</i> <b>11</b>(1):e1004903; PMID: [https://pubmed.ncbi.nlm.nih.gov/25569619 25569619]; doi: [https://dx.doi.org/10.1371/journal.pgen.1004903 10.1371/journal.pgen.1004903]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25569619 20].
 +
#Zappacosta F, <i>et al.</i> (2015) &quot;An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome.&quot; <i>J Proteome Res</i> <b>14</b>(2):997&ndash;1009; PMID: [https://pubmed.ncbi.nlm.nih.gov/25575281 25575281]; doi: [https://dx.doi.org/10.1021/pr501025e 10.1021/pr501025e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25575281 42].
 +
#Bassani-Sternberg M, <i>et al.</i> (2015) &quot;Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(3):658&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/25576301 25576301]; doi: [https://dx.doi.org/10.1074/mcp.M114.042812 10.1074/mcp.M114.042812]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25576301 40].
 +
#Hong JH, <i>et al.</i> (2015) &quot;KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(3):674&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/25582440 25582440]; doi: [https://dx.doi.org/10.1074/mcp.M114.042168 10.1074/mcp.M114.042168]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25582440 58].
 +
#Chiang DY, <i>et al.</i> (2015) &quot;Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients.&quot; <i>J Am Coll Cardiol</i> <b>65</b>(2):163&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/25593058 25593058]; doi: [https://dx.doi.org/10.1016/j.jacc.2014.10.042 10.1016/j.jacc.2014.10.042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25593058 22].
 +
#Kasvandik S, <i>et al.</i> (2015) &quot;Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment.&quot; <i>Proteomics</i> <b>15</b>(11):1906&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/25603787 25603787]; doi: [https://dx.doi.org/10.1002/pmic.201400297 10.1002/pmic.201400297]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25603787 16].
 +
#Byron A, <i>et al.</i> (2015) &quot;A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting.&quot; <i>Nat Commun</i> <b>6</b>:6135; PMID: [https://pubmed.ncbi.nlm.nih.gov/25609142 25609142]; doi: [https://dx.doi.org/10.1038/ncomms7135 10.1038/ncomms7135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25609142 237].
 +
#Braakman RB, <i>et al.</i> (2015) &quot;Integrative analysis of genomics and proteomics data on clinical breast cancer tissue specimens extracted with acid guanidinium thiocyanate-phenol-chloroform.&quot; <i>J Proteome Res</i> <b>14</b>(3):1627&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/25611981 25611981]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00046 10.1021/acs.jproteome.5b00046]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25611981 3].
 +
#Deshmukh AS, <i>et al.</i> (2015) &quot;Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):841&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/25616865 25616865]; doi: [https://dx.doi.org/10.1074/mcp.M114.044222 10.1074/mcp.M114.044222]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25616865 6].
 +
#Ramond E, <i>et al.</i> (2015) &quot;Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):870&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/25616868 25616868]; doi: [https://dx.doi.org/10.1074/mcp.M114.044552 10.1074/mcp.M114.044552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25616868 18].
 +
#Loroch S, <i>et al.</i> (2015) &quot;Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.&quot; <i>Biochim Biophys Acta</i> <b>1854</b>(5):460&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25619855 25619855]; doi: [https://dx.doi.org/10.1016/j.bbapap.2015.01.006 10.1016/j.bbapap.2015.01.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25619855 36].
 +
#Harel M, <i>et al.</i> (2015) &quot;Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):1127&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/25624350 25624350]; doi: [https://dx.doi.org/10.1074/mcp.M114.043364 10.1074/mcp.M114.043364]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25624350 46].
 +
#Zanker D, <i>et al.</i> (2015) &quot;Compartment resolved reference proteome map from highly purified na&iuml;ve, activated, effector, and memory CD8&#x207A; murine immune cells.&quot; <i>Proteomics</i> <b>15</b>(11):1808&ndash;12; PMID: [https://pubmed.ncbi.nlm.nih.gov/25643623 25643623]; doi: [https://dx.doi.org/10.1002/pmic.201400405 10.1002/pmic.201400405]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25643623 249].
 +
#Murgia M, <i>et al.</i> (2015) &quot;Single muscle fiber proteomics reveals unexpected mitochondrial specialization.&quot; <i>EMBO Rep</i> <b>16</b>(3):387&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/25643707 25643707]; doi: [https://dx.doi.org/10.15252/embr.201439757 10.15252/embr.201439757]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25643707 89].
 +
#Eagle GL, <i>et al.</i> (2015) &quot;Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):933&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/25645933 25645933]; doi: [https://dx.doi.org/10.1074/mcp.M114.044479 10.1074/mcp.M114.044479]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25645933 3].
 +
#Walker MP, <i>et al.</i> (2015) &quot;FOXP1 potentiates Wnt/&beta;-catenin signaling in diffuse large B cell lymphoma.&quot; <i>Sci Signal</i> <b>8</b>(362):ra12; PMID: [https://pubmed.ncbi.nlm.nih.gov/25650440 25650440]; doi: [https://dx.doi.org/10.1126/scisignal.2005654 10.1126/scisignal.2005654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25650440 8].
 +
#Marza E, <i>et al.</i> (2015) &quot;Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription.&quot; <i>EMBO Rep</i> <b>16</b>(3):332&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/25652260 25652260]; doi: [https://dx.doi.org/10.15252/embr.201439123 10.15252/embr.201439123]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25652260 6].
 +
#Corradini E, <i>et al.</i> (2015) &quot;Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase I&beta; isoform.&quot; <i>J Biol Chem</i> <b>290</b>(12):7887&ndash;96; PMID: [https://pubmed.ncbi.nlm.nih.gov/25653285 25653285]; doi: [https://dx.doi.org/10.1074/jbc.M114.622613 10.1074/jbc.M114.622613]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25653285 6].
 +
#Sandin M, <i>et al.</i> (2015) &quot;Is label-free LC-MS/MS ready for biomarker discovery?&quot; <i>Proteomics Clin Appl</i> <b>9</b>(3-4):289&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/25656266 25656266]; doi: [https://dx.doi.org/10.1002/prca.201400202 10.1002/prca.201400202]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25656266 2].
 +
#Battle A, <i>et al.</i> (2015) &quot;Genomic variation. Impact of regulatory variation from RNA to protein.&quot; <i>Science</i> <b>347</b>(6222):664&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/25657249 25657249]; doi: [https://dx.doi.org/10.1126/science.1260793 10.1126/science.1260793]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25657249 2622].
 +
#St-Denis N, <i>et al.</i> (2015) &quot;Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):946&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/25659891 25659891]; doi: [https://dx.doi.org/10.1074/mcp.M114.046086 10.1074/mcp.M114.046086]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25659891 190].
 +
#Hill RC, <i>et al.</i> (2015) &quot;Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(4):961&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/25660013 25660013]; doi: [https://dx.doi.org/10.1074/mcp.M114.045260 10.1074/mcp.M114.045260]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25660013 60].
 +
#M&eacute;dard G, <i>et al.</i> (2015) &quot;Optimized chemical proteomics assay for kinase inhibitor profiling.&quot; <i>J Proteome Res</i> <b>14</b>(3):1574&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/25660469 25660469]; doi: [https://dx.doi.org/10.1021/pr5012608 10.1021/pr5012608]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25660469 126].
 +
#Krahmer J, <i>et al.</i> (2015) &quot;Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana.&quot; <i>Methods Enzymol</i> <b>551</b>:405&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/25662467 25662467]; doi: [https://dx.doi.org/10.1016/bs.mie.2014.10.022 10.1016/bs.mie.2014.10.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25662467 117].
 +
#Diner BA, <i>et al.</i> (2015) &quot;The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA.&quot; <i>Mol Syst Biol</i> <b>11</b>(1):787; PMID: [https://pubmed.ncbi.nlm.nih.gov/25665578 25665578]; doi: [https://dx.doi.org/10.15252/msb.20145808 10.15252/msb.20145808]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25665578 21].
 +
#Jacques S, <i>et al.</i> (2015) &quot;Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(5):1217&ndash;29; PMID: [https://pubmed.ncbi.nlm.nih.gov/25693801 25693801]; doi: [https://dx.doi.org/10.1074/mcp.M114.043729 10.1074/mcp.M114.043729]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25693801 2].
 +
#Hu J, <i>et al.</i> (2015) &quot;Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis.&quot; <i>Plant Physiol</i> <b>167</b>(4):1731&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/25699590 25699590]; doi: [https://dx.doi.org/10.1104/pp.15.00026 10.1104/pp.15.00026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25699590 12].
 +
#Peebo K, <i>et al.</i> (2015) &quot;Proteome reallocation in Escherichia coli with increasing specific growth rate.&quot; <i>Mol Biosyst</i> <b>11</b>(4):1184&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/25712329 25712329]; doi: [https://dx.doi.org/10.1039/c4mb00721b 10.1039/c4mb00721b]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25712329 26].
 +
#Koganti S, <i>et al.</i> (2015) &quot;Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.&quot; <i>J Virol</i> <b>89</b>(9):5002&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/25717101 25717101]; doi: [https://dx.doi.org/10.1128/JVI.00121-15 10.1128/JVI.00121-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25717101 2].
 +
#Kettenbach AN, <i>et al.</i> (2015) &quot;Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(5):1275&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/25720772 25720772]; doi: [https://dx.doi.org/10.1074/mcp.M114.045245 10.1074/mcp.M114.045245]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25720772 96].
 +
#Gonz&aacute;lez-Prieto R, <i>et al.</i> (2015) &quot;SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites.&quot; <i>EMBO Rep</i> <b>16</b>(4):512&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/25722289 25722289]; doi: [https://dx.doi.org/10.15252/embr.201440017 10.15252/embr.201440017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25722289 27].
 +
#Keshishian H, <i>et al.</i> (2015) &quot;Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(9):2375&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/25724909 25724909]; doi: [https://dx.doi.org/10.1074/mcp.M114.046813 10.1074/mcp.M114.046813]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25724909 322].
 +
#Vogel CJ, <i>et al.</i> (2015) &quot;Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK.&quot; <i>Pigment Cell Melanoma Res</i> <b>28</b>(3):307&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/25728708 25728708]; doi: [https://dx.doi.org/10.1111/pcmr.12364 10.1111/pcmr.12364]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25728708 170].
 +
#Zhang H, <i>et al.</i> (2015) &quot;Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots.&quot; <i>Proteomics</i> <b>15</b>(14):2447&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/25728785 25728785]; doi: [https://dx.doi.org/10.1002/pmic.201400530 10.1002/pmic.201400530]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25728785 14].
 +
#Aller K, <i>et al.</i> (2015) &quot;Excess of threonine compared with serine promotes threonine aldolase activity in Lactococcus lactis IL1403.&quot; <i>Microbiology (Reading)</i> <b>161</b>(Pt 5):1073&ndash;1080; PMID: [https://pubmed.ncbi.nlm.nih.gov/25743155 25743155]; doi: [https://dx.doi.org/10.1099/mic.0.000071 10.1099/mic.0.000071]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25743155 6].
 +
#&Scaron;talekar M, <i>et al.</i> (2015) &quot;Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport.&quot; <i>Neuroscience</i> <b>293</b>:157&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/25743254 25743254]; doi: [https://dx.doi.org/10.1016/j.neuroscience.2015.02.046 10.1016/j.neuroscience.2015.02.046]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25743254 96].
 +
#Jamdhade MD, <i>et al.</i> (2015) &quot;Comprehensive proteomics analysis of glycosomes from Leishmania donovani.&quot; <i>OMICS</i> <b>19</b>(3):157&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/25748437 25748437]; doi: [https://dx.doi.org/10.1089/omi.2014.0163 10.1089/omi.2014.0163]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25748437 2].
 +
#Willger SD, <i>et al.</i> (2015) &quot;Analysis of the Candida albicans Phosphoproteome.&quot; <i>Eukaryot Cell</i> <b>14</b>(5):474&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/25750214 25750214]; doi: [https://dx.doi.org/10.1128/EC.00011-15 10.1128/EC.00011-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25750214 13].
 +
#Sch&ouml;lz C, <i>et al.</i> (2015) &quot;Acetylation site specificities of lysine deacetylase inhibitors in human cells.&quot; <i>Nat Biotechnol</i> <b>33</b>(4):415&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/25751058 25751058]; doi: [https://dx.doi.org/10.1038/nbt.3130 10.1038/nbt.3130]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25751058 292].
 +
#Alvarez Hayes J, <i>et al.</i> (2015) &quot;Shotgun proteome analysis of Bordetella pertussis reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response.&quot; <i>Proteomics</i> <b>15</b>(13):2258&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/25755163 25755163]; doi: [https://dx.doi.org/10.1002/pmic.201400512 10.1002/pmic.201400512]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25755163 6].
 +
#Xiao Z, <i>et al.</i> (2015) &quot;System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(5):1419&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/25755297 25755297]; doi: [https://dx.doi.org/10.1074/mcp.O114.044792 10.1074/mcp.O114.044792]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25755297 84].
 +
#Dill BD, <i>et al.</i> (2015) &quot;Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(5):1334&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/25755298 25755298]; doi: [https://dx.doi.org/10.1074/mcp.M114.044594 10.1074/mcp.M114.044594]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25755298 91].
 +
#Mackmull MT, <i>et al.</i> (2015) &quot;Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs).&quot; <i>Mol Cell Proteomics</i> <b>14</b>(5):1350&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/25755299 25755299]; doi: [https://dx.doi.org/10.1074/mcp.M114.042499 10.1074/mcp.M114.042499]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25755299 96].
 +
#Carter DM, <i>et al.</i> (2015) &quot;Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection.&quot; <i>Proteomics</i> <b>15</b>(12):1995&ndash;2005; PMID: [https://pubmed.ncbi.nlm.nih.gov/25758553 25758553]; doi: [https://dx.doi.org/10.1002/pmic.201400599 10.1002/pmic.201400599]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25758553 8].
 +
#Martin-Perez M, <i>et al.</i> (2015) &quot;Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.&quot; <i>Anal Chem</i> <b>87</b>(7):4008&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/25767917 25767917]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b00264 10.1021/acs.analchem.5b00264]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25767917 22].
 +
#Zub KA, <i>et al.</i> (2015) &quot;Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.&quot; <i>PLoS One</i> <b>10</b>(3):e0119857; PMID: [https://pubmed.ncbi.nlm.nih.gov/25769101 25769101]; doi: [https://dx.doi.org/10.1371/journal.pone.0119857 10.1371/journal.pone.0119857]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25769101 12].
 +
#Zigdon H, <i>et al.</i> (2015) &quot;Identification of a biomarker in cerebrospinal fluid for neuronopathic forms of Gaucher disease.&quot; <i>PLoS One</i> <b>10</b>(3):e0120194; PMID: [https://pubmed.ncbi.nlm.nih.gov/25775479 25775479]; doi: [https://dx.doi.org/10.1371/journal.pone.0120194 10.1371/journal.pone.0120194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25775479 27].
 +
#Shalit T, <i>et al.</i> (2015) &quot;MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer.&quot; <i>J Proteome Res</i> <b>14</b>(4):1979&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/25780947 25780947]; doi: [https://dx.doi.org/10.1021/pr501045t 10.1021/pr501045t]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25780947 12].
 +
#Markmann S, <i>et al.</i> (2015) &quot;Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting.&quot; <i>Traffic</i> <b>16</b>(7):743&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/25786328 25786328]; doi: [https://dx.doi.org/10.1111/tra.12284 10.1111/tra.12284]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25786328 3].
 +
#Manousopoulou A, <i>et al.</i> (2015) &quot;Are you also what your mother eats? Distinct proteomic portrait as a result of maternal high-fat diet in the cerebral cortex of the adult mouse.&quot; <i>Int J Obes (Lond)</i> <b>39</b>(8):1325&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/25797609 25797609]; doi: [https://dx.doi.org/10.1038/ijo.2015.35 10.1038/ijo.2015.35]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25797609 61].
 +
#Bracht T, <i>et al.</i> (2015) &quot;Analysis of disease-associated protein expression using quantitative proteomics&mdash;fibulin-5 is expressed in association with hepatic fibrosis.&quot; <i>J Proteome Res</i> <b>14</b>(5):2278&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/25807371 25807371]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00053 10.1021/acs.jproteome.5b00053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25807371 27].
 +
#Broncel M, <i>et al.</i> (2015) &quot;Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development.&quot; <i>Angew Chem Int Ed Engl</i> <b>54</b>(20):5948&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/25807930 25807930]; doi: [https://dx.doi.org/10.1002/anie.201500342 10.1002/anie.201500342]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25807930 1].
 +
#Tsai CF, <i>et al.</i> (2015) &quot;Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.&quot; <i>Nat Commun</i> <b>6</b>:6622; PMID: [https://pubmed.ncbi.nlm.nih.gov/25814448 25814448]; doi: [https://dx.doi.org/10.1038/ncomms7622 10.1038/ncomms7622]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25814448 24].
 +
#Khan MN, <i>et al.</i> (2015) &quot;Proteomic analysis of soybean hypocotyl during recovery after flooding stress.&quot; <i>J Proteomics</i> <b>121</b>:15&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/25818724 25818724]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.03.020 10.1016/j.jprot.2015.03.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25818724 21].
 +
#Moretti F, <i>et al.</i> (2015) &quot;Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth.&quot; <i>Mol Cell Biol</i> <b>35</b>(11):2035&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/25825524 25825524]; doi: [https://dx.doi.org/10.1128/MCB.00133-15 10.1128/MCB.00133-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25825524 72].
 +
#Alpert AJ, <i>et al.</i> (2015) &quot;Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography.&quot; <i>Anal Chem</i> <b>87</b>(9):4704&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/25827581 25827581]; doi: [https://dx.doi.org/10.1021/ac504420c 10.1021/ac504420c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25827581 42].
 +
#Ao J, <i>et al.</i> (2015) &quot;Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation.&quot; <i>PLoS Genet</i> <b>11</b>(4):e1005118; PMID: [https://pubmed.ncbi.nlm.nih.gov/25835551 25835551]; doi: [https://dx.doi.org/10.1371/journal.pgen.1005118 10.1371/journal.pgen.1005118]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25835551 20].
 +
#Lardi M, <i>et al.</i> (2015) &quot;&sigma;54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111.&quot; <i>Appl Environ Microbiol</i> <b>81</b>(12):4077&ndash;89; PMID: [https://pubmed.ncbi.nlm.nih.gov/25841012 25841012]; doi: [https://dx.doi.org/10.1128/AEM.00694-15 10.1128/AEM.00694-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841012 40].
 +
#Piersma SR, <i>et al.</i> (2015) &quot;Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):247&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/25841592 25841592]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.03.019 10.1016/j.jprot.2015.03.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25841592 31].
 +
#Krishnan RK, <i>et al.</i> (2015) &quot;Quantitative analysis of the TNF-&alpha;-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKK&beta; substrate.&quot; <i>Nat Commun</i> <b>6</b>:6658; PMID: [https://pubmed.ncbi.nlm.nih.gov/25849741 25849741]; doi: [https://dx.doi.org/10.1038/ncomms7658 10.1038/ncomms7658]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25849741 53].
 +
#Krisp C, <i>et al.</i> (2015) &quot;Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1708&ndash;19; PMID: [https://pubmed.ncbi.nlm.nih.gov/25850434 25850434]; doi: [https://dx.doi.org/10.1074/mcp.M114.046425 10.1074/mcp.M114.046425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850434 12].
 +
#Stuart SA, <i>et al.</i> (2015) &quot;A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(6):1599&ndash;615; PMID: [https://pubmed.ncbi.nlm.nih.gov/25850435 25850435]; doi: [https://dx.doi.org/10.1074/mcp.M114.047233 10.1074/mcp.M114.047233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25850435 255].
 +
#Bergner SV, <i>et al.</i> (2015) &quot;STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes.&quot; <i>Plant Physiol</i> <b>168</b>(2):615&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/25858915 25858915]; doi: [https://dx.doi.org/10.1104/pp.15.00072 10.1104/pp.15.00072]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25858915 72].
 +
#Oberstein A, <i>et al.</i> (2015) &quot;Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome.&quot; <i>Proteomics</i> <b>15</b>(12):2006&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/25867546 25867546]; doi: [https://dx.doi.org/10.1002/pmic.201400607 10.1002/pmic.201400607]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25867546 8].
 +
#Papadopoulos P, <i>et al.</i> (2015) &quot;TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.&quot; <i>Mol Cell Biol</i> <b>35</b>(12):2103&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/25870109 25870109]; doi: [https://dx.doi.org/10.1128/MCB.01370-14 10.1128/MCB.01370-14]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25870109 4].
 +
#Tyagi K, <i>et al.</i> (2015) &quot;Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures.&quot; <i>Nucleic Acids Res</i> <b>43</b>(9):4701&ndash;12; PMID: [https://pubmed.ncbi.nlm.nih.gov/25870413 25870413]; doi: [https://dx.doi.org/10.1093/nar/gkv322 10.1093/nar/gkv322]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25870413 46].
 +
#Rauniyar N, <i>et al.</i> (2015) &quot;Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):1734&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/25873482 25873482]; doi: [https://dx.doi.org/10.1074/mcp.M114.045609 10.1074/mcp.M114.045609]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25873482 2].
 +
#Welinder C, <i>et al.</i> (2015) &quot;A protein deep sequencing evaluation of metastatic melanoma tissues.&quot; <i>PLoS One</i> <b>10</b>(4):e0123661; PMID: [https://pubmed.ncbi.nlm.nih.gov/25874936 25874936]; doi: [https://dx.doi.org/10.1371/journal.pone.0123661 10.1371/journal.pone.0123661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25874936 11].
 +
#Hosp F, <i>et al.</i> (2015) &quot;A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):2030&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/25887394 25887394]; doi: [https://dx.doi.org/10.1074/mcp.O115.049460 10.1074/mcp.O115.049460]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25887394 234].
 +
#Yu Y, <i>et al.</i> (2015) &quot;Diagnosing inflammation and infection in the urinary system via proteomics.&quot; <i>J Transl Med</i> <b>13</b>:111; PMID: [https://pubmed.ncbi.nlm.nih.gov/25889401 25889401]; doi: [https://dx.doi.org/10.1186/s12967-015-0475-3 10.1186/s12967-015-0475-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25889401 260].
 +
#Xu R, <i>et al.</i> (2015) &quot;Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct.&quot; <i>Methods</i> <b>87</b>:11&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/25890246 25890246]; doi: [https://dx.doi.org/10.1016/j.ymeth.2015.04.008 10.1016/j.ymeth.2015.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890246 4].
 +
#van der Mijn JC, <i>et al.</i> (2015) &quot;Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):259&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/25890253 25890253]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.04.006 10.1016/j.jprot.2015.04.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25890253 10].
 +
#Lawrence RT, <i>et al.</i> (2015) &quot;The proteomic landscape of triple-negative breast cancer.&quot; <i>Cell Rep</i> <b>11</b>(4):630&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/25892236 25892236]; doi: [https://dx.doi.org/10.1016/j.celrep.2015.03.050 10.1016/j.celrep.2015.03.050]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25892236 91].
 +
#Wang J, <i>et al.</i> (2015) &quot;Crescendo: A Protein Sequence Database Search Engine for Tandem Mass Spectra.&quot; <i>J Am Soc Mass Spectrom</i> <b>26</b>(7):1077&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/25895889 25895889]; doi: [https://dx.doi.org/10.1007/s13361-015-1120-3 10.1007/s13361-015-1120-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25895889 20].
 +
#Wendler S, <i>et al.</i> (2015) &quot;Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.&quot; <i>J Proteomics</i> <b>125</b>:1&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/25896738 25896738]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.04.013 10.1016/j.jprot.2015.04.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25896738 198].
 +
#Oettinghaus B, <i>et al.</i> (2016) &quot;Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons.&quot; <i>Cell Death Differ</i> <b>23</b>(1):18&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/25909888 25909888]; doi: [https://dx.doi.org/10.1038/cdd.2015.39 10.1038/cdd.2015.39]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25909888 12].
 +
#Tan HT, <i>et al.</i> (2015) &quot;Unravelling the proteome of degenerative human mitral valves.&quot; <i>Proteomics</i> <b>15</b>(17):2934&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/25914152 25914152]; doi: [https://dx.doi.org/10.1002/pmic.201500040 10.1002/pmic.201500040]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25914152 12].
 +
#Arntzen M&Oslash;, <i>et al.</i> (2015) &quot;Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine.&quot; <i>PLoS One</i> <b>10</b>(4):e0126694; PMID: [https://pubmed.ncbi.nlm.nih.gov/25915650 25915650]; doi: [https://dx.doi.org/10.1371/journal.pone.0126694 10.1371/journal.pone.0126694]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25915650 24].
 +
#Franck WL, <i>et al.</i> (2015) &quot;Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development.&quot; <i>J Proteome Res</i> <b>14</b>(6):2408&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/25926025 25926025]; doi: [https://dx.doi.org/10.1021/pr501064q 10.1021/pr501064q]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25926025 36].
 +
#Le Bihan T, <i>et al.</i> (2015) &quot;Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri.&quot; <i>Proteomics</i> <b>15</b>(23-24):4135&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/25930153 25930153]; doi: [https://dx.doi.org/10.1002/pmic.201500086 10.1002/pmic.201500086]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25930153 35].
 +
#Mertz J, <i>et al.</i> (2015) &quot;Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):1898&ndash;910; PMID: [https://pubmed.ncbi.nlm.nih.gov/25931508 25931508]; doi: [https://dx.doi.org/10.1074/mcp.M114.045898 10.1074/mcp.M114.045898]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25931508 2].
 +
#Gadelha C, <i>et al.</i> (2015) &quot;Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):1911&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/25931509 25931509]; doi: [https://dx.doi.org/10.1074/mcp.M114.047647 10.1074/mcp.M114.047647]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25931509 48].
 +
#R&auml;schle M, <i>et al.</i> (2015) &quot;DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links.&quot; <i>Science</i> <b>348</b>(6234):1253671; PMID: [https://pubmed.ncbi.nlm.nih.gov/25931565 25931565]; doi: [https://dx.doi.org/10.1126/science.1253671 10.1126/science.1253671]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25931565 21].
 +
#Penzo M, <i>et al.</i> (2015) &quot;Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation.&quot; <i>FASEB J</i> <b>29</b>(8):3472&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/25934701 25934701]; doi: [https://dx.doi.org/10.1096/fj.15-270991 10.1096/fj.15-270991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25934701 20].
 +
#B&ouml;hm G, <i>et al.</i> (2015) &quot;Low-pH Solid-Phase Amino Labeling of Complex Peptide Digests with TMTs Improves Peptide Identification Rates for Multiplexed Global Phosphopeptide Analysis.&quot; <i>J Proteome Res</i> <b>14</b>(6):2500&ndash;10; PMID: [https://pubmed.ncbi.nlm.nih.gov/25939058 25939058]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00072 10.1021/acs.jproteome.5b00072]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25939058 18].
 +
#Sj&ouml;str&ouml;m M, <i>et al.</i> (2015) &quot;A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery.&quot; <i>J Proteome Res</i> <b>14</b>(7):2807&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/25944384 25944384]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00315 10.1021/acs.jproteome.5b00315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25944384 238].
 +
#Svinkina T, <i>et al.</i> (2015) &quot;Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(9):2429&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/25953088 25953088]; doi: [https://dx.doi.org/10.1074/mcp.O114.047555 10.1074/mcp.O114.047555]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25953088 30].
 +
#Madeira JP, <i>et al.</i> (2015) &quot;Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation.&quot; <i>Front Microbiol</i> <b>6</b>:342; PMID: [https://pubmed.ncbi.nlm.nih.gov/25954265 25954265]; doi: [https://dx.doi.org/10.3389/fmicb.2015.00342 10.3389/fmicb.2015.00342]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25954265 30].
 +
#Walther DM, <i>et al.</i> (2015) &quot;Widespread Proteome Remodeling and Aggregation in Aging C. elegans.&quot; <i>Cell</i> <b>161</b>(4):919&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/25957690 25957690]; doi: [https://dx.doi.org/10.1016/j.cell.2015.03.032 10.1016/j.cell.2015.03.032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25957690 278].
 +
#George IS, <i>et al.</i> (2015) &quot;Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.&quot; <i>Proteomics</i> <b>15</b>(17):3048&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/25959233 25959233]; doi: [https://dx.doi.org/10.1002/pmic.201400541 10.1002/pmic.201400541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25959233 60].
 +
#Hosp F, <i>et al.</i> (2015) &quot;Quantitative interaction proteomics of neurodegenerative disease proteins.&quot; <i>Cell Rep</i> <b>11</b>(7):1134&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/25959826 25959826]; doi: [https://dx.doi.org/10.1016/j.celrep.2015.04.030 10.1016/j.celrep.2015.04.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25959826 122].
 +
#Tay AP, <i>et al.</i> (2015) &quot;Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data.&quot; <i>J Proteome Res</i> <b>14</b>(9):3541&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/25961807 25961807]; doi: [https://dx.doi.org/10.1021/pr5011394 10.1021/pr5011394]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25961807 77].
 +
#Drissi R, <i>et al.</i> (2015) &quot;Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(7):2002&ndash;13; PMID: [https://pubmed.ncbi.nlm.nih.gov/25963833 25963833]; doi: [https://dx.doi.org/10.1074/mcp.M115.048991 10.1074/mcp.M115.048991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25963833 48].
 +
#Koch H, <i>et al.</i> (2015) &quot;Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition.&quot; <i>J Proteome Res</i> <b>14</b>(6):2617&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/25963923 25963923]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00161 10.1021/acs.jproteome.5b00161]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25963923 18].
 +
#Watanabe S, <i>et al.</i> (2015) &quot;Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C.&quot; <i>Nat Commun</i> <b>6</b>:7108; PMID: [https://pubmed.ncbi.nlm.nih.gov/25964121 25964121]; doi: [https://dx.doi.org/10.1038/ncomms8108 10.1038/ncomms8108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25964121 2].
 +
#Hesketh A, <i>et al.</i> (2015) &quot;High-Resolution Mass Spectrometry Based Proteomic Analysis of the Response to Vancomycin-Induced Cell Wall Stress in Streptomyces coelicolor A3(2).&quot; <i>J Proteome Res</i> <b>14</b>(7):2915&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/25965010 25965010]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00242 10.1021/acs.jproteome.5b00242]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25965010 3].
 +
#Xiong Q, <i>et al.</i> (2015) &quot;Proteomic study of different culture medium serum volume fractions on RANKL-dependent RAW264.7 cells differentiating into osteoclasts.&quot; <i>Proteome Sci</i> <b>13</b>:16; PMID: [https://pubmed.ncbi.nlm.nih.gov/25969670 25969670]; doi: [https://dx.doi.org/10.1186/s12953-015-0073-6 10.1186/s12953-015-0073-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25969670 1].
 +
#Oishi N, <i>et al.</i> (2015) &quot;XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death.&quot; <i>Cell Death Dis</i> <b>6</b>:e1763; PMID: [https://pubmed.ncbi.nlm.nih.gov/25973683 25973683]; doi: [https://dx.doi.org/10.1038/cddis.2015.108 10.1038/cddis.2015.108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25973683 1].
 +
#Lee JG, <i>et al.</i> (2015) &quot;A draft map of rhesus monkey tissue proteome for biomedical research.&quot; <i>PLoS One</i> <b>10</b>(5):e0126243; PMID: [https://pubmed.ncbi.nlm.nih.gov/25974132 25974132]; doi: [https://dx.doi.org/10.1371/journal.pone.0126243 10.1371/journal.pone.0126243]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25974132 19].
 +
#Gorshkov V, <i>et al.</i> (2015) &quot;SuperQuant: A Data Processing Approach to Increase Quantitative Proteome Coverage.&quot; <i>Anal Chem</i> <b>87</b>(12):6319&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/25978296 25978296]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b01166 10.1021/acs.analchem.5b01166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25978296 12].
 +
#Dinets A, <i>et al.</i> (2015) &quot;Differential protein expression profiles of cyst fluid from papillary thyroid carcinoma and benign thyroid lesions.&quot; <i>PLoS One</i> <b>10</b>(5):e0126472; PMID: [https://pubmed.ncbi.nlm.nih.gov/25978681 25978681]; doi: [https://dx.doi.org/10.1371/journal.pone.0126472 10.1371/journal.pone.0126472]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25978681 2].
 +
#Campos A, <i>et al.</i> (2015) &quot;Multicenter experiment for quality control of peptide-centric LC-MS/MS analysis - A longitudinal performance assessment with nLC coupled to orbitrap MS analyzers.&quot; <i>J Proteomics</i> <b>127</b>(Pt B):264&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/25982386 25982386]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.05.012 10.1016/j.jprot.2015.05.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25982386 112].
 +
#Goodfellow HS, <i>et al.</i> (2015) &quot;The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway.&quot; <i>Sci Signal</i> <b>8</b>(377):ra49; PMID: [https://pubmed.ncbi.nlm.nih.gov/25990959 25990959]; doi: [https://dx.doi.org/10.1126/scisignal.2005596 10.1126/scisignal.2005596]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25990959 20].
 +
#Graessel A, <i>et al.</i> (2015) &quot;A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(8):2085&ndash;102; PMID: [https://pubmed.ncbi.nlm.nih.gov/25991687 25991687]; doi: [https://dx.doi.org/10.1074/mcp.M114.045690 10.1074/mcp.M114.045690]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25991687 48].
 +
#Bennike TB, <i>et al.</i> (2015) &quot;Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies.&quot; <i>Inflamm Bowel Dis</i> <b>21</b>(9):2052&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/25993694 25993694]; doi: [https://dx.doi.org/10.1097/MIB.0000000000000460 10.1097/MIB.0000000000000460]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25993694 60].
 +
#Jehmlich N, <i>et al.</i> (2015) &quot;Differences in the whole saliva baseline proteome profile associated with development of oral mucositis in head and neck cancer patients undergoing radiotherapy.&quot; <i>J Proteomics</i> <b>125</b>:98&ndash;103; PMID: [https://pubmed.ncbi.nlm.nih.gov/25997676 25997676]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.04.030 10.1016/j.jprot.2015.04.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25997676 56].
 +
#Kharlampieva D, <i>et al.</i> (2015) &quot;Recombinant fragilysin isoforms cause E-cadherin cleavage of intact cells and do not cleave isolated E-cadherin.&quot; <i>Microb Pathog</i> <b>83-84</b>:47&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/25998017 25998017]; doi: [https://dx.doi.org/10.1016/j.micpath.2015.05.003 10.1016/j.micpath.2015.05.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/25998017 23].
 +
#Chen Y, <i>et al.</i> (2015) &quot;Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.&quot; <i>PLoS One</i> <b>10</b>(6):e0127788; PMID: [https://pubmed.ncbi.nlm.nih.gov/26035302 26035302]; doi: [https://dx.doi.org/10.1371/journal.pone.0127788 10.1371/journal.pone.0127788]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26035302 1].
 +
#Aeberhard L, <i>et al.</i> (2015) &quot;The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components.&quot; <i>PLoS Pathog</i> <b>11</b>(6):e1004883; PMID: [https://pubmed.ncbi.nlm.nih.gov/26042774 26042774]; doi: [https://dx.doi.org/10.1371/journal.ppat.1004883 10.1371/journal.ppat.1004883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26042774 24].
 +
#Helou YA, <i>et al.</i> (2015) &quot;Vav1 Regulates T-Cell Activation through a Feedback Mechanism and Crosstalk between the T-Cell Receptor and CD28.&quot; <i>J Proteome Res</i> <b>14</b>(7):2963&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/26043137 26043137]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00340 10.1021/acs.jproteome.5b00340]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26043137 40].
 +
#Marie P, <i>et al.</i> (2015) &quot;Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralisation and the active calcification phase.&quot; <i>J Proteomics</i> <b>126</b>:140&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/26049031 26049031]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.05.034 10.1016/j.jprot.2015.05.034]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26049031 180].
 +
#Higgins R, <i>et al.</i> (2015) &quot;The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins.&quot; <i>Mol Cell</i> <b>59</b>(1):35&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/26051182 26051182]; doi: [https://dx.doi.org/10.1016/j.molcel.2015.04.026 10.1016/j.molcel.2015.04.026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26051182 54].
 +
#Sethi MK, <i>et al.</i> (2015) &quot;Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.&quot; <i>J Proteomics</i> <b>126</b>:54&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/26054784 26054784]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.05.037 10.1016/j.jprot.2015.05.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26054784 15].
 +
#Cifani P, <i>et al.</i> (2015) &quot;Molecular Portrait of Breast-Cancer-Derived Cell Lines Reveals Poor Similarity with Tumors.&quot; <i>J Proteome Res</i> <b>14</b>(7):2819&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/26055192 26055192]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00375 10.1021/acs.jproteome.5b00375]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26055192 439].
 +
#McCloy RA, <i>et al.</i> (2015) &quot;Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(8):2194&ndash;212; PMID: [https://pubmed.ncbi.nlm.nih.gov/26055452 26055452]; doi: [https://dx.doi.org/10.1074/mcp.M114.046938 10.1074/mcp.M114.046938]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26055452 29].
 +
#Mulvey CM, <i>et al.</i> (2015) &quot;Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells.&quot; <i>Stem Cells</i> <b>33</b>(9):2712&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/26059426 26059426]; doi: [https://dx.doi.org/10.1002/stem.2067 10.1002/stem.2067]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26059426 7].
 +
#Chang JW, <i>et al.</i> (2015) &quot;mRNA 3&#39;-UTR shortening is a molecular signature of mTORC1 activation.&quot; <i>Nat Commun</i> <b>6</b>:7218; PMID: [https://pubmed.ncbi.nlm.nih.gov/26074333 26074333]; doi: [https://dx.doi.org/10.1038/ncomms8218 10.1038/ncomms8218]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26074333 1].
 +
#Murphy JP, <i>et al.</i> (2015) &quot;Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(9):2454&ndash;65; PMID: [https://pubmed.ncbi.nlm.nih.gov/26077900 26077900]; doi: [https://dx.doi.org/10.1074/mcp.M114.045849 10.1074/mcp.M114.045849]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26077900 66].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2015) &quot;Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.&quot; <i>J Proteome Res</i> <b>14</b>(8):3263&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/26080680 26080680]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00276 10.1021/acs.jproteome.5b00276]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26080680 18].
 +
#Yagoub D, <i>et al.</i> (2015) &quot;Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.&quot; <i>Proteomics</i> <b>15</b>(18):3209&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/26081071 26081071]; doi: [https://dx.doi.org/10.1002/pmic.201500075 10.1002/pmic.201500075]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26081071 7].
 +
#Mui MZ, <i>et al.</i> (2015) &quot;The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway.&quot; <i>J Virol</i> <b>89</b>(17):8855&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/26085163 26085163]; doi: [https://dx.doi.org/10.1128/JVI.03710-14 10.1128/JVI.03710-14]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26085163 16].
 +
#Cehofski LJ, <i>et al.</i> (2015) &quot;Proteins involved in focal adhesion signaling pathways are differentially regulated in experimental branch retinal vein occlusion.&quot; <i>Exp Eye Res</i> <b>138</b>:87&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/26086079 26086079]; doi: [https://dx.doi.org/10.1016/j.exer.2015.06.011 10.1016/j.exer.2015.06.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26086079 48].
 +
#Stebbing J, <i>et al.</i> (2015) &quot;Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(9):2479&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/26089344 26089344]; doi: [https://dx.doi.org/10.1074/mcp.M115.048090 10.1074/mcp.M115.048090]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26089344 370].
 +
#Muqaku B, <i>et al.</i> (2015) &quot;Quantification of cytokines secreted by primary human cells using multiple reaction monitoring: evaluation of analytical parameters.&quot; <i>Anal Bioanal Chem</i> <b>407</b>(21):6525&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/26092402 26092402]; doi: [https://dx.doi.org/10.1007/s00216-015-8817-9 10.1007/s00216-015-8817-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26092402 19].
 +
#Barco RA, <i>et al.</i> (2015) &quot;New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph.&quot; <i>Appl Environ Microbiol</i> <b>81</b>(17):5927&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26092463 26092463]; doi: [https://dx.doi.org/10.1128/AEM.01374-15 10.1128/AEM.01374-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26092463 28].
 +
#Mei Y, <i>et al.</i> (2015) &quot;A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells.&quot; <i>Nat Commun</i> <b>6</b>:7316; PMID: [https://pubmed.ncbi.nlm.nih.gov/26095918 26095918]; doi: [https://dx.doi.org/10.1038/ncomms8316 10.1038/ncomms8316]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26095918 2].
 +
#Ducret A, <i>et al.</i> (2015) &quot;Identification of six cell surface proteins for specific liver targeting.&quot; <i>Proteomics Clin Appl</i> <b>9</b>(7-8):651&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/26097162 26097162]; doi: [https://dx.doi.org/10.1002/prca.201400194 10.1002/prca.201400194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26097162 68].
 +
#Kosono S, <i>et al.</i> (2015) &quot;Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source.&quot; <i>PLoS One</i> <b>10</b>(6):e0131169; PMID: [https://pubmed.ncbi.nlm.nih.gov/26098117 26098117]; doi: [https://dx.doi.org/10.1371/journal.pone.0131169 10.1371/journal.pone.0131169]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26098117 6].
 +
#Clabaut A, <i>et al.</i> (2015) &quot;Variations of secretome profiles according to conditioned medium preparation: The example of human mesenchymal stem cell-derived adipocytes.&quot; <i>Electrophoresis</i> <b>36</b>(20):2587&ndash;93; PMID: [https://pubmed.ncbi.nlm.nih.gov/26105977 26105977]; doi: [https://dx.doi.org/10.1002/elps.201500086 10.1002/elps.201500086]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26105977 6].
 +
#Chen Y, <i>et al.</i> (2015) &quot;Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins.&quot; <i>J Proteome Res</i> <b>14</b>(9):3693&ndash;709; PMID: [https://pubmed.ncbi.nlm.nih.gov/26108252 26108252]; doi: [https://dx.doi.org/10.1021/pr501103r 10.1021/pr501103r]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26108252 46].
 +
#Uebbing S, <i>et al.</i> (2015) &quot;Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken.&quot; <i>Mol Biol Evol</i> <b>32</b>(10):2716&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/26108680 26108680]; doi: [https://dx.doi.org/10.1093/molbev/msv147 10.1093/molbev/msv147]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26108680 30].
 +
#In&aacute;cio P, <i>et al.</i> (2015) &quot;Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection.&quot; <i>EMBO Rep</i> <b>16</b>(8):955&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/26113366 26113366]; doi: [https://dx.doi.org/10.15252/embr.201439979 10.15252/embr.201439979]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26113366 16].
 +
#Zhu M, <i>et al.</i> (2015) &quot;Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans.&quot; <i>PLoS One</i> <b>10</b>(6):e0130778; PMID: [https://pubmed.ncbi.nlm.nih.gov/26115433 26115433]; doi: [https://dx.doi.org/10.1371/journal.pone.0130778 10.1371/journal.pone.0130778]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26115433 2].
 +
#Marcon E, <i>et al.</i> (2015) &quot;Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation.&quot; <i>Nat Methods</i> <b>12</b>(8):725&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26121405 26121405]; doi: [https://dx.doi.org/10.1038/nmeth.3472 10.1038/nmeth.3472]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26121405 1220].
 +
#Cardona M, <i>et al.</i> (2015) &quot;Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart.&quot; <i>PLoS One</i> <b>10</b>(6):e0131411; PMID: [https://pubmed.ncbi.nlm.nih.gov/26121671 26121671]; doi: [https://dx.doi.org/10.1371/journal.pone.0131411 10.1371/journal.pone.0131411]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26121671 8].
 +
#Herbst FA, <i>et al.</i> (2015) &quot;Label-free quantification reveals major proteomic changes in Pseudomonas putida F1 during the exponential growth phase.&quot; <i>Proteomics</i> <b>15</b>(18):3244&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/26122999 26122999]; doi: [https://dx.doi.org/10.1002/pmic.201400482 10.1002/pmic.201400482]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26122999 16].
 +
#Sghaier H, <i>et al.</i> (2016) &quot;Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes.&quot; <i>ISME J</i> <b>10</b>(1):21&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26125681 26125681]; doi: [https://dx.doi.org/10.1038/ismej.2015.108 10.1038/ismej.2015.108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26125681 9].
 +
#Carapito C, <i>et al.</i> (2015) &quot;Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14.&quot; <i>J Proteome Res</i> <b>14</b>(9):3621&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/26132440 26132440]; doi: [https://dx.doi.org/10.1021/pr5010345 10.1021/pr5010345]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26132440 58].
 +
#Dislich B, <i>et al.</i> (2015) &quot;Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects &beta;-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2550&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/26139848 26139848]; doi: [https://dx.doi.org/10.1074/mcp.M114.041533 10.1074/mcp.M114.041533]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26139848 26].
 +
#Swaney DL, <i>et al.</i> (2015) &quot;Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover.&quot; <i>EMBO Rep</i> <b>16</b>(9):1131&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/26142280 26142280]; doi: [https://dx.doi.org/10.15252/embr.201540298 10.15252/embr.201540298]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26142280 56].
 +
#Su N, <i>et al.</i> (2015) &quot;Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples.&quot; <i>J Proteome Res</i> <b>14</b>(9):3680&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/26144840 26144840]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00481 10.1021/acs.jproteome.5b00481]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26144840 428].
 +
#Ajeian JN, <i>et al.</i> (2016) &quot;Proteomic analysis of integrin-associated complexes from mesenchymal stem cells.&quot; <i>Proteomics Clin Appl</i> <b>10</b>(1):51&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/26147903 26147903]; doi: [https://dx.doi.org/10.1002/prca.201500033 10.1002/prca.201500033]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26147903 177].
 +
#Hoover H, <i>et al.</i> (2015) &quot;Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers.&quot; <i>J Proteome Res</i> <b>14</b>(9):3670&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26151158 26151158]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00508 10.1021/acs.jproteome.5b00508]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26151158 27].
 +
#Huber RJ, <i>et al.</i> (2015) &quot;Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum.&quot; <i>Proteomics</i> <b>15</b>(19):3315&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26152465 26152465]; doi: [https://dx.doi.org/10.1002/pmic.201500143 10.1002/pmic.201500143]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26152465 23].
 +
#Moche M, <i>et al.</i> (2015) &quot;Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions.&quot; <i>J Proteome Res</i> <b>14</b>(9):3804&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/26152824 26152824]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00148 10.1021/acs.jproteome.5b00148]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26152824 924].
 +
#Caron E, <i>et al.</i> (2015) &quot;An open-source computational and data resource to analyze digital maps of immunopeptidomes.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/26154972 26154972]; doi: [https://dx.doi.org/10.7554/eLife.07661 10.7554/eLife.07661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26154972 70].
 +
#Madsen CT, <i>et al.</i> (2015) &quot;Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p.&quot; <i>Nat Commun</i> <b>6</b>:7726; PMID: [https://pubmed.ncbi.nlm.nih.gov/26158509 26158509]; doi: [https://dx.doi.org/10.1038/ncomms8726 10.1038/ncomms8726]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26158509 47].
 +
#Stroud DA, <i>et al.</i> (2015) &quot;COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2.&quot; <i>Hum Mol Genet</i> <b>24</b>(19):5404&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/26160915 26160915]; doi: [https://dx.doi.org/10.1093/hmg/ddv265 10.1093/hmg/ddv265]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26160915 14].
 +
#Jumeau F, <i>et al.</i> (2015) &quot;Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>14</b>(9):3606&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/26168773 26168773]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00170 10.1021/acs.jproteome.5b00170]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26168773 63].
 +
#Schiller HB, <i>et al.</i> (2015) &quot;Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair.&quot; <i>Mol Syst Biol</i> <b>11</b>(7):819; PMID: [https://pubmed.ncbi.nlm.nih.gov/26174933 26174933]; doi: [https://dx.doi.org/10.15252/msb.20156123 10.15252/msb.20156123]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26174933 228].
 +
#Morley S, <i>et al.</i> (2015) &quot;Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes.&quot; <i>Sci Rep</i> <b>5</b>:12136; PMID: [https://pubmed.ncbi.nlm.nih.gov/26179371 26179371]; doi: [https://dx.doi.org/10.1038/srep12136 10.1038/srep12136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26179371 16].
 +
#Feng S, <i>et al.</i> (2015) &quot;Proteomic Insight into Functional Changes of Proteorhodopsin-Containing Bacterial Species Psychroflexus torquis under Different Illumination and Salinity Levels.&quot; <i>J Proteome Res</i> <b>14</b>(9):3848&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/26179671 26179671]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00241 10.1021/acs.jproteome.5b00241]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26179671 72].
 +
#Selvan LD, <i>et al.</i> (2015) &quot;Characterization of host response to Cryptococcus neoformans through quantitative proteomic analysis of cryptococcal meningitis co-infected with HIV.&quot; <i>Mol Biosyst</i> <b>11</b>(9):2529&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/26181685 26181685]; doi: [https://dx.doi.org/10.1039/c5mb00187k 10.1039/c5mb00187k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26181685 1].
 +
#H&uuml;nten S, <i>et al.</i> (2015) &quot;p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2609&ndash;29; PMID: [https://pubmed.ncbi.nlm.nih.gov/26183718 26183718]; doi: [https://dx.doi.org/10.1074/mcp.M115.050237 10.1074/mcp.M115.050237]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26183718 120].
 +
#Bish R, <i>et al.</i> (2015) &quot;Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins.&quot; <i>Biomolecules</i> <b>5</b>(3):1441&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/26184334 26184334]; doi: [https://dx.doi.org/10.3390/biom5031441 10.3390/biom5031441]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26184334 50].
 +
#Nystr&ouml;m A, <i>et al.</i> (2015) &quot;Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms.&quot; <i>EMBO Mol Med</i> <b>7</b>(9):1211&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/26194911 26194911]; doi: [https://dx.doi.org/10.15252/emmm.201505061 10.15252/emmm.201505061]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26194911 110].
 +
#Zheng B, <i>et al.</i> (2015) &quot;Quantitative Proteomics Reveals the Essential Roles of Stromal Interaction Molecule 1 (STIM1) in the Testicular Cord Formation in Mouse Testis.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2682&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/26199344 26199344]; doi: [https://dx.doi.org/10.1074/mcp.M115.049569 10.1074/mcp.M115.049569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26199344 2].
 +
#Wang IX, <i>et al.</i> (2015) &quot;Genetic variation in insulin-induced kinase signaling.&quot; <i>Mol Syst Biol</i> <b>11</b>(7):820; PMID: [https://pubmed.ncbi.nlm.nih.gov/26202599 26202599]; doi: [https://dx.doi.org/10.15252/msb.20156250 10.15252/msb.20156250]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26202599 46].
 +
#Corradini E, <i>et al.</i> (2015) &quot;Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach.&quot; <i>Mol Biosyst</i> <b>11</b>(10):2786&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/26205238 26205238]; doi: [https://dx.doi.org/10.1039/c5mb00142k 10.1039/c5mb00142k]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26205238 47].
 +
#Courtney DG, <i>et al.</i> (2015) &quot;Protein Composition of TGFBI-R124C- and TGFBI-R555W-Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy.&quot; <i>Invest Ophthalmol Vis Sci</i> <b>56</b>(8):4653&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/26207300 26207300]; doi: [https://dx.doi.org/10.1167/iovs.15-16922 10.1167/iovs.15-16922]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26207300 39].
 +
#D&iacute;ez P, <i>et al.</i> (2015) &quot;Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.&quot; <i>J Proteome Res</i> <b>14</b>(9):3530&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/26216070 26216070]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00474 10.1021/acs.jproteome.5b00474]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26216070 60].
 +
#Golizeh M, <i>et al.</i> (2015) &quot;Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions.&quot; <i>Data Brief</i> <b>3</b>:95&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/26217725 26217725]; doi: [https://dx.doi.org/10.1016/j.dib.2015.02.007 10.1016/j.dib.2015.02.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26217725 4].
 +
#Berger ST, <i>et al.</i> (2015) &quot;MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2814&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/26223766 26223766]; doi: [https://dx.doi.org/10.1074/mcp.O115.049650 10.1074/mcp.O115.049650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26223766 113].
 +
#Woo J, <i>et al.</i> (2015) &quot;In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation.&quot; <i>Proteomics</i> <b>15</b>(21):3617&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/26227174 26227174]; doi: [https://dx.doi.org/10.1002/pmic.201400623 10.1002/pmic.201400623]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26227174 27].
 +
#Guo H, <i>et al.</i> (2015) &quot;Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.&quot; <i>Proteomics</i> <b>15</b>(23-24):4080&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/26227301 26227301]; doi: [https://dx.doi.org/10.1002/pmic.201500159 10.1002/pmic.201500159]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26227301 182].
 +
#Na YR, <i>et al.</i> (2015) &quot;Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2722&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/26229149 26229149]; doi: [https://dx.doi.org/10.1074/mcp.M115.048744 10.1074/mcp.M115.048744]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26229149 16].
 +
#Haurogn&eacute; K, <i>et al.</i> (2015) &quot;Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes.&quot; <i>PLoS One</i> <b>10</b>(7):e0134365; PMID: [https://pubmed.ncbi.nlm.nih.gov/26230114 26230114]; doi: [https://dx.doi.org/10.1371/journal.pone.0134365 10.1371/journal.pone.0134365]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26230114 12].
 +
#Subasic D, <i>et al.</i> (2015) &quot;Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.&quot; <i>Genome Res</i> <b>25</b>(11):1680&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/26232411 26232411]; doi: [https://dx.doi.org/10.1101/gr.183160.114 10.1101/gr.183160.114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26232411 52].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2015) &quot;Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters.&quot; <i>J Proteome Res</i> <b>14</b>(9):4005&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/26245529 26245529]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00523 10.1021/acs.jproteome.5b00523]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26245529 184].
 +
#Hou J, <i>et al.</i> (2015) &quot;Extensive allele-specific translational regulation in hybrid mice.&quot; <i>Mol Syst Biol</i> <b>11</b>(8):825; PMID: [https://pubmed.ncbi.nlm.nih.gov/26253569 26253569]; doi: [https://dx.doi.org/10.15252/msb.156240 10.15252/msb.156240]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26253569 3].
 +
#Shah P, <i>et al.</i> (2015) &quot;Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(10):2753&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/26256267 26256267]; doi: [https://dx.doi.org/10.1074/mcp.M115.047928 10.1074/mcp.M115.047928]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26256267 24].
 +
#Toledo A, <i>et al.</i> (2015) &quot;The lipid raft proteome of Borrelia burgdorferi.&quot; <i>Proteomics</i> <b>15</b>(21):3662&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/26256460 26256460]; doi: [https://dx.doi.org/10.1002/pmic.201500093 10.1002/pmic.201500093]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26256460 18].
 +
#Kwon OK, <i>et al.</i> (2015) &quot;In-depth proteomics approach of secretome to identify novel biomarker for sepsis in LPS-stimulated endothelial cells.&quot; <i>Electrophoresis</i> <b>36</b>(23):2851&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/26257168 26257168]; doi: [https://dx.doi.org/10.1002/elps.201500198 10.1002/elps.201500198]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26257168 4].
 +
#He P, <i>et al.</i> (2015) &quot;Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss.&quot; <i>J Clin Invest</i> <b>125</b>(9):3519&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26258413 26258413]; doi: [https://dx.doi.org/10.1172/JCI79552 10.1172/JCI79552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26258413 20].
 +
#Chen L, <i>et al.</i> (2015) &quot;Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress.&quot; <i>J Proteome Res</i> <b>14</b>(9):3982&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/26260330 26260330]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00443 10.1021/acs.jproteome.5b00443]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26260330 3].
 +
#Dubois L, <i>et al.</i> (2015) &quot;Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(11):3015&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/26272980 26272980]; doi: [https://dx.doi.org/10.1074/mcp.M114.047530 10.1074/mcp.M114.047530]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26272980 1].
 +
#Houser JR, <i>et al.</i> (2015) &quot;Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation.&quot; <i>PLoS Comput Biol</i> <b>11</b>(8):e1004400; PMID: [https://pubmed.ncbi.nlm.nih.gov/26275208 26275208]; doi: [https://dx.doi.org/10.1371/journal.pcbi.1004400 10.1371/journal.pcbi.1004400]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26275208 54].
 +
#Kauko O, <i>et al.</i> (2015) &quot;Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling.&quot; <i>Sci Rep</i> <b>5</b>:13099; PMID: [https://pubmed.ncbi.nlm.nih.gov/26278961 26278961]; doi: [https://dx.doi.org/10.1038/srep13099 10.1038/srep13099]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26278961 30].
 +
#Humphrey SJ, <i>et al.</i> (2015) &quot;High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics.&quot; <i>Nat Biotechnol</i> <b>33</b>(9):990&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/26280412 26280412]; doi: [https://dx.doi.org/10.1038/nbt.3327 10.1038/nbt.3327]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26280412 199].
 +
#Zhang Y, <i>et al.</i> (2015) &quot;Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins.&quot; <i>J Proteome Res</i> <b>14</b>(9):3583&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/26282447 26282447]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00435 10.1021/acs.jproteome.5b00435]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26282447 150].
 +
#De Marchi T, <i>et al.</i> (2016) &quot;4-protein signature predicting tamoxifen treatment outcome in recurrent breast cancer.&quot; <i>Mol Oncol</i> <b>10</b>(1):24&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/26285647 26285647]; doi: [https://dx.doi.org/10.1016/j.molonc.2015.07.004 10.1016/j.molonc.2015.07.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26285647 112].
 +
#Haas S, <i>et al.</i> (2015) &quot;Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors.&quot; <i>Cell Stem Cell</i> <b>17</b>(4):422&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/26299573 26299573]; doi: [https://dx.doi.org/10.1016/j.stem.2015.07.007 10.1016/j.stem.2015.07.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26299573 240].
 +
#Payne SH, <i>et al.</i> (2015) &quot;The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity.&quot; <i>Sci Data</i> <b>2</b>:150041; PMID: [https://pubmed.ncbi.nlm.nih.gov/26306205 26306205]; doi: [https://dx.doi.org/10.1038/sdata.2015.41 10.1038/sdata.2015.41]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26306205 19590].
 +
#Titz B, <i>et al.</i> (2015) &quot;Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects.&quot; <i>J Proteomics</i> <b>128</b>:306&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/26306861 26306861]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.08.009 10.1016/j.jprot.2015.08.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26306861 120].
 +
#Yang CR, <i>et al.</i> (2015) &quot;Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling.&quot; <i>Am J Physiol Cell Physiol</i> <b>309</b>(12):C799&ndash;812; PMID: [https://pubmed.ncbi.nlm.nih.gov/26310817 26310817]; doi: [https://dx.doi.org/10.1152/ajpcell.00214.2015 10.1152/ajpcell.00214.2015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26310817 257].
 +
#Deeb SJ, <i>et al.</i> (2015) &quot;Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(11):2947&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/26311899 26311899]; doi: [https://dx.doi.org/10.1074/mcp.M115.050245 10.1074/mcp.M115.050245]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26311899 20].
 +
#Benoit I, <i>et al.</i> (2015) &quot;Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization.&quot; <i>Sci Rep</i> <b>5</b>:13592; PMID: [https://pubmed.ncbi.nlm.nih.gov/26314379 26314379]; doi: [https://dx.doi.org/10.1038/srep13592 10.1038/srep13592]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26314379 10].
 +
#Shrivastava AN, <i>et al.</i> (2015) &quot;&alpha;-synuclein assemblies sequester neuronal &alpha;3-Na+/K+-ATPase and impair Na+ gradient.&quot; <i>EMBO J</i> <b>34</b>(19):2408&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/26323479 26323479]; doi: [https://dx.doi.org/10.15252/embj.201591397 10.15252/embj.201591397]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26323479 23].
 +
#Grosche A, <i>et al.</i> (2016) &quot;The Proteome of Native Adult M&uuml;ller Glial Cells From Murine Retina.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(2):462&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/26324419 26324419]; doi: [https://dx.doi.org/10.1074/mcp.M115.052183 10.1074/mcp.M115.052183]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26324419 40].
 +
#Chu XL, <i>et al.</i> (2016) &quot;Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.&quot; <i>Curr Genet</i> <b>62</b>(1):191&ndash;201; PMID: [https://pubmed.ncbi.nlm.nih.gov/26328806 26328806]; doi: [https://dx.doi.org/10.1007/s00294-015-0517-7 10.1007/s00294-015-0517-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26328806 1].
 +
#Wu X, <i>et al.</i> (2015) &quot;Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(11):2887&ndash;900; PMID: [https://pubmed.ncbi.nlm.nih.gov/26330541 26330541]; doi: [https://dx.doi.org/10.1074/mcp.M115.050484 10.1074/mcp.M115.050484]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26330541 29].
 +
#Duhamel M, <i>et al.</i> (2015) &quot;Molecular Consequences of Proprotein Convertase 1/3 (PC1/3) Inhibition in Macrophages for Application to Cancer Immunotherapy: A Proteomic Study.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(11):2857&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/26330543 26330543]; doi: [https://dx.doi.org/10.1074/mcp.M115.052480 10.1074/mcp.M115.052480]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26330543 18].
 +
#Liebensteiner MG, <i>et al.</i> (2015) &quot;Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes.&quot; <i>Environ Microbiol Rep</i> <b>7</b>(6):936&ndash;45; PMID: [https://pubmed.ncbi.nlm.nih.gov/26332065 26332065]; doi: [https://dx.doi.org/10.1111/1758-2229.12335 10.1111/1758-2229.12335]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26332065 12].
 +
#Lluch-Senar M, <i>et al.</i> (2015) &quot;Comparative &quot;-omics&quot; in Mycoplasma pneumoniae Clinical Isolates Reveals Key Virulence Factors.&quot; <i>PLoS One</i> <b>10</b>(9):e0137354; PMID: [https://pubmed.ncbi.nlm.nih.gov/26335586 26335586]; doi: [https://dx.doi.org/10.1371/journal.pone.0137354 10.1371/journal.pone.0137354]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26335586 25].
 +
#White CH, <i>et al.</i> (2015) &quot;Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.&quot; <i>Antiviral Res</i> <b>123</b>:78&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/26343910 26343910]; doi: [https://dx.doi.org/10.1016/j.antiviral.2015.09.002 10.1016/j.antiviral.2015.09.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26343910 172].
 +
#Wan C, <i>et al.</i> (2015) &quot;Panorama of ancient metazoan macromolecular complexes.&quot; <i>Nature</i> <b>525</b>(7569):339&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/26344197 26344197]; doi: [https://dx.doi.org/10.1038/nature14877 10.1038/nature14877]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26344197 4066].
 +
#Borgdorff H, <i>et al.</i> (2016) &quot;Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier.&quot; <i>Mucosal Immunol</i> <b>9</b>(3):621&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/26349657 26349657]; doi: [https://dx.doi.org/10.1038/mi.2015.86 10.1038/mi.2015.86]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26349657 50].
 +
#Wu X, <i>et al.</i> (2015) &quot;Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways.&quot; <i>Oncotarget</i> <b>6</b>(30):29143&ndash;60; PMID: [https://pubmed.ncbi.nlm.nih.gov/26356563 26356563]; doi: [https://dx.doi.org/10.18632/oncotarget.5020 10.18632/oncotarget.5020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26356563 27].
 +
#Weinert BT, <i>et al.</i> (2015) &quot;Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions.&quot; <i>EMBO J</i> <b>34</b>(21):2620&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/26358839 26358839]; doi: [https://dx.doi.org/10.15252/embj.201591271 10.15252/embj.201591271]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26358839 142].
 +
#Grundner-Culemann K, <i>et al.</i> (2016) &quot;Comparative proteome analysis across non-small cell lung cancer cell lines.&quot; <i>J Proteomics</i> <b>130</b>:1&ndash;10; PMID: [https://pubmed.ncbi.nlm.nih.gov/26361996 26361996]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.09.003 10.1016/j.jprot.2015.09.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26361996 23].
 +
#Mackowiak SD, <i>et al.</i> (2015) &quot;Extensive identification and analysis of conserved small ORFs in animals.&quot; <i>Genome Biol</i> <b>16</b>:179; PMID: [https://pubmed.ncbi.nlm.nih.gov/26364619 26364619]; doi: [https://dx.doi.org/10.1186/s13059-015-0742-x 10.1186/s13059-015-0742-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26364619 19].
 +
#Preil SA, <i>et al.</i> (2015) &quot;Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries From Patients With Type 2 Diabetes Mellitus and Lower Levels Among Metformin Users.&quot; <i>Circ Cardiovasc Genet</i> <b>8</b>(5):727&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/26371159 26371159]; doi: [https://dx.doi.org/10.1161/CIRCGENETICS.115.001165 10.1161/CIRCGENETICS.115.001165]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26371159 19].
 +
#Lin MH, <i>et al.</i> (2015) &quot;Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation.&quot; <i>Sci Signal</i> <b>8</b>(394):rs10; PMID: [https://pubmed.ncbi.nlm.nih.gov/26373674 26373674]; doi: [https://dx.doi.org/10.1126/scisignal.aaa3117 10.1126/scisignal.aaa3117]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26373674 73].
 +
#Park AJ, <i>et al.</i> (2015) &quot;Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.&quot; <i>J Proteome Res</i> <b>14</b>(11):4524&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26378716 26378716]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00262 10.1021/acs.jproteome.5b00262]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26378716 34].
 +
#Ruprecht B, <i>et al.</i> (2015) &quot;Evaluation of Kinase Activity Profiling Using Chemical Proteomics.&quot; <i>ACS Chem Biol</i> <b>10</b>(12):2743&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/26378887 26378887]; doi: [https://dx.doi.org/10.1021/acschembio.5b00616 10.1021/acschembio.5b00616]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26378887 94].
 +
#Clark DJ, <i>et al.</i> (2015) &quot;Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.&quot; <i>Anal Chem</i> <b>87</b>(20):10462&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26378940 26378940]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b02586 10.1021/acs.analchem.5b02586]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26378940 2].
 +
#Kieselbach T, <i>et al.</i> (2015) &quot;Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.&quot; <i>PLoS One</i> <b>10</b>(9):e0138591; PMID: [https://pubmed.ncbi.nlm.nih.gov/26381655 26381655]; doi: [https://dx.doi.org/10.1371/journal.pone.0138591 10.1371/journal.pone.0138591]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26381655 5].
 +
#Goris T, <i>et al.</i> (2015) &quot;Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates.&quot; <i>Sci Rep</i> <b>5</b>:13794; PMID: [https://pubmed.ncbi.nlm.nih.gov/26387727 26387727]; doi: [https://dx.doi.org/10.1038/srep13794 10.1038/srep13794]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26387727 36].
 +
#Creixell P, <i>et al.</i> (2015) &quot;Kinome-wide decoding of network-attacking mutations rewiring cancer signaling.&quot; <i>Cell</i> <b>163</b>(1):202&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/26388441 26388441]; doi: [https://dx.doi.org/10.1016/j.cell.2015.08.056 10.1016/j.cell.2015.08.056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26388441 141].
 +
#Paulo JA, <i>et al.</i> (2015) &quot;Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.&quot; <i>Mol Biol Cell</i> <b>26</b>(22):4063&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/26399295 26399295]; doi: [https://dx.doi.org/10.1091/mbc.E15-07-0499 10.1091/mbc.E15-07-0499]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26399295 1].
 +
#Liu T, <i>et al.</i> (2015) &quot;Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.&quot; <i>PLoS One</i> <b>10</b>(9):e0139143; PMID: [https://pubmed.ncbi.nlm.nih.gov/26401955 26401955]; doi: [https://dx.doi.org/10.1371/journal.pone.0139143 10.1371/journal.pone.0139143]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26401955 2].
 +
#Li S, <i>et al.</i> (2015) &quot;Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA.&quot; <i>J Immunol</i> <b>195</b>(9):4244&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/26408665 26408665]; doi: [https://dx.doi.org/10.4049/jimmunol.1500676 10.4049/jimmunol.1500676]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26408665 60].
 +
#Beckley JR, <i>et al.</i> (2015) &quot;A Degenerate Cohort of Yeast Membrane Trafficking DUBs Mediates Cell Polarity and Survival.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(12):3132&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/26412298 26412298]; doi: [https://dx.doi.org/10.1074/mcp.M115.050039 10.1074/mcp.M115.050039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26412298 246].
 +
#Glatter T, <i>et al.</i> (2015) &quot;Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.&quot; <i>J Proteome Res</i> <b>14</b>(11):4472&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/26412744 26412744]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00654 10.1021/acs.jproteome.5b00654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26412744 934].
 +
#Hadley KC, <i>et al.</i> (2015) &quot;Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/26418743 26418743]; doi: [https://dx.doi.org/10.7554/eLife.09579 10.7554/eLife.09579]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26418743 12].
 +
#Gallart-Palau X, <i>et al.</i> (2015) &quot;Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR).&quot; <i>Sci Rep</i> <b>5</b>:14664; PMID: [https://pubmed.ncbi.nlm.nih.gov/26419333 26419333]; doi: [https://dx.doi.org/10.1038/srep14664 10.1038/srep14664]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26419333 172].
 +
#Bell-Temin H, <i>et al.</i> (2015) &quot;Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(12):3173&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/26424600 26424600]; doi: [https://dx.doi.org/10.1074/mcp.M115.053926 10.1074/mcp.M115.053926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26424600 12].
 +
#Vermillion KL, <i>et al.</i> (2015) &quot;Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.&quot; <i>J Proteome Res</i> <b>14</b>(11):4792&ndash;804; PMID: [https://pubmed.ncbi.nlm.nih.gov/26435507 26435507]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00575 10.1021/acs.jproteome.5b00575]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26435507 3].
 +
#Alanko J, <i>et al.</i> (2015) &quot;Integrin endosomal signalling suppresses anoikis.&quot; <i>Nat Cell Biol</i> <b>17</b>(11):1412&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/26436690 26436690]; doi: [https://dx.doi.org/10.1038/ncb3250 10.1038/ncb3250]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26436690 60].
 +
#Hoffman NJ, <i>et al.</i> (2015) &quot;Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.&quot; <i>Cell Metab</i> <b>22</b>(5):922&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/26437602 26437602]; doi: [https://dx.doi.org/10.1016/j.cmet.2015.09.001 10.1016/j.cmet.2015.09.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26437602 28].
 +
#Matheson NJ, <i>et al.</i> (2015) &quot;Cell Surface Proteomic Map of HIV Infection Reveals Antagonism of Amino Acid Metabolism by Vpu and Nef.&quot; <i>Cell Host Microbe</i> <b>18</b>(4):409&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/26439863 26439863]; doi: [https://dx.doi.org/10.1016/j.chom.2015.09.003 10.1016/j.chom.2015.09.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26439863 10].
 +
#Zhang H, <i>et al.</i> (2015) &quot;Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1.&quot; <i>Sci Signal</i> <b>8</b>(397):ra98; PMID: [https://pubmed.ncbi.nlm.nih.gov/26443705 26443705]; doi: [https://dx.doi.org/10.1126/scisignal.aac5418 10.1126/scisignal.aac5418]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26443705 2].
 +
#Kwon OK, <i>et al.</i> (2016) &quot;Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio).&quot; <i>Proteomics</i> <b>16</b>(1):136&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/26449285 26449285]; doi: [https://dx.doi.org/10.1002/pmic.201500017 10.1002/pmic.201500017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26449285 32].
 +
#N&uacute;&ntilde;ez Galindo A, <i>et al.</i> (2015) &quot;Proteomics of Cerebrospinal Fluid: Throughput and Robustness Using a Scalable Automated Analysis Pipeline for Biomarker Discovery.&quot; <i>Anal Chem</i> <b>87</b>(21):10755&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/26452177 26452177]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b02748 10.1021/acs.analchem.5b02748]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26452177 66].
 +
#Geddes JM, <i>et al.</i> (2015) &quot;Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A.&quot; <i>BMC Microbiol</i> <b>15</b>:206; PMID: [https://pubmed.ncbi.nlm.nih.gov/26453029 26453029]; doi: [https://dx.doi.org/10.1186/s12866-015-0532-3 10.1186/s12866-015-0532-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26453029 48].
 +
#Gomez-Auli A, <i>et al.</i> (2016) &quot;Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers.&quot; <i>Biochimie</i> <b>122</b>:88&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/26455267 26455267]; doi: [https://dx.doi.org/10.1016/j.biochi.2015.10.009 10.1016/j.biochi.2015.10.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26455267 1].
 +
#Roos A, <i>et al.</i> (2016) &quot;Cellular Signature of SIL1 Depletion: Disease Pathogenesis due to Alterations in Protein Composition Beyond the ER Machinery.&quot; <i>Mol Neurobiol</i> <b>53</b>(8):5527&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/26468156 26468156]; doi: [https://dx.doi.org/10.1007/s12035-015-9456-z 10.1007/s12035-015-9456-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26468156 18].
 +
#Poli M, <i>et al.</i> (2015) &quot;Characterization and quantification of proteins secreted by single human embryos prior to implantation.&quot; <i>EMBO Mol Med</i> <b>7</b>(11):1465&ndash;79; PMID: [https://pubmed.ncbi.nlm.nih.gov/26471863 26471863]; doi: [https://dx.doi.org/10.15252/emmm.201505344 10.15252/emmm.201505344]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26471863 11].
 +
#Schlage P, <i>et al.</i> (2015) &quot;Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(12):3234&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/26475864 26475864]; doi: [https://dx.doi.org/10.1074/mcp.M115.053520 10.1074/mcp.M115.053520]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26475864 25].
 +
#Horton ER, <i>et al.</i> (2015) &quot;Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly.&quot; <i>Nat Cell Biol</i> <b>17</b>(12):1577&ndash;1587; PMID: [https://pubmed.ncbi.nlm.nih.gov/26479319 26479319]; doi: [https://dx.doi.org/10.1038/ncb3257 10.1038/ncb3257]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26479319 100].
 +
#Hein MY, <i>et al.</i> (2015) &quot;A human interactome in three quantitative dimensions organized by stoichiometries and abundances.&quot; <i>Cell</i> <b>163</b>(3):712&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/26496610 26496610]; doi: [https://dx.doi.org/10.1016/j.cell.2015.09.053 10.1016/j.cell.2015.09.053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26496610 4296].
 +
#Isasa M, <i>et al.</i> (2015) &quot;Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains.&quot; <i>J Proteome Res</i> <b>14</b>(12):5306&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/26503604 26503604]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00802 10.1021/acs.jproteome.5b00802]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26503604 4].
 +
#Hu CW, <i>et al.</i> (2015) &quot;Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin.&quot; <i>Mol Cell Proteomics</i> <b>14</b>(12):3284&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/26503892 26503892]; doi: [https://dx.doi.org/10.1074/mcp.M115.051383 10.1074/mcp.M115.051383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26503892 48].
 +
#O&#39;Connor HF, <i>et al.</i> (2015) &quot;Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners.&quot; <i>EMBO Rep</i> <b>16</b>(12):1699&ndash;712; PMID: [https://pubmed.ncbi.nlm.nih.gov/26508657 26508657]; doi: [https://dx.doi.org/10.15252/embr.201540620 10.15252/embr.201540620]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26508657 74].
 +
#Golizeh M, <i>et al.</i> (2015) &quot;Identification of Acetaminophen Adducts of Rat Liver Microsomal Proteins using 2D-LC-MS/MS.&quot; <i>Chem Res Toxicol</i> <b>28</b>(11):2142&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/26510387 26510387]; doi: [https://dx.doi.org/10.1021/acs.chemrestox.5b00317 10.1021/acs.chemrestox.5b00317]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26510387 6].
 +
#Soleilhavoup C, <i>et al.</i> (2016) &quot;Proteomes of the Female Genital Tract During the Oestrous Cycle.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(1):93&ndash;108; PMID: [https://pubmed.ncbi.nlm.nih.gov/26518761 26518761]; doi: [https://dx.doi.org/10.1074/mcp.M115.052332 10.1074/mcp.M115.052332]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26518761 198].
 +
#Sharma K, <i>et al.</i> (2015) &quot;Cell type- and brain region-resolved mouse brain proteome.&quot; <i>Nat Neurosci</i> <b>18</b>(12):1819&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26523646 26523646]; doi: [https://dx.doi.org/10.1038/nn.4160 10.1038/nn.4160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26523646 99].
 +
#Traylen C, <i>et al.</i> (2015) &quot;Identification of Epstein-Barr Virus Replication Proteins in Burkitt&#39;s Lymphoma Cells.&quot; <i>Pathogens</i> <b>4</b>(4):739&ndash;51; PMID: [https://pubmed.ncbi.nlm.nih.gov/26529022 26529022]; doi: [https://dx.doi.org/10.3390/pathogens4040739 10.3390/pathogens4040739]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26529022 1].
 +
#Parker BL, <i>et al.</i> (2016) &quot;Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(1):141&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/26537798 26537798]; doi: [https://dx.doi.org/10.1074/mcp.M115.054221 10.1074/mcp.M115.054221]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26537798 39].
 +
#Elkon R, <i>et al.</i> (2015) &quot;Myc coordinates transcription and translation to enhance transformation and suppress invasiveness.&quot; <i>EMBO Rep</i> <b>16</b>(12):1723&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/26538417 26538417]; doi: [https://dx.doi.org/10.15252/embr.201540717 10.15252/embr.201540717]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26538417 3].
 +
#Stewart PA, <i>et al.</i> (2015) &quot;A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma.&quot; <i>PLoS One</i> <b>10</b>(11):e0142162; PMID: [https://pubmed.ncbi.nlm.nih.gov/26539827 26539827]; doi: [https://dx.doi.org/10.1371/journal.pone.0142162 10.1371/journal.pone.0142162]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26539827 50].
 +
#Mitchell CJ, <i>et al.</i> (2015) &quot;A multi-omic analysis of human na&iuml;ve CD4+ T cells.&quot; <i>BMC Syst Biol</i> <b>9</b>:75; PMID: [https://pubmed.ncbi.nlm.nih.gov/26542228 26542228]; doi: [https://dx.doi.org/10.1186/s12918-015-0225-4 10.1186/s12918-015-0225-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26542228 14].
 +
#Aurass P, <i>et al.</i> (2016) &quot;Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(1):177&ndash;200; PMID: [https://pubmed.ncbi.nlm.nih.gov/26545400 26545400]; doi: [https://dx.doi.org/10.1074/mcp.M115.053579 10.1074/mcp.M115.053579]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26545400 209].
 +
#Hwang H, <i>et al.</i> (2015) &quot;Chromosome-Based Proteomic Study for Identifying Novel Protein Variants from Human Hippocampal Tissue Using Customized neXtProt and GENCODE Databases.&quot; <i>J Proteome Res</i> <b>14</b>(12):5028&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26549206 26549206]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00472 10.1021/acs.jproteome.5b00472]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26549206 1].
 +
#Bensaddek D, <i>et al.</i> (2016) &quot;Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.&quot; <i>Proteomics</i> <b>16</b>(3):381&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/26552604 26552604]; doi: [https://dx.doi.org/10.1002/pmic.201500264 10.1002/pmic.201500264]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26552604 40].
 +
#Dimayacyac-Esleta BR, <i>et al.</i> (2015) &quot;Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling.&quot; <i>Anal Chem</i> <b>87</b>(24):12016&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/26554430 26554430]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b03639 10.1021/acs.analchem.5b03639]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26554430 14].
 +
#Kito K, <i>et al.</i> (2016) &quot;Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(1):218&ndash;35; PMID: [https://pubmed.ncbi.nlm.nih.gov/26560065 26560065]; doi: [https://dx.doi.org/10.1074/mcp.M115.051854 10.1074/mcp.M115.051854]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26560065 150].
 +
#Zhao Y, <i>et al.</i> (2016) &quot;Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(1):289&ndash;304; PMID: [https://pubmed.ncbi.nlm.nih.gov/26560068 26560068]; doi: [https://dx.doi.org/10.1074/mcp.M115.054361 10.1074/mcp.M115.054361]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26560068 7].
 +
#Tutakhel OA, <i>et al.</i> (2016) &quot;Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling.&quot; <i>Am J Physiol Renal Physiol</i> <b>310</b>(3):F204&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/26561651 26561651]; doi: [https://dx.doi.org/10.1152/ajprenal.00429.2015 10.1152/ajprenal.00429.2015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26561651 2].
 +
#Slavov N, <i>et al.</i> (2015) &quot;Differential Stoichiometry among Core Ribosomal Proteins.&quot; <i>Cell Rep</i> <b>13</b>(5):865&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/26565899 26565899]; doi: [https://dx.doi.org/10.1016/j.celrep.2015.09.056 10.1016/j.celrep.2015.09.056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26565899 16].
 +
#Sun S, <i>et al.</i> (2016) &quot;Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides.&quot; <i>Nat Biotechnol</i> <b>34</b>(1):84&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/26571101 26571101]; doi: [https://dx.doi.org/10.1038/nbt.3403 10.1038/nbt.3403]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26571101 55].
 +
#Wagner SA, <i>et al.</i> (2016) &quot;ATR inhibition rewires cellular signaling networks induced by replication stress.&quot; <i>Proteomics</i> <b>16</b>(3):402&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/26572502 26572502]; doi: [https://dx.doi.org/10.1002/pmic.201500172 10.1002/pmic.201500172]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26572502 20].
 +
#Lichtman JS, <i>et al.</i> (2016) &quot;The effect of microbial colonization on the host proteome varies by gastrointestinal location.&quot; <i>ISME J</i> <b>10</b>(5):1170&ndash;81; PMID: [https://pubmed.ncbi.nlm.nih.gov/26574685 26574685]; doi: [https://dx.doi.org/10.1038/ismej.2015.187 10.1038/ismej.2015.187]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26574685 45].
 +
#Latos PA, <i>et al.</i> (2015) &quot;Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks.&quot; <i>Genes Dev</i> <b>29</b>(23):2435&ndash;48; PMID: [https://pubmed.ncbi.nlm.nih.gov/26584622 26584622]; doi: [https://dx.doi.org/10.1101/gad.268821.115 10.1101/gad.268821.115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26584622 6].
 +
#Cundiff JK, <i>et al.</i> (2016) &quot;Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins.&quot; <i>J Proteome Res</i> <b>15</b>(1):125&ndash;43; PMID: [https://pubmed.ncbi.nlm.nih.gov/26586228 26586228]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00597 10.1021/acs.jproteome.5b00597]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26586228 16].
 +
#Kudelko M, <i>et al.</i> (2016) &quot;Label-Free Quantitative Proteomics Reveals Survival Mechanisms Developed by Hypertrophic Chondrocytes under ER Stress.&quot; <i>J Proteome Res</i> <b>15</b>(1):86&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/26587667 26587667]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00537 10.1021/acs.jproteome.5b00537]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26587667 30].
 +
#Dammeier S, <i>et al.</i> (2016) &quot;Mass-Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns To Be Used as Forensic Evidence.&quot; <i>J Proteome Res</i> <b>15</b>(1):182&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/26593679 26593679]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00704 10.1021/acs.jproteome.5b00704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26593679 88].
 +
#Basak T, <i>et al.</i> (2016) &quot;Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(1):245&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/26593852 26593852]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00767 10.1021/acs.jproteome.5b00767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26593852 26].
 +
#Leiser OP, <i>et al.</i> (2015) &quot;Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach.&quot; <i>PLoS One</i> <b>10</b>(11):e0142997; PMID: [https://pubmed.ncbi.nlm.nih.gov/26599979 26599979]; doi: [https://dx.doi.org/10.1371/journal.pone.0142997 10.1371/journal.pone.0142997]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26599979 169].
 +
#Broncel M, <i>et al.</i> (2016) &quot;Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(2):715&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/26604261 26604261]; doi: [https://dx.doi.org/10.1074/mcp.O115.054429 10.1074/mcp.O115.054429]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26604261 56].
 +
#Pankow S, <i>et al.</i> (2015) &quot;&#x2206;F508 CFTR interactome remodelling promotes rescue of cystic fibrosis.&quot; <i>Nature</i> <b>528</b>(7583):510&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/26618866 26618866]; doi: [https://dx.doi.org/10.1038/nature15729 10.1038/nature15729]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26618866 56].
 +
#Kennedy JJ, <i>et al.</i> (2016) &quot;Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(2):726&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/26621847 26621847]; doi: [https://dx.doi.org/10.1074/mcp.O115.054940 10.1074/mcp.O115.054940]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26621847 114].
 +
#Urfer M, <i>et al.</i> (2016) &quot;A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.&quot; <i>J Biol Chem</i> <b>291</b>(4):1921&ndash;1932; PMID: [https://pubmed.ncbi.nlm.nih.gov/26627837 26627837]; doi: [https://dx.doi.org/10.1074/jbc.M115.691725 10.1074/jbc.M115.691725]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26627837 59].
 +
#Krogager TP, <i>et al.</i> (2015) &quot;Hepatocytes respond differently to major dietary trans fatty acid isomers, elaidic acid and trans-vaccenic acid.&quot; <i>Proteome Sci</i> <b>13</b>:31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26628894 26628894]; doi: [https://dx.doi.org/10.1186/s12953-015-0084-3 10.1186/s12953-015-0084-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26628894 95].
 +
#Xu B, <i>et al.</i> (2016) &quot;Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank.&quot; <i>Exp Gerontol</i> <b>73</b>:31&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/26631761 26631761]; doi: [https://dx.doi.org/10.1016/j.exger.2015.11.016 10.1016/j.exger.2015.11.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26631761 1].
 +
#Aguado BA, <i>et al.</i> (2015) &quot;Secretome identification of immune cell factors mediating metastatic cell homing.&quot; <i>Sci Rep</i> <b>5</b>:17566; PMID: [https://pubmed.ncbi.nlm.nih.gov/26634905 26634905]; doi: [https://dx.doi.org/10.1038/srep17566 10.1038/srep17566]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26634905 6].
 +
#Whisenant TC, <i>et al.</i> (2015) &quot;The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.&quot; <i>PLoS One</i> <b>10</b>(12):e0144409; PMID: [https://pubmed.ncbi.nlm.nih.gov/26641092 26641092]; doi: [https://dx.doi.org/10.1371/journal.pone.0144409 10.1371/journal.pone.0144409]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26641092 19].
 +
#Padden J, <i>et al.</i> (2016) &quot;Immunohistochemical Markers Distinguishing Cholangiocellular Carcinoma (CCC) from Pancreatic Ductal Adenocarcinoma (PDAC) Discovered by Proteomic Analysis of Microdissected Cells.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):1072&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/26644413 26644413]; doi: [https://dx.doi.org/10.1074/mcp.M115.054585 10.1074/mcp.M115.054585]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26644413 66].
 +
#Xu J, <i>et al.</i> (2016) &quot;Development of Online pH Gradient-Eluted Strong Cation Exchange Nanoelectrospray-Tandem Mass Spectrometry for Proteomic Analysis Facilitating Basic and Histidine-Containing Peptides Identification.&quot; <i>Anal Chem</i> <b>88</b>(1):583&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/26646553 26646553]; doi: [https://dx.doi.org/10.1021/acs.analchem.5b04000 10.1021/acs.analchem.5b04000]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26646553 6].
 +
#Iglesias-Gato D, <i>et al.</i> (2016) &quot;The Proteome of Primary Prostate Cancer.&quot; <i>Eur Urol</i> <b>69</b>(5):942&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/26651926 26651926]; doi: [https://dx.doi.org/10.1016/j.eururo.2015.10.053 10.1016/j.eururo.2015.10.053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26651926 36].
 +
#Kasvandik S, <i>et al.</i> (2016) &quot;Deep Quantitative Proteomics Reveals Extensive Metabolic Reprogramming and Cancer-Like Changes of Ectopic Endometriotic Stromal Cells.&quot; <i>J Proteome Res</i> <b>15</b>(2):572&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/26654049 26654049]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00965 10.1021/acs.jproteome.5b00965]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26654049 21].
 +
#Farina F, <i>et al.</i> (2016) &quot;The centrosome is an actin-organizing centre.&quot; <i>Nat Cell Biol</i> <b>18</b>(1):65&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/26655833 26655833]; doi: [https://dx.doi.org/10.1038/ncb3285 10.1038/ncb3285]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26655833 2].
 +
#Gigu&egrave;re SS, <i>et al.</i> (2016) &quot;The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):791&ndash;809; PMID: [https://pubmed.ncbi.nlm.nih.gov/26657080 26657080]; doi: [https://dx.doi.org/10.1074/mcp.M115.054619 10.1074/mcp.M115.054619]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26657080 109].
 +
#Su S, <i>et al.</i> (2017) &quot;Lowering Endogenous Cathepsin D Abundance Results in Reactive Oxygen Species Accumulation and Cell Senescence.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(7):1217&ndash;1232; PMID: [https://pubmed.ncbi.nlm.nih.gov/26657266 26657266]; doi: [https://dx.doi.org/10.1074/mcp.M115.050179 10.1074/mcp.M115.050179]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26657266 154].
 +
#Park JM, <i>et al.</i> (2015) &quot;Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks.&quot; <i>Sci Rep</i> <b>5</b>:18189; PMID: [https://pubmed.ncbi.nlm.nih.gov/26657352 26657352]; doi: [https://dx.doi.org/10.1038/srep18189 10.1038/srep18189]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26657352 144].
 +
#Chen M, <i>et al.</i> (2015) &quot;Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.&quot; <i>Sci Rep</i> <b>5</b>:18019; PMID: [https://pubmed.ncbi.nlm.nih.gov/26658305 26658305]; doi: [https://dx.doi.org/10.1038/srep18019 10.1038/srep18019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26658305 36].
 +
#Mizuno Y, <i>et al.</i> (2016) &quot;Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.&quot; <i>Microbiologyopen</i> <b>5</b>(1):152&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/26663479 26663479]; doi: [https://dx.doi.org/10.1002/mbo3.320 10.1002/mbo3.320]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26663479 10].
 +
#Ulaganathan VK, <i>et al.</i> (2015) &quot;Germline variant FGFR4 &thinsp;p.G388R exposes a membrane-proximal STAT3 binding site.&quot; <i>Nature</i> <b>528</b>(7583):570&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/26675719 26675719]; doi: [https://dx.doi.org/10.1038/nature16449 10.1038/nature16449]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26675719 32].
 +
#Aronica L, <i>et al.</i> (2016) &quot;The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast.&quot; <i>Nucleic Acids Res</i> <b>44</b>(4):1703&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/26682798 26682798]; doi: [https://dx.doi.org/10.1093/nar/gkv1473 10.1093/nar/gkv1473]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26682798 4].
 +
#Rudney JD, <i>et al.</i> (2015) &quot;Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries.&quot; <i>Microbiome</i> <b>3</b>:69; PMID: [https://pubmed.ncbi.nlm.nih.gov/26684897 26684897]; doi: [https://dx.doi.org/10.1186/s40168-015-0136-z 10.1186/s40168-015-0136-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26684897 24].
 +
#Debaisieux S, <i>et al.</i> (2016) &quot;Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(2):542&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/26685126 26685126]; doi: [https://dx.doi.org/10.1074/mcp.M115.051649 10.1074/mcp.M115.051649]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26685126 28].
 +
#Oberbach A, <i>et al.</i> (2016) &quot;Proteome profiles of HDL particles of patients with chronic heart failure are associated with immune response and also include bacteria proteins.&quot; <i>Clin Chim Acta</i> <b>453</b>:114&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/26688386 26688386]; doi: [https://dx.doi.org/10.1016/j.cca.2015.12.005 10.1016/j.cca.2015.12.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26688386 10].
 +
#Eitzinger N, <i>et al.</i> (2015) &quot;Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation.&quot; <i>Front Plant Sci</i> <b>6</b>:1085; PMID: [https://pubmed.ncbi.nlm.nih.gov/26697039 26697039]; doi: [https://dx.doi.org/10.3389/fpls.2015.01085 10.3389/fpls.2015.01085]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26697039 128].
 +
#Kozlov SV, <i>et al.</i> (2016) &quot;Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):1032&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/26699800 26699800]; doi: [https://dx.doi.org/10.1074/mcp.M115.055723 10.1074/mcp.M115.055723]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26699800 141].
 +
#El Ouaamari A, <i>et al.</i> (2016) &quot;SerpinB1 Promotes Pancreatic &beta; Cell Proliferation.&quot; <i>Cell Metab</i> <b>23</b>(1):194&ndash;205; PMID: [https://pubmed.ncbi.nlm.nih.gov/26701651 26701651]; doi: [https://dx.doi.org/10.1016/j.cmet.2015.12.001 10.1016/j.cmet.2015.12.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26701651 4].
 +
#Chong WM, <i>et al.</i> (2016) &quot;Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication.&quot; <i>J Biol Chem</i> <b>291</b>(8):3918&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26702051 26702051]; doi: [https://dx.doi.org/10.1074/jbc.M115.675413 10.1074/jbc.M115.675413]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26702051 27].
 +
#Lluch-Senar M, <i>et al.</i> (2016) &quot;Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome.&quot; <i>Proteomics</i> <b>16</b>(4):554&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/26702875 26702875]; doi: [https://dx.doi.org/10.1002/pmic.201500187 10.1002/pmic.201500187]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26702875 2].
 +
#Thierry E, <i>et al.</i> (2016) &quot;Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.&quot; <i>Mol Cell</i> <b>61</b>(1):125&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26711008 26711008]; doi: [https://dx.doi.org/10.1016/j.molcel.2015.11.016 10.1016/j.molcel.2015.11.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26711008 44].
 +
#Vartanian S, <i>et al.</i> (2016) &quot;Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1220&ndash;31; PMID: [https://pubmed.ncbi.nlm.nih.gov/26711467 26711467]; doi: [https://dx.doi.org/10.1074/mcp.M115.055509 10.1074/mcp.M115.055509]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26711467 4].
 +
#Bode D, <i>et al.</i> (2016) &quot;Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):878&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/26714524 26714524]; doi: [https://dx.doi.org/10.1074/mcp.M115.053207 10.1074/mcp.M115.053207]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26714524 179].
 +
#McAfee A, <i>et al.</i> (2016) &quot;Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.&quot; <i>J Proteome Res</i> <b>15</b>(2):411&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/26718741 26718741]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00589 10.1021/acs.jproteome.5b00589]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26718741 27].
 +
#Li Q, <i>et al.</i> (2016) &quot;Protein turnover during in&nbsp;vitro tissue engineering.&quot; <i>Biomaterials</i> <b>81</b>:104&ndash;113; PMID: [https://pubmed.ncbi.nlm.nih.gov/26724458 26724458]; doi: [https://dx.doi.org/10.1016/j.biomaterials.2015.12.004 10.1016/j.biomaterials.2015.12.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26724458 66].
 +
#Tyanova S, <i>et al.</i> (2016) &quot;Proteomic maps of breast cancer subtypes.&quot; <i>Nat Commun</i> <b>7</b>:10259; PMID: [https://pubmed.ncbi.nlm.nih.gov/26725330 26725330]; doi: [https://dx.doi.org/10.1038/ncomms10259 10.1038/ncomms10259]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26725330 255].
 +
#Laumont CM, <i>et al.</i> (2016) &quot;Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames.&quot; <i>Nat Commun</i> <b>7</b>:10238; PMID: [https://pubmed.ncbi.nlm.nih.gov/26728094 26728094]; doi: [https://dx.doi.org/10.1038/ncomms10238 10.1038/ncomms10238]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26728094 35].
 +
#Guo Z, <i>et al.</i> (2016) &quot;DCAF1 controls T-cell function via p53-dependent and -independent mechanisms.&quot; <i>Nat Commun</i> <b>7</b>:10307; PMID: [https://pubmed.ncbi.nlm.nih.gov/26728942 26728942]; doi: [https://dx.doi.org/10.1038/ncomms10307 10.1038/ncomms10307]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26728942 120].
 +
#Supper V, <i>et al.</i> (2016) &quot;Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.&quot; <i>J Immunol</i> <b>196</b>(3):1387&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/26729804 26729804]; doi: [https://dx.doi.org/10.4049/jimmunol.1501889 10.4049/jimmunol.1501889]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26729804 27].
 +
#Clark DJ, <i>et al.</i> (2016) &quot;Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.&quot; <i>J Proteomics</i> <b>133</b>:161&ndash;169; PMID: [https://pubmed.ncbi.nlm.nih.gov/26739763 26739763]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.12.023 10.1016/j.jprot.2015.12.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26739763 3].
 +
#Walton A, <i>et al.</i> (2016) &quot;It&#39;s Time for Some &quot;Site&quot;-Seeing: Novel Tools to Monitor the Ubiquitin Landscape in Arabidopsis thaliana.&quot; <i>Plant Cell</i> <b>28</b>(1):6&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/26744219 26744219]; doi: [https://dx.doi.org/10.1105/tpc.15.00878 10.1105/tpc.15.00878]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26744219 110].
 +
#Wandinger SK, <i>et al.</i> (2016) &quot;Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling.&quot; <i>PLoS One</i> <b>11</b>(1):e0146100; PMID: [https://pubmed.ncbi.nlm.nih.gov/26745281 26745281]; doi: [https://dx.doi.org/10.1371/journal.pone.0146100 10.1371/journal.pone.0146100]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26745281 72].
 +
#Finne K, <i>et al.</i> (2016) &quot;Proteomic Analysis of Minimally Damaged Renal Tubular Tissue from Two-Kidney-One-Clip Hypertensive Rats Demonstrates Extensive Changes Compared to Tissue from Controls.&quot; <i>Nephron</i> <b>132</b>(1):70&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/26745798 26745798]; doi: [https://dx.doi.org/10.1159/000442825 10.1159/000442825]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26745798 10].
 +
#Christoforou A, <i>et al.</i> (2016) &quot;A draft map of the mouse pluripotent stem cell spatial proteome.&quot; <i>Nat Commun</i> <b>7</b>:8992; PMID: [https://pubmed.ncbi.nlm.nih.gov/26754106 26754106]; doi: [https://dx.doi.org/10.1038/ncomms9992 10.1038/ncomms9992]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26754106 2].
 +
#Jin J, <i>et al.</i> (2016) &quot;Mutational Analysis of Glycogen Synthase Kinase 3&beta; Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90.&quot; <i>Mol Cell Biol</i> <b>36</b>(6):1007&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/26755559 26755559]; doi: [https://dx.doi.org/10.1128/MCB.01045-15 10.1128/MCB.01045-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26755559 17].
 +
#So EC, <i>et al.</i> (2016) &quot;The Rab-binding Profiles of Bacterial Virulence Factors during Infection.&quot; <i>J Biol Chem</i> <b>291</b>(11):5832&ndash;5843; PMID: [https://pubmed.ncbi.nlm.nih.gov/26755725 26755725]; doi: [https://dx.doi.org/10.1074/jbc.M115.700930 10.1074/jbc.M115.700930]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26755725 60].
 +
#Geddes JM, <i>et al.</i> (2016) &quot;Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation.&quot; <i>mBio</i> <b>7</b>(1):e01862&ndash;15; PMID: [https://pubmed.ncbi.nlm.nih.gov/26758180 26758180]; doi: [https://dx.doi.org/10.1128/mBio.01862-15 10.1128/mBio.01862-15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26758180 133].
 +
#Uren PJ, <i>et al.</i> (2016) &quot;High-throughput analyses of hnRNP H1 dissects its multi-functional aspect.&quot; <i>RNA Biol</i> <b>13</b>(4):400&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/26760575 26760575]; doi: [https://dx.doi.org/10.1080/15476286.2015.1138030 10.1080/15476286.2015.1138030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26760575 32].
 +
#Neubert P, <i>et al.</i> (2016) &quot;Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1323&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26764011 26764011]; doi: [https://dx.doi.org/10.1074/mcp.M115.057505 10.1074/mcp.M115.057505]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26764011 6].
 +
#K&uuml;mper S, <i>et al.</i> (2016) &quot;Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.&quot; <i>Elife</i> <b>5</b>:e12994; PMID: [https://pubmed.ncbi.nlm.nih.gov/26765561 26765561]; doi: [https://dx.doi.org/10.7554/eLife.12203 10.7554/eLife.12203]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26765561 28].
 +
#Ma Y, <i>et al.</i> (2016) &quot;Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue.&quot; <i>J Proteome Res</i> <b>15</b>(2):628&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/26767403 26767403]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b01030 10.1021/acs.jproteome.5b01030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26767403 12].
 +
#Mithoe SC, <i>et al.</i> (2016) &quot;Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase.&quot; <i>EMBO Rep</i> <b>17</b>(3):441&ndash;54; PMID: [https://pubmed.ncbi.nlm.nih.gov/26769563 26769563]; doi: [https://dx.doi.org/10.15252/embr.201540806 10.15252/embr.201540806]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26769563 64].
 +
#Kwiatkowski M, <i>et al.</i> (2016) &quot;Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization.&quot; <i>J Proteomics</i> <b>134</b>:193&ndash;202; PMID: [https://pubmed.ncbi.nlm.nih.gov/26778141 26778141]; doi: [https://dx.doi.org/10.1016/j.jprot.2015.12.029 10.1016/j.jprot.2015.12.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26778141 372].
 +
#Peleg S, <i>et al.</i> (2016) &quot;Life span extension by targeting a link between metabolism and histone acetylation in Drosophila.&quot; <i>EMBO Rep</i> <b>17</b>(3):455&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/26781291 26781291]; doi: [https://dx.doi.org/10.15252/embr.201541132 10.15252/embr.201541132]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26781291 20].
 +
#Kollipara L, <i>et al.</i> (2016) &quot;Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies.&quot; <i>J Proteome Res</i> <b>15</b>(3):945&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/26781476 26781476]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00972 10.1021/acs.jproteome.5b00972]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26781476 1].
 +
#Fang Y, <i>et al.</i> (2016) &quot;Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells.&quot; <i>Int J Oncol</i> <b>48</b>(3):1016&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/26783066 26783066]; doi: [https://dx.doi.org/10.3892/ijo.2016.3327 10.3892/ijo.2016.3327]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26783066 2].
 +
#Cheng Z, <i>et al.</i> (2016) &quot;Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress.&quot; <i>Mol Syst Biol</i> <b>12</b>(1):855; PMID: [https://pubmed.ncbi.nlm.nih.gov/26792871 26792871]; doi: [https://dx.doi.org/10.15252/msb.20156423 10.15252/msb.20156423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26792871 138].
 +
#Vincent D, <i>et al.</i> (2015) &quot;Milk Bottom-Up Proteomics: Method Optimization.&quot; <i>Front Genet</i> <b>6</b>:360; PMID: [https://pubmed.ncbi.nlm.nih.gov/26793233 26793233]; doi: [https://dx.doi.org/10.3389/fgene.2015.00360 10.3389/fgene.2015.00360]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26793233 262].
 +
#Li Q, <i>et al.</i> (2016) &quot;The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription.&quot; <i>J Biol Chem</i> <b>291</b>(13):7171&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/26797124 26797124]; doi: [https://dx.doi.org/10.1074/jbc.M116.714857 10.1074/jbc.M116.714857]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26797124 10].
 +
#Sch&uuml;ller R, <i>et al.</i> (2016) &quot;Heptad-Specific Phosphorylation of RNA Polymerase II CTD.&quot; <i>Mol Cell</i> <b>61</b>(2):305&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/26799765 26799765]; doi: [https://dx.doi.org/10.1016/j.molcel.2015.12.003 10.1016/j.molcel.2015.12.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26799765 209].
 +
#Wojtuszkiewicz A, <i>et al.</i> (2016) &quot;Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1281&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/26801919 26801919]; doi: [https://dx.doi.org/10.1074/mcp.M115.052944 10.1074/mcp.M115.052944]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26801919 271].
 +
#Serra A, <i>et al.</i> (2016) &quot;Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.&quot; <i>Anal Bioanal Chem</i> <b>408</b>(7):1963&ndash;73; PMID: [https://pubmed.ncbi.nlm.nih.gov/26804737 26804737]; doi: [https://dx.doi.org/10.1007/s00216-016-9312-7 10.1007/s00216-016-9312-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26804737 40].
 +
#Woodford MR, <i>et al.</i> (2016) &quot;Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors.&quot; <i>Cell Rep</i> <b>14</b>(4):872&ndash;884; PMID: [https://pubmed.ncbi.nlm.nih.gov/26804907 26804907]; doi: [https://dx.doi.org/10.1016/j.celrep.2015.12.084 10.1016/j.celrep.2015.12.084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26804907 12].
 +
#V&ouml;lker-Albert MC, <i>et al.</i> (2016) &quot;A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):945&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/26811354 26811354]; doi: [https://dx.doi.org/10.1074/mcp.M115.053553 10.1074/mcp.M115.053553]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26811354 12].
 +
#da Silva BF, <i>et al.</i> (2016) &quot;Towards Understanding Male Infertility After Spinal Cord Injury Using Quantitative Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1424&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/26814186 26814186]; doi: [https://dx.doi.org/10.1074/mcp.M115.052175 10.1074/mcp.M115.052175]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26814186 504].
 +
#Coman C, <i>et al.</i> (2016) &quot;Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1453&ndash;66; PMID: [https://pubmed.ncbi.nlm.nih.gov/26814187 26814187]; doi: [https://dx.doi.org/10.1074/mcp.M115.053702 10.1074/mcp.M115.053702]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26814187 68].
 +
#Bigaud E, <i>et al.</i> (2016) &quot;Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1498&ndash;510; PMID: [https://pubmed.ncbi.nlm.nih.gov/26819315 26819315]; doi: [https://dx.doi.org/10.1074/mcp.M115.055772 10.1074/mcp.M115.055772]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26819315 3].
 +
#Aubert G, <i>et al.</i> (2016) &quot;The Failing Heart Relies on Ketone Bodies as a Fuel.&quot; <i>Circulation</i> <b>133</b>(8):698&ndash;705; PMID: [https://pubmed.ncbi.nlm.nih.gov/26819376 26819376]; doi: [https://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355 10.1161/CIRCULATIONAHA.115.017355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26819376 115].
 +
#Kristensen TN, <i>et al.</i> (2016) &quot;Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation.&quot; <i>J Exp Biol</i> <b>219</b>(Pt 7):969&ndash;76; PMID: [https://pubmed.ncbi.nlm.nih.gov/26823104 26823104]; doi: [https://dx.doi.org/10.1242/jeb.132696 10.1242/jeb.132696]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26823104 9].
 +
#Steger M, <i>et al.</i> (2016) &quot;Phosphoproteomics reveals that Parkinson&#39;s disease kinase LRRK2 regulates a subset of Rab GTPases.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/26824392 26824392]; doi: [https://dx.doi.org/10.7554/eLife.12813 10.7554/eLife.12813]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26824392 216].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2016) &quot;In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.&quot; <i>J Proteomics</i> <b>136</b>:234&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/26825538 26825538]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.01.016 10.1016/j.jprot.2016.01.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26825538 122].
 +
#Lichtman JS, <i>et al.</i> (2016) &quot;Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases.&quot; <i>Cell Rep</i> <b>14</b>(5):1049&ndash;1061; PMID: [https://pubmed.ncbi.nlm.nih.gov/26832403 26832403]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.01.009 10.1016/j.celrep.2016.01.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26832403 486].
 +
#Lechman ER, <i>et al.</i> (2016) &quot;miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells.&quot; <i>Cancer Cell</i> <b>29</b>(2):214&ndash;28; PMID: [https://pubmed.ncbi.nlm.nih.gov/26832662 26832662]; doi: [https://dx.doi.org/10.1016/j.ccell.2015.12.011 10.1016/j.ccell.2015.12.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26832662 72].
 +
#Horton ER, <i>et al.</i> (2016) &quot;Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition.&quot; <i>J Cell Biol</i> <b>212</b>(3):349&ndash;64; PMID: [https://pubmed.ncbi.nlm.nih.gov/26833789 26833789]; doi: [https://dx.doi.org/10.1083/jcb.201508080 10.1083/jcb.201508080]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26833789 9].
 +
#Zhang P, <i>et al.</i> (2016) &quot;Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid.&quot; <i>Proteomics</i> <b>16</b>(7):1146&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/26834087 26834087]; doi: [https://dx.doi.org/10.1002/pmic.201500188 10.1002/pmic.201500188]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26834087 180].
 +
#Long B, <i>et al.</i> (2016) &quot;Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid &beta;-oxidation pathway in HepG2 cells.&quot; <i>Amino Acids</i> <b>48</b>(5):1297&ndash;307; PMID: [https://pubmed.ncbi.nlm.nih.gov/26837383 26837383]; doi: [https://dx.doi.org/10.1007/s00726-016-2182-7 10.1007/s00726-016-2182-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26837383 1].
 +
#Iwamoto N, <i>et al.</i> (2016) &quot;Context-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation.&quot; <i>Sci Signal</i> <b>9</b>(413):ra13; PMID: [https://pubmed.ncbi.nlm.nih.gov/26838549 26838549]; doi: [https://dx.doi.org/10.1126/scisignal.aab1967 10.1126/scisignal.aab1967]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26838549 66].
 +
#Tong M, <i>et al.</i> (2016) &quot;Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.&quot; <i>Hum Reprod</i> <b>31</b>(4):687&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/26839151 26839151]; doi: [https://dx.doi.org/10.1093/humrep/dew004 10.1093/humrep/dew004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26839151 3].
 +
#Huang H, <i>et al.</i> (2016) &quot;PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis.&quot; <i>Elife</i> <b>5</b>:e13292; PMID: [https://pubmed.ncbi.nlm.nih.gov/26839287 26839287]; doi: [https://dx.doi.org/10.7554/eLife.13292 10.7554/eLife.13292]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26839287 9].
 +
#Thorpe CT, <i>et al.</i> (2016) &quot;Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition.&quot; <i>Sci Rep</i> <b>6</b>:20455; PMID: [https://pubmed.ncbi.nlm.nih.gov/26842662 26842662]; doi: [https://dx.doi.org/10.1038/srep20455 10.1038/srep20455]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26842662 20].
 +
#Chidiac R, <i>et al.</i> (2016) &quot;Comparative Phosphoproteomics Analysis of VEGF and Angiopoietin-1 Signaling Reveals ZO-1 as a Critical Regulator of Endothelial Cell Proliferation.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1511&ndash;25; PMID: [https://pubmed.ncbi.nlm.nih.gov/26846344 26846344]; doi: [https://dx.doi.org/10.1074/mcp.M115.053298 10.1074/mcp.M115.053298]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26846344 13].
 +
#Meierhofer D, <i>et al.</i> (2016) &quot;Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1728&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/26850065 26850065]; doi: [https://dx.doi.org/10.1074/mcp.M115.056770 10.1074/mcp.M115.056770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26850065 48].
 +
#Aretz I, <i>et al.</i> (2016) &quot;An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1526&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/26852163 26852163]; doi: [https://dx.doi.org/10.1074/mcp.M115.053181 10.1074/mcp.M115.053181]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26852163 60].
 +
#Peffers MJ, <i>et al.</i> (2016) &quot;Age-related changes in mesenchymal stem cells identified using a multi-omics approach.&quot; <i>Eur Cell Mater</i> <b>31</b>:136&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/26853623 26853623]; doi: [https://dx.doi.org/10.22203/ecm.v031a10 10.22203/ecm.v031a10]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26853623 8].
 +
#Billing AM, <i>et al.</i> (2016) &quot;Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.&quot; <i>Sci Rep</i> <b>6</b>:21507; PMID: [https://pubmed.ncbi.nlm.nih.gov/26857143 26857143]; doi: [https://dx.doi.org/10.1038/srep21507 10.1038/srep21507]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26857143 9].
 +
#Kowal J, <i>et al.</i> (2016) &quot;Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.&quot; <i>Proc Natl Acad Sci U S A</i> <b>113</b>(8):E968&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/26858453 26858453]; doi: [https://dx.doi.org/10.1073/pnas.1521230113 10.1073/pnas.1521230113]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26858453 56].
 +
#Locard-Paulet M, <i>et al.</i> (2016) &quot;Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration.&quot; <i>Sci Signal</i> <b>9</b>(414):ra15; PMID: [https://pubmed.ncbi.nlm.nih.gov/26861043 26861043]; doi: [https://dx.doi.org/10.1126/scisignal.aac5820 10.1126/scisignal.aac5820]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26861043 76].
 +
#Prior KK, <i>et al.</i> (2016) &quot;The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein.&quot; <i>J Biol Chem</i> <b>291</b>(13):7045&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/26861875 26861875]; doi: [https://dx.doi.org/10.1074/jbc.M115.710772 10.1074/jbc.M115.710772]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26861875 120].
 +
#Ramus C, <i>et al.</i> (2016) &quot;Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods.&quot; <i>Data Brief</i> <b>6</b>:286&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/26862574 26862574]; doi: [https://dx.doi.org/10.1016/j.dib.2015.11.063 10.1016/j.dib.2015.11.063]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26862574 27].
 +
#Sahebekhtiari N, <i>et al.</i> (2016) &quot;Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency.&quot; <i>Proteomics</i> <b>16</b>(7):1166&ndash;76; PMID: [https://pubmed.ncbi.nlm.nih.gov/26867521 26867521]; doi: [https://dx.doi.org/10.1002/pmic.201500336 10.1002/pmic.201500336]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26867521 50].
 +
#Lamberti Y, <i>et al.</i> (2016) &quot;Proteome analysis of Bordetella pertussis isolated from human macrophages.&quot; <i>J Proteomics</i> <b>136</b>:55&ndash;67; PMID: [https://pubmed.ncbi.nlm.nih.gov/26873878 26873878]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.02.002 10.1016/j.jprot.2016.02.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26873878 9].
 +
#Schneider RK, <i>et al.</i> (2016) &quot;Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9.&quot; <i>Nat Med</i> <b>22</b>(3):288&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/26878232 26878232]; doi: [https://dx.doi.org/10.1038/nm.4047 10.1038/nm.4047]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26878232 1].
 +
#Kn&ouml;ppel A, <i>et al.</i> (2016) &quot;Compensating the Fitness Costs of Synonymous Mutations.&quot; <i>Mol Biol Evol</i> <b>33</b>(6):1461&ndash;77; PMID: [https://pubmed.ncbi.nlm.nih.gov/26882986 26882986]; doi: [https://dx.doi.org/10.1093/molbev/msw028 10.1093/molbev/msw028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26882986 72].
 +
#Creedon H, <i>et al.</i> (2016) &quot;Identification of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy.&quot; <i>Oncotarget</i> <b>7</b>(10):11539&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/26883193 26883193]; doi: [https://dx.doi.org/10.18632/oncotarget.7317 10.18632/oncotarget.7317]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26883193 6].
 +
#Zufferey A, <i>et al.</i> (2016) &quot;New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.&quot; <i>Hum Genet</i> <b>135</b>(4):403&ndash;414; PMID: [https://pubmed.ncbi.nlm.nih.gov/26883867 26883867]; doi: [https://dx.doi.org/10.1007/s00439-016-1642-1 10.1007/s00439-016-1642-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26883867 13].
 +
#Huebner AR, <i>et al.</i> (2016) &quot;Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1556&ndash;71; PMID: [https://pubmed.ncbi.nlm.nih.gov/26884507 26884507]; doi: [https://dx.doi.org/10.1074/mcp.M115.054965 10.1074/mcp.M115.054965]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26884507 64].
 +
#Ramallo Guevara C, <i>et al.</i> (2016) &quot;Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1692&ndash;709; PMID: [https://pubmed.ncbi.nlm.nih.gov/26884511 26884511]; doi: [https://dx.doi.org/10.1074/mcp.M115.055616 10.1074/mcp.M115.055616]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26884511 17].
 +
#Lee HL, <i>et al.</i> (2016) &quot;Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1572&ndash;83; PMID: [https://pubmed.ncbi.nlm.nih.gov/26889046 26889046]; doi: [https://dx.doi.org/10.1074/mcp.M115.053603 10.1074/mcp.M115.053603]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26889046 4].
 +
#Hiramatsu K, <i>et al.</i> (2016) &quot;Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.&quot; <i>Br J Cancer</i> <b>114</b>(5):554&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/26889980 26889980]; doi: [https://dx.doi.org/10.1038/bjc.2016.27 10.1038/bjc.2016.27]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26889980 6].
 +
#Adav SS, <i>et al.</i> (2016) &quot;Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues.&quot; <i>Mol Brain</i> <b>9</b>:20; PMID: [https://pubmed.ncbi.nlm.nih.gov/26892330 26892330]; doi: [https://dx.doi.org/10.1186/s13041-016-0200-z 10.1186/s13041-016-0200-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26892330 4].
 +
#Sieber J, <i>et al.</i> (2016) &quot;Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1584&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/26896796 26896796]; doi: [https://dx.doi.org/10.1074/mcp.M115.054056 10.1074/mcp.M115.054056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26896796 4].
 +
#Zilkenat S, <i>et al.</i> (2016) &quot;Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1598&ndash;609; PMID: [https://pubmed.ncbi.nlm.nih.gov/26900162 26900162]; doi: [https://dx.doi.org/10.1074/mcp.M115.056598 10.1074/mcp.M115.056598]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26900162 18].
 +
#Zhao L, <i>et al.</i> (2016) &quot;Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes.&quot; <i>Genome Res</i> <b>26</b>(5):660&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26912414 26912414]; doi: [https://dx.doi.org/10.1101/gr.198911.115 10.1101/gr.198911.115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26912414 26].
 +
#Abelin JG, <i>et al.</i> (2016) &quot;Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1622&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/26912667 26912667]; doi: [https://dx.doi.org/10.1074/mcp.M116.058354 10.1074/mcp.M116.058354]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26912667 4].
 +
#Chen JX, <i>et al.</i> (2016) &quot;In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1642&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/26912668 26912668]; doi: [https://dx.doi.org/10.1074/mcp.M115.053975 10.1074/mcp.M115.053975]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26912668 66].
 +
#Mostafa I, <i>et al.</i> (2016) &quot;New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants.&quot; <i>J Proteomics</i> <b>138</b>:1&ndash;19; PMID: [https://pubmed.ncbi.nlm.nih.gov/26915584 26915584]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.02.012 10.1016/j.jprot.2016.02.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26915584 24].
 +
#Xu B, <i>et al.</i> (2016) &quot;Quantitative protein profiling of hippocampus during human aging.&quot; <i>Neurobiol Aging</i> <b>39</b>:46&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/26923401 26923401]; doi: [https://dx.doi.org/10.1016/j.neurobiolaging.2015.11.029 10.1016/j.neurobiolaging.2015.11.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26923401 20].
 +
#Reddy RJ, <i>et al.</i> (2016) &quot;Early signaling dynamics of the epidermal growth factor receptor.&quot; <i>Proc Natl Acad Sci U S A</i> <b>113</b>(11):3114&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26929352 26929352]; doi: [https://dx.doi.org/10.1073/pnas.1521288113 10.1073/pnas.1521288113]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26929352 30].
 +
#Bigenzahn JW, <i>et al.</i> (2016) &quot;An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(3):1139&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/26933192 26933192]; doi: [https://dx.doi.org/10.1074/mcp.o115.055350 10.1074/mcp.o115.055350]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26933192 16].
 +
#Oh DY, <i>et al.</i> (2016) &quot;Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):1877&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/26933193 26933193]; doi: [https://dx.doi.org/10.1074/mcp.M115.055541 10.1074/mcp.M115.055541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26933193 86].
 +
#de Torre-Minguela C, <i>et al.</i> (2016) &quot;Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process.&quot; <i>Sci Rep</i> <b>6</b>:22586; PMID: [https://pubmed.ncbi.nlm.nih.gov/26935289 26935289]; doi: [https://dx.doi.org/10.1038/srep22586 10.1038/srep22586]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26935289 118].
 +
#Ly A, <i>et al.</i> (2016) &quot;Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the rd10 Mouse Model.&quot; <i>J Proteome Res</i> <b>15</b>(4):1350&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/26939627 26939627]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00111 10.1021/acs.jproteome.6b00111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26939627 24].
 +
#Salih M, <i>et al.</i> (2016) &quot;Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease.&quot; <i>J Am Soc Nephrol</i> <b>27</b>(10):3079&ndash;3092; PMID: [https://pubmed.ncbi.nlm.nih.gov/26940098 26940098]; doi: [https://dx.doi.org/10.1681/ASN.2015090994 10.1681/ASN.2015090994]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26940098 7].
 +
#Kamkina P, <i>et al.</i> (2016) &quot;Natural Genetic Variation Differentially Affects the Proteome and Transcriptome in Caenorhabditis elegans.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1670&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/26944343 26944343]; doi: [https://dx.doi.org/10.1074/mcp.M115.052548 10.1074/mcp.M115.052548]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26944343 12].
 +
#Zhang T, <i>et al.</i> (2016) &quot;Global Analysis of Cellular Protein Flux Quantifies the Selectivity of Basal Autophagy.&quot; <i>Cell Rep</i> <b>14</b>(10):2426&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/26947064 26947064]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.02.040 10.1016/j.celrep.2016.02.040]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26947064 13].
 +
#Xin L, <i>et al.</i> (2016) &quot;Proteomics study reveals that the dysregulation of focal adhesion and ribosome contribute to early pregnancy loss.&quot; <i>Proteomics Clin Appl</i> <b>10</b>(5):554&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/26947931 26947931]; doi: [https://dx.doi.org/10.1002/prca.201500136 10.1002/prca.201500136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26947931 1].
 +
#Adewole OO, <i>et al.</i> (2016) &quot;Proteomic profiling of eccrine sweat reveals its potential as a diagnostic biofluid for active tuberculosis.&quot; <i>Proteomics Clin Appl</i> <b>10</b>(5):547&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/26948146 26948146]; doi: [https://dx.doi.org/10.1002/prca.201500071 10.1002/prca.201500071]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26948146 10].
 +
#Lai ZW, <i>et al.</i> (2016) &quot;Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses.&quot; <i>BMC Cancer</i> <b>16</b>:195; PMID: [https://pubmed.ncbi.nlm.nih.gov/26951071 26951071]; doi: [https://dx.doi.org/10.1186/s12885-016-2193-5 10.1186/s12885-016-2193-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26951071 5].
 +
#De Marchi T, <i>et al.</i> (2016) &quot;Targeted MS Assay Predicting Tamoxifen Resistance in Estrogen-Receptor-Positive Breast Cancer Tissues and Sera.&quot; <i>J Proteome Res</i> <b>15</b>(4):1230&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/26958999 26958999]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b01119 10.1021/acs.jproteome.5b01119]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26958999 78].
 +
#Jo DH, <i>et al.</i> (2016) &quot;Quantitative Proteomics Reveals &beta;2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(5):1681&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/26969716 26969716]; doi: [https://dx.doi.org/10.1074/mcp.M115.053249 10.1074/mcp.M115.053249]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26969716 72].
 +
#Lau E, <i>et al.</i> (2016) &quot;A large dataset of protein dynamics in the mammalian heart proteome.&quot; <i>Sci Data</i> <b>3</b>:160015; PMID: [https://pubmed.ncbi.nlm.nih.gov/26977904 26977904]; doi: [https://dx.doi.org/10.1038/sdata.2016.15 10.1038/sdata.2016.15]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26977904 257].
 +
#Gallart-Palau X, <i>et al.</i> (2016) &quot;Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer&#39;s disease with cerebrovascular disease.&quot; <i>Mol Brain</i> <b>9</b>:27; PMID: [https://pubmed.ncbi.nlm.nih.gov/26983404 26983404]; doi: [https://dx.doi.org/10.1186/s13041-016-0205-7 10.1186/s13041-016-0205-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26983404 10].
 +
#Bonn F, <i>et al.</i> (2016) &quot;Global analysis of the impact of linezolid onto virulence factor production in S. aureus USA300.&quot; <i>Int J Med Microbiol</i> <b>306</b>(3):131&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/26996810 26996810]; doi: [https://dx.doi.org/10.1016/j.ijmm.2016.02.004 10.1016/j.ijmm.2016.02.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/26996810 300].
 +
#He JJ, <i>et al.</i> (2016) &quot;Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.&quot; <i>PLoS One</i> <b>11</b>(3):e0152022; PMID: [https://pubmed.ncbi.nlm.nih.gov/27003162 27003162]; doi: [https://dx.doi.org/10.1371/journal.pone.0152022 10.1371/journal.pone.0152022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27003162 1].
 +
#Li&ntilde;eiro E, <i>et al.</i> (2016) &quot;Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors.&quot; <i>J Proteomics</i> <b>139</b>:84&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/27003611 27003611]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.03.019 10.1016/j.jprot.2016.03.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27003611 8].
 +
#Wilkerson EM, <i>et al.</i> (2016) &quot;The Peripheral Blood Eosinophil Proteome.&quot; <i>J Proteome Res</i> <b>15</b>(5):1524&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/27005946 27005946]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00006 10.1021/acs.jproteome.6b00006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27005946 45].
 +
#Wilson MC, <i>et al.</i> (2016) &quot;Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):1938&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/27006477 27006477]; doi: [https://dx.doi.org/10.1074/mcp.M115.057315 10.1074/mcp.M115.057315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27006477 2].
 +
#Sunitha B, <i>et al.</i> (2016) &quot;Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.&quot; <i>J Neurochem</i> <b>138</b>(1):174&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/27015874 27015874]; doi: [https://dx.doi.org/10.1111/jnc.13626 10.1111/jnc.13626]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27015874 1].
 +
#Huang D, <i>et al.</i> (2016) &quot;DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae.&quot; <i>Genetics</i> <b>203</b>(1):353&ndash;68; PMID: [https://pubmed.ncbi.nlm.nih.gov/27017623 27017623]; doi: [https://dx.doi.org/10.1534/genetics.115.185231 10.1534/genetics.115.185231]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27017623 4].
 +
#Lawrence RT, <i>et al.</i> (2016) &quot;Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry.&quot; <i>Nat Methods</i> <b>13</b>(5):431&ndash;4; PMID: [https://pubmed.ncbi.nlm.nih.gov/27018578 27018578]; doi: [https://dx.doi.org/10.1038/nmeth.3811 10.1038/nmeth.3811]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27018578 6].
 +
#Slany A, <i>et al.</i> (2016) &quot;Contribution of Human Fibroblasts and Endothelial Cells to the Hallmarks of Inflammation as Determined by Proteome Profiling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):1982&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/27025457 27025457]; doi: [https://dx.doi.org/10.1074/mcp.M116.058099 10.1074/mcp.M116.058099]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27025457 104].
 +
#Osinalde N, <i>et al.</i> (2016) &quot;Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes.&quot; <i>Sci Rep</i> <b>6</b>:23530; PMID: [https://pubmed.ncbi.nlm.nih.gov/27025927 27025927]; doi: [https://dx.doi.org/10.1038/srep23530 10.1038/srep23530]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27025927 22].
 +
#Xu G, <i>et al.</i> (2016) &quot;Vulnerability of newly synthesized proteins to proteostasis stress.&quot; <i>J Cell Sci</i> <b>129</b>(9):1892&ndash;901; PMID: [https://pubmed.ncbi.nlm.nih.gov/27026526 27026526]; doi: [https://dx.doi.org/10.1242/jcs.176479 10.1242/jcs.176479]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27026526 55].
 +
#Lo Sasso G, <i>et al.</i> (2016) &quot;Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis.&quot; <i>Inhal Toxicol</i> <b>28</b>(5):226&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/27027324 27027324]; doi: [https://dx.doi.org/10.3109/08958378.2016.1150368 10.3109/08958378.2016.1150368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27027324 80].
 +
#Chen Z, <i>et al.</i> (2016) &quot;Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(4):1299&ndash;308; PMID: [https://pubmed.ncbi.nlm.nih.gov/27037360 27037360]; doi: [https://dx.doi.org/10.1074/mcp.M115.056093  10.1074/mcp.M115.056093 ]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27037360 22].
 +
#Goldman-Pinkovich A, <i>et al.</i> (2016) &quot;An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.&quot; <i>PLoS Pathog</i> <b>12</b>(4):e1005494; PMID: [https://pubmed.ncbi.nlm.nih.gov/27043018 27043018]; doi: [https://dx.doi.org/10.1371/journal.ppat.1005494 10.1371/journal.ppat.1005494]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27043018 8].
 +
#Salvetti A, <i>et al.</i> (2016) &quot;Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches.&quot; <i>J Proteome Res</i> <b>15</b>(5):1659&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/27049334 27049334]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00126 10.1021/acs.jproteome.6b00126]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27049334 7].
 +
#Zhou S, <i>et al.</i> (2016) &quot;Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment.&quot; <i>J Proteome Res</i> <b>15</b>(5):1670&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/27052409 27052409]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00128 10.1021/acs.jproteome.6b00128]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27052409 68].
 +
#Slomnicki LP, <i>et al.</i> (2016) &quot;Nucleolar Enrichment of Brain Proteins with Critical Roles in Human Neurodevelopment.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2055&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/27053602 27053602]; doi: [https://dx.doi.org/10.1074/mcp.M115.051920 10.1074/mcp.M115.051920]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27053602 18].
 +
#Packialakshmi B, <i>et al.</i> (2016) &quot;Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides.&quot; <i>Proteomics Insights</i> <b>7</b>:1&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/27053921 27053921]; doi: [https://dx.doi.org/10.4137/PRI.S31609 10.4137/PRI.S31609]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27053921 6].
 +
#Liberton M, <i>et al.</i> (2016) &quot;Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2021&ndash;32; PMID: [https://pubmed.ncbi.nlm.nih.gov/27056914 27056914]; doi: [https://dx.doi.org/10.1074/mcp.M115.057240 10.1074/mcp.M115.057240]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27056914 2].
 +
#K&auml;hne T, <i>et al.</i> (2016) &quot;Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain.&quot; <i>J Neurochem</i> <b>138</b>(1):124&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/27062398 27062398]; doi: [https://dx.doi.org/10.1111/jnc.13636 10.1111/jnc.13636]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27062398 15].
 +
#Litholdo CG Jr, <i>et al.</i> (2016) &quot;Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2033&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/27067051 27067051]; doi: [https://dx.doi.org/10.1074/mcp.M115.053124 10.1074/mcp.M115.053124]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27067051 21].
 +
#Hoernstein SN, <i>et al.</i> (2016) &quot;Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):1808&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/27067052 27067052]; doi: [https://dx.doi.org/10.1074/mcp.M115.057190 10.1074/mcp.M115.057190]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27067052 134].
 +
#Drabovich AP, <i>et al.</i> (2016) &quot;Dynamics of Protein Expression Reveals Primary Targets and Secondary Messengers of Estrogen Receptor Alpha Signaling in MCF-7 Breast Cancer Cells.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2093&ndash;107; PMID: [https://pubmed.ncbi.nlm.nih.gov/27067054 27067054]; doi: [https://dx.doi.org/10.1074/mcp.M115.057257 10.1074/mcp.M115.057257]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27067054 12].
 +
#Osinalde N, <i>et al.</i> (2016) &quot;Nuclear Phosphoproteomic Screen Uncovers ACLY as Mediator of IL-2-induced Proliferation of CD4+ T lymphocytes.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2076&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/27067055 27067055]; doi: [https://dx.doi.org/10.1074/mcp.M115.057158 10.1074/mcp.M115.057158]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27067055 19].
 +
#Xu B, <i>et al.</i> (2016) &quot;Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury.&quot; <i>Brain Res</i> <b>1642</b>:344&ndash;352; PMID: [https://pubmed.ncbi.nlm.nih.gov/27067185 27067185]; doi: [https://dx.doi.org/10.1016/j.brainres.2016.04.008 10.1016/j.brainres.2016.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27067185 20].
 +
#Rider MA, <i>et al.</i> (2016) &quot;ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles.&quot; <i>Sci Rep</i> <b>6</b>:23978; PMID: [https://pubmed.ncbi.nlm.nih.gov/27068479 27068479]; doi: [https://dx.doi.org/10.1038/srep23978 10.1038/srep23978]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27068479 3].
 +
#Barallobre-Barreiro J, <i>et al.</i> (2016) &quot;Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins.&quot; <i>Cardiovasc Res</i> <b>110</b>(3):419&ndash;30; PMID: [https://pubmed.ncbi.nlm.nih.gov/27068509 27068509]; doi: [https://dx.doi.org/10.1093/cvr/cvw075 10.1093/cvr/cvw075]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27068509 12].
 +
#Sarhan AR, <i>et al.</i> (2016) &quot;Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):1823&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/27074791 27074791]; doi: [https://dx.doi.org/10.1074/mcp.M115.053652 10.1074/mcp.M115.053652]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27074791 17].
 +
#Lochmatter C, <i>et al.</i> (2016) &quot;Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes.&quot; <i>Sci Rep</i> <b>6</b>:24491; PMID: [https://pubmed.ncbi.nlm.nih.gov/27080861 27080861]; doi: [https://dx.doi.org/10.1038/srep24491 10.1038/srep24491]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27080861 7].
 +
#Arts IS, <i>et al.</i> (2016) &quot;Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(6):2125&ndash;40; PMID: [https://pubmed.ncbi.nlm.nih.gov/27081212 27081212]; doi: [https://dx.doi.org/10.1074/mcp.M115.056440 10.1074/mcp.M115.056440]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27081212 103].
 +
#Tape CJ, <i>et al.</i> (2016) &quot;Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation.&quot; <i>Cell</i> <b>165</b>(4):910&ndash;20; PMID: [https://pubmed.ncbi.nlm.nih.gov/27087446 27087446]; doi: [https://dx.doi.org/10.1016/j.cell.2016.03.029 10.1016/j.cell.2016.03.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27087446 374].
 +
#Stoehr A, <i>et al.</i> (2016) &quot;Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.&quot; <i>Cardiovasc Res</i> <b>110</b>(3):346&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/27095734 27095734]; doi: [https://dx.doi.org/10.1093/cvr/cvw081 10.1093/cvr/cvw081]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27095734 12].
 +
#Grassl N, <i>et al.</i> (2016) &quot;Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome.&quot; <i>Genome Med</i> <b>8</b>(1):44; PMID: [https://pubmed.ncbi.nlm.nih.gov/27102203 27102203]; doi: [https://dx.doi.org/10.1186/s13073-016-0293-0 10.1186/s13073-016-0293-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27102203 89].
 +
#Aaseb&oslash; E, <i>et al.</i> (2016) &quot;Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows.&quot; <i>J Proteomics</i> <b>145</b>:214&ndash;225; PMID: [https://pubmed.ncbi.nlm.nih.gov/27107777 27107777]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.03.049 10.1016/j.jprot.2016.03.049]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27107777 163].
 +
#Larance M, <i>et al.</i> (2016) &quot;Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(7):2476&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/27114452 27114452]; doi: [https://dx.doi.org/10.1074/mcp.O115.055467 10.1074/mcp.O115.055467]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27114452 396].
 +
#Laghmani K, <i>et al.</i> (2016) &quot;Polyhydramnios, Transient Antenatal Bartter&#39;s Syndrome, and MAGED2 Mutations.&quot; <i>N Engl J Med</i> <b>374</b>(19):1853&ndash;63; PMID: [https://pubmed.ncbi.nlm.nih.gov/27120771 27120771]; doi: [https://dx.doi.org/10.1056/NEJMoa1507629 10.1056/NEJMoa1507629]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27120771 21].
 +
#Hoehenwarter W, <i>et al.</i> (2016) &quot;Comparative expression profiling reveals a role of the root apoplast in local phosphate response.&quot; <i>BMC Plant Biol</i> <b>16</b>:106; PMID: [https://pubmed.ncbi.nlm.nih.gov/27121119 27121119]; doi: [https://dx.doi.org/10.1186/s12870-016-0790-8 10.1186/s12870-016-0790-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27121119 23].
 +
#Eyckerman S, <i>et al.</i> (2016) &quot;Trapping mammalian protein complexes in viral particles.&quot; <i>Nat Commun</i> <b>7</b>:11416; PMID: [https://pubmed.ncbi.nlm.nih.gov/27122307 27122307]; doi: [https://dx.doi.org/10.1038/ncomms11416 10.1038/ncomms11416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27122307 58].
 +
#Ono M, <i>et al.</i> (2016) &quot;Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1&alpha; Protein Replacement Human Cell Lines.&quot; <i>PLoS One</i> <b>11</b>(4):e0154759; PMID: [https://pubmed.ncbi.nlm.nih.gov/27128805 27128805]; doi: [https://dx.doi.org/10.1371/journal.pone.0154759 10.1371/journal.pone.0154759]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27128805 72].
 +
#Petrone A, <i>et al.</i> (2016) &quot;Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(7):2448&ndash;61; PMID: [https://pubmed.ncbi.nlm.nih.gov/27134283 27134283]; doi: [https://dx.doi.org/10.1074/mcp.M116.059394 10.1074/mcp.M116.059394]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27134283 90].
 +
#Pozniak Y, <i>et al.</i> (2016) &quot;System-wide Clinical Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis.&quot; <i>Cell Syst</i> <b>2</b>(3):172&ndash;84; PMID: [https://pubmed.ncbi.nlm.nih.gov/27135363 27135363]; doi: [https://dx.doi.org/10.1016/j.cels.2016.02.001 10.1016/j.cels.2016.02.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27135363 126].
 +
#Ori A, <i>et al.</i> (2015) &quot;Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats.&quot; <i>Cell Syst</i> <b>1</b>(3):224&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/27135913 27135913]; doi: [https://dx.doi.org/10.1016/j.cels.2015.08.012 10.1016/j.cels.2015.08.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27135913 190].
 +
#Francavilla C, <i>et al.</i> (2016) &quot;Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking.&quot; <i>Nat Struct Mol Biol</i> <b>23</b>(6):608&ndash;18; PMID: [https://pubmed.ncbi.nlm.nih.gov/27136326 27136326]; doi: [https://dx.doi.org/10.1038/nsmb.3218 10.1038/nsmb.3218]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27136326 19].
 +
#Ulrich V, <i>et al.</i> (2016) &quot;Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.&quot; <i>EMBO Mol Med</i> <b>8</b>(6):643&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/27137489 27137489]; doi: [https://dx.doi.org/10.15252/emmm.201506031 10.15252/emmm.201506031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27137489 120].
 +
#Zielke RA, <i>et al.</i> (2016) &quot;Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(7):2338&ndash;55; PMID: [https://pubmed.ncbi.nlm.nih.gov/27141096 27141096]; doi: [https://dx.doi.org/10.1074/mcp.M116.058800 10.1074/mcp.M116.058800]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27141096 3].
 +
#Masuishi Y, <i>et al.</i> (2016) &quot;Data for identification of GPI-anchored peptides and &omega;-sites in cancer cell lines.&quot; <i>Data Brief</i> <b>7</b>:1302&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/27141528 27141528]; doi: [https://dx.doi.org/10.1016/j.dib.2016.04.001 10.1016/j.dib.2016.04.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27141528 42].
 +
#Ziganshin RH, <i>et al.</i> (2016) &quot;The Pathogenesis of the Demyelinating Form of Guillain-Barre Syndrome (GBS): Proteo-peptidomic and Immunological Profiling of Physiological Fluids.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(7):2366&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/27143409 27143409]; doi: [https://dx.doi.org/10.1074/mcp.M115.056036 10.1074/mcp.M115.056036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27143409 28].
 +
#Kempf SJ, <i>et al.</i> (2016) &quot;An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer&#39;s mouse model.&quot; <i>Oncotarget</i> <b>7</b>(23):33627&ndash;48; PMID: [https://pubmed.ncbi.nlm.nih.gov/27144524 27144524]; doi: [https://dx.doi.org/10.18632/oncotarget.9092 10.18632/oncotarget.9092]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27144524 104].
 +
#D&oslash;rum S, <i>et al.</i> (2016) &quot;Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes.&quot; <i>Sci Rep</i> <b>6</b>:25565; PMID: [https://pubmed.ncbi.nlm.nih.gov/27146306 27146306]; doi: [https://dx.doi.org/10.1038/srep25565 10.1038/srep25565]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27146306 27].
 +
#Chen R, <i>et al.</i> (2016) &quot;Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis.&quot; <i>J Proteome Res</i> <b>15</b>(6):2080&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/27147131 27147131]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00056 10.1021/acs.jproteome.6b00056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27147131 36].
 +
#Packialakshmi B, <i>et al.</i> (2016) &quot;Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis.&quot; <i>Biomark Insights</i> <b>11</b>:55&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/27147818 27147818]; doi: [https://dx.doi.org/10.4137/BMI.S38291 10.4137/BMI.S38291]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27147818 6].
 +
#Jhingan GD, <i>et al.</i> (2016) &quot;Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns.&quot; <i>J Biol Chem</i> <b>291</b>(27):14257&ndash;14273; PMID: [https://pubmed.ncbi.nlm.nih.gov/27151218 27151218]; doi: [https://dx.doi.org/10.1074/jbc.M115.666123 10.1074/jbc.M115.666123]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27151218 16].
 +
#Toriyama M, <i>et al.</i> (2016) &quot;The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery.&quot; <i>Nat Genet</i> <b>48</b>(6):648&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/27158779 27158779]; doi: [https://dx.doi.org/10.1038/ng.3558 10.1038/ng.3558]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27158779 44].
 +
#Hsu CH, <i>et al.</i> (2016) &quot;Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(7):2396&ndash;410; PMID: [https://pubmed.ncbi.nlm.nih.gov/27161446 27161446]; doi: [https://dx.doi.org/10.1074/mcp.M115.057026 10.1074/mcp.M115.057026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27161446 60].
 +
#Sigdel TK, <i>et al.</i> (2016) &quot;Mining the human urine proteome for monitoring renal transplant injury.&quot; <i>Kidney Int</i> <b>89</b>(6):1244&ndash;52; PMID: [https://pubmed.ncbi.nlm.nih.gov/27165815 27165815]; doi: [https://dx.doi.org/10.1016/j.kint.2015.12.049 10.1016/j.kint.2015.12.049]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27165815 227].
 +
#Taha MK, <i>et al.</i> (2016) &quot;Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men.&quot; <i>PLoS One</i> <b>11</b>(5):e0154047; PMID: [https://pubmed.ncbi.nlm.nih.gov/27167067 27167067]; doi: [https://dx.doi.org/10.1371/journal.pone.0154047 10.1371/journal.pone.0154047]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27167067 12].
 +
#Tuveng TR, <i>et al.</i> (2016) &quot;Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.&quot; <i>Proteomics</i> <b>16</b>(13):1904&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/27169553 27169553]; doi: [https://dx.doi.org/10.1002/pmic.201500419 10.1002/pmic.201500419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27169553 18].
 +
#Rao SR, <i>et al.</i> (2016) &quot;The Clathrin-dependent Spindle Proteome.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(8):2537&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/27174698 27174698]; doi: [https://dx.doi.org/10.1074/mcp.M115.054809 10.1074/mcp.M115.054809]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27174698 130].
 +
#Gupta I, <i>et al.</i> (2016) &quot;Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex.&quot; <i>Cell Rep</i> <b>15</b>(8):1782&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/27184853 27184853]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.04.055 10.1016/j.celrep.2016.04.055]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27184853 4].
 +
#Zvezdova E, <i>et al.</i> (2016) &quot;Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability.&quot; <i>Sci Signal</i> <b>9</b>(428):ra51; PMID: [https://pubmed.ncbi.nlm.nih.gov/27188442 27188442]; doi: [https://dx.doi.org/10.1126/scisignal.aad1576 10.1126/scisignal.aad1576]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27188442 54].
 +
#Kliuchnikova AA, <i>et al.</i> (2016) &quot;Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome.&quot; <i>Proteomics</i> <b>16</b>(13):1938&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/27193151 27193151]; doi: [https://dx.doi.org/10.1002/pmic.201500423 10.1002/pmic.201500423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27193151 86].
 +
#Heaven MR, <i>et al.</i> (2016) &quot;Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease.&quot; <i>J Proteome Res</i> <b>15</b>(7):2265&ndash;82; PMID: [https://pubmed.ncbi.nlm.nih.gov/27193225 27193225]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00316 10.1021/acs.jproteome.6b00316]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27193225 8].
 +
#Yang W, <i>et al.</i> (2016) &quot;Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics.&quot; <i>Proteomics</i> <b>16</b>(13):1872&ndash;80; PMID: [https://pubmed.ncbi.nlm.nih.gov/27195445 27195445]; doi: [https://dx.doi.org/10.1002/pmic.201500215 10.1002/pmic.201500215]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27195445 12].
 +
#Liang W, <i>et al.</i> (2016) &quot;Distinctive proteomic profiles among different regions of human carotid plaques in men and women.&quot; <i>Sci Rep</i> <b>6</b>:26231; PMID: [https://pubmed.ncbi.nlm.nih.gov/27198765 27198765]; doi: [https://dx.doi.org/10.1038/srep26231 10.1038/srep26231]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27198765 60].
 +
#Arshid S, <i>et al.</i> (2017) &quot;Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning.&quot; <i>J Proteomics</i> <b>151</b>:162&ndash;173; PMID: [https://pubmed.ncbi.nlm.nih.gov/27208787 27208787]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.05.016 10.1016/j.jprot.2016.05.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27208787 5].
 +
#Virant-Klun I, <i>et al.</i> (2016) &quot;Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(8):2616&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/27215607 27215607]; doi: [https://dx.doi.org/10.1074/mcp.M115.056887 10.1074/mcp.M115.056887]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27215607 18].
 +
#Yu J, <i>et al.</i> (2016) &quot;Biomarker Panel for Chronic Graft-Versus-Host Disease.&quot; <i>J Clin Oncol</i> <b>34</b>(22):2583&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/27217465 27217465]; doi: [https://dx.doi.org/10.1200/JCO.2015.65.9615 10.1200/JCO.2015.65.9615]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27217465 3].
 +
#Wang B, <i>et al.</i> (2016) &quot;Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells.&quot; <i>J Proteome Res</i> <b>15</b>(8):2407&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/27225728 27225728]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b01083 10.1021/acs.jproteome.5b01083]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27225728 14].
 +
#Lidbury ID, <i>et al.</i> (2016) &quot;Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria.&quot; <i>Environ Microbiol</i> <b>18</b>(10):3535&ndash;3549; PMID: [https://pubmed.ncbi.nlm.nih.gov/27233093 27233093]; doi: [https://dx.doi.org/10.1111/1462-2920.13390 10.1111/1462-2920.13390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27233093 162].
 +
#Lobas AA, <i>et al.</i> (2016) &quot;Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome.&quot; <i>Proteomics</i> <b>16</b>(14):1980&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/27233776 27233776]; doi: [https://dx.doi.org/10.1002/pmic.201500349 10.1002/pmic.201500349]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27233776 7].
 +
#Lodrini M, <i>et al.</i> (2016) &quot;Minichromosome Maintenance Complex Is a Critical Node in the miR-183 Signaling Network of MYCN-Amplified Neuroblastoma Cells.&quot; <i>J Proteome Res</i> <b>15</b>(7):2178&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/27239679 27239679]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00134 10.1021/acs.jproteome.6b00134]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27239679 12].
 +
#Bullen JW, <i>et al.</i> (2016) &quot;Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1.&quot; <i>Sci Signal</i> <b>9</b>(430):ra56; PMID: [https://pubmed.ncbi.nlm.nih.gov/27245613 27245613]; doi: [https://dx.doi.org/10.1126/scisignal.aaf0583 10.1126/scisignal.aaf0583]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27245613 14].
 +
#Patella F, <i>et al.</i> (2016) &quot;In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability.&quot; <i>J Proteome Res</i> <b>15</b>(7):2187&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/27246970 27246970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00166 10.1021/acs.jproteome.6b00166]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27246970 25].
 +
#Rai AN, <i>et al.</i> (2016) &quot;Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia.&quot; <i>Sci Rep</i> <b>6</b>:26964; PMID: [https://pubmed.ncbi.nlm.nih.gov/27247105 27247105]; doi: [https://dx.doi.org/10.1038/srep26964 10.1038/srep26964]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27247105 21].
 +
#Mertins P, <i>et al.</i> (2016) &quot;Proteogenomics connects somatic mutations to signalling in breast cancer.&quot; <i>Nature</i> <b>534</b>(7605):55&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/27251275 27251275]; doi: [https://dx.doi.org/10.1038/nature18003 10.1038/nature18003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27251275 1265].
 +
#Humphrey ES, <i>et al.</i> (2016) &quot;Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(8):2671&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/27259358 27259358]; doi: [https://dx.doi.org/10.1074/mcp.M116.058313 10.1074/mcp.M116.058313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27259358 112].
 +
#Hintermair C, <i>et al.</i> (2016) &quot;Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression.&quot; <i>Sci Rep</i> <b>6</b>:27401; PMID: [https://pubmed.ncbi.nlm.nih.gov/27264542 27264542]; doi: [https://dx.doi.org/10.1038/srep27401 10.1038/srep27401]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27264542 63].
 +
#Xu L, <i>et al.</i> (2016) &quot;Quantitative proteomics reveals that distant recurrence-associated protein R-Ras and Transgelin predict post-surgical survival in patients with Stage III colorectal cancer.&quot; <i>Oncotarget</i> <b>7</b>(28):43868&ndash;43893; PMID: [https://pubmed.ncbi.nlm.nih.gov/27270312 27270312]; doi: [https://dx.doi.org/10.18632/oncotarget.9701 10.18632/oncotarget.9701]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27270312 2].
 +
#Gnad F, <i>et al.</i> (2016) &quot;Phosphoproteome analysis of the MAPK pathway reveals previously undetected feedback mechanisms.&quot; <i>Proteomics</i> <b>16</b>(14):1998&ndash;2004; PMID: [https://pubmed.ncbi.nlm.nih.gov/27273156 27273156]; doi: [https://dx.doi.org/10.1002/pmic.201600119 10.1002/pmic.201600119]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27273156 56].
 +
#Gnad F, <i>et al.</i> (2016) &quot;Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network.&quot; <i>Proteomics</i> <b>16</b>(14):1992&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/27282143 27282143]; doi: [https://dx.doi.org/10.1002/pmic.201600118 10.1002/pmic.201600118]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27282143 72].
 +
#Prendergast L, <i>et al.</i> (2016) &quot;The CENP-T/-W complex is a binding partner of the histone chaperone FACT.&quot; <i>Genes Dev</i> <b>30</b>(11):1313&ndash;26; PMID: [https://pubmed.ncbi.nlm.nih.gov/27284163 27284163]; doi: [https://dx.doi.org/10.1101/gad.275073.115 10.1101/gad.275073.115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27284163 47].
 +
#Wi&#x15B;niewski JR, <i>et al.</i> (2016) &quot;A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting.&quot; <i>J Proteome Res</i> <b>15</b>(7):2321&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/27297043 27297043]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00403 10.1021/acs.jproteome.6b00403]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27297043 64].
 +
#Narasimhan PB, <i>et al.</i> (2016) &quot;Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce Autophagy in Human Dendritic Cells.&quot; <i>Infect Immun</i> <b>84</b>(9):2463&ndash;72; PMID: [https://pubmed.ncbi.nlm.nih.gov/27297394 27297394]; doi: [https://dx.doi.org/10.1128/IAI.00174-16 10.1128/IAI.00174-16]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27297394 233].
 +
#Rakus D, <i>et al.</i> (2016) &quot;Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.&quot; <i>J Proteome Res</i> <b>15</b>(8):2479&ndash;90; PMID: [https://pubmed.ncbi.nlm.nih.gov/27302655 27302655]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b01149 10.1021/acs.jproteome.5b01149]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27302655 60].
 +
#Chick JM, <i>et al.</i> (2016) &quot;Defining the consequences of genetic variation on a proteome-wide scale.&quot; <i>Nature</i> <b>534</b>(7608):500&ndash;5; PMID: [https://pubmed.ncbi.nlm.nih.gov/27309819 27309819]; doi: [https://dx.doi.org/10.1038/nature18270 10.1038/nature18270]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27309819 27].
 +
#Madeira JP, <i>et al.</i> (2016) &quot;Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics.&quot; <i>J Proteomics</i> <b>146</b>:25&ndash;33; PMID: [https://pubmed.ncbi.nlm.nih.gov/27321915 27321915]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.06.022 10.1016/j.jprot.2016.06.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27321915 26].
 +
#Szklanna PB, <i>et al.</i> (2016) &quot;Analysis of the proteins associated with platelet detergent resistant membranes.&quot; <i>Proteomics</i> <b>16</b>(17):2345&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/27329341 27329341]; doi: [https://dx.doi.org/10.1002/pmic.201500309 10.1002/pmic.201500309]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27329341 18].
 +
#Ahrn&eacute; E, <i>et al.</i> (2016) &quot;Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments.&quot; <i>J Proteome Res</i> <b>15</b>(8):2537&ndash;47; PMID: [https://pubmed.ncbi.nlm.nih.gov/27345528 27345528]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00066 10.1021/acs.jproteome.6b00066]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27345528 41].
 +
#Chaubey PM, <i>et al.</i> (2016) &quot;Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver.&quot; <i>PLoS One</i> <b>11</b>(6):e0158033; PMID: [https://pubmed.ncbi.nlm.nih.gov/27347675 27347675]; doi: [https://dx.doi.org/10.1371/journal.pone.0158033 10.1371/journal.pone.0158033]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27347675 60].
 +
#Bespyatykh J, <i>et al.</i> (2016) &quot;Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster.&quot; <i>Sci Rep</i> <b>6</b>:28985; PMID: [https://pubmed.ncbi.nlm.nih.gov/27356881 27356881]; doi: [https://dx.doi.org/10.1038/srep28985 10.1038/srep28985]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27356881 23].
 +
#Monks J, <i>et al.</i> (2016) &quot;Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion.&quot; <i>J Physiol</i> <b>594</b>(20):5899&ndash;5921; PMID: [https://pubmed.ncbi.nlm.nih.gov/27357166 27357166]; doi: [https://dx.doi.org/10.1113/JP272390 10.1113/JP272390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27357166 16].
 +
#Rinschen MM, <i>et al.</i> (2016) &quot;Quantitative deep mapping of the cultured podocyte proteome uncovers shifts in proteostatic mechanisms during differentiation.&quot; <i>Am J Physiol Cell Physiol</i> <b>311</b>(3):C404&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/27357545 27357545]; doi: [https://dx.doi.org/10.1152/ajpcell.00121.2016 10.1152/ajpcell.00121.2016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27357545 3].
 +
#Dudekula K, <i>et al.</i> (2016) &quot;Data from quantitative label free proteomics analysis of rat spleen.&quot; <i>Data Brief</i> <b>8</b>:494&ndash;500; PMID: [https://pubmed.ncbi.nlm.nih.gov/27358910 27358910]; doi: [https://dx.doi.org/10.1016/j.dib.2016.05.058 10.1016/j.dib.2016.05.058]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27358910 17].
 +
#Carrier M, <i>et al.</i> (2016) &quot;Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.&quot; <i>PLoS One</i> <b>11</b>(6):e0157290; PMID: [https://pubmed.ncbi.nlm.nih.gov/27362937 27362937]; doi: [https://dx.doi.org/10.1371/journal.pone.0157290 10.1371/journal.pone.0157290]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27362937 6].
 +
#Pettersen VK, <i>et al.</i> (2016) &quot;Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(9):2890&ndash;907; PMID: [https://pubmed.ncbi.nlm.nih.gov/27364158 27364158]; doi: [https://dx.doi.org/10.1074/mcp.M116.060582 10.1074/mcp.M116.060582]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27364158 90].
 +
#Zhang H, <i>et al.</i> (2016) &quot;Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer.&quot; <i>Cell</i> <b>166</b>(3):755&ndash;765; PMID: [https://pubmed.ncbi.nlm.nih.gov/27372738 27372738]; doi: [https://dx.doi.org/10.1016/j.cell.2016.05.069 10.1016/j.cell.2016.05.069]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27372738 1996].
 +
#Luo Y, <i>et al.</i> (2016) &quot;HIV-host interactome revealed directly from infected cells.&quot; <i>Nat Microbiol</i> <b>1</b>(7):16068; PMID: [https://pubmed.ncbi.nlm.nih.gov/27375898 27375898]; doi: [https://dx.doi.org/10.1038/nmicrobiol.2016.68 10.1038/nmicrobiol.2016.68]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27375898 53].
 +
#Carabetta VJ, <i>et al.</i> (2016) &quot;Temporal Regulation of the <i>Bacillus subtilis</i> Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.&quot; <i>mSystems</i> <b>1</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/27376153 27376153]; doi: [https://dx.doi.org/10.1128/mSystems.00005-16 10.1128/mSystems.00005-16]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27376153 30].
 +
#Sysoev VO, <i>et al.</i> (2016) &quot;Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila.&quot; <i>Nat Commun</i> <b>7</b>:12128; PMID: [https://pubmed.ncbi.nlm.nih.gov/27378189 27378189]; doi: [https://dx.doi.org/10.1038/ncomms12128 10.1038/ncomms12128]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27378189 25].
 +
#Barasa BA, <i>et al.</i> (2016) &quot;Proteomics reveals reduced expression of transketolase in pyrimidine 5&#39;-nucleotidase deficient patients.&quot; <i>Proteomics Clin Appl</i> <b>10</b>(8):859&ndash;69; PMID: [https://pubmed.ncbi.nlm.nih.gov/27381654 27381654]; doi: [https://dx.doi.org/10.1002/prca.201500130 10.1002/prca.201500130]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27381654 8].
 +
#Ashford P, <i>et al.</i> (2016) &quot;HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(9):2939&ndash;53; PMID: [https://pubmed.ncbi.nlm.nih.gov/27384951 27384951]; doi: [https://dx.doi.org/10.1074/mcp.M116.058552 10.1074/mcp.M116.058552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27384951 19].
 +
#Picariello G, <i>et al.</i> (2016) &quot;Antibody-independent identification of bovine milk-derived peptides in breast-milk.&quot; <i>Food Funct</i> <b>7</b>(8):3402&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/27396729 27396729]; doi: [https://dx.doi.org/10.1039/c6fo00731g 10.1039/c6fo00731g]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27396729 12].
 +
#Hampoelz B, <i>et al.</i> (2016) &quot;Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development.&quot; <i>Cell</i> <b>166</b>(3):664&ndash;678; PMID: [https://pubmed.ncbi.nlm.nih.gov/27397507 27397507]; doi: [https://dx.doi.org/10.1016/j.cell.2016.06.015 10.1016/j.cell.2016.06.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27397507 18].
 +
#Konstantinell A, <i>et al.</i> (2016) &quot;Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines.&quot; <i>Proteomics</i> <b>16</b>(19):2587&ndash;2591; PMID: [https://pubmed.ncbi.nlm.nih.gov/27402257 27402257]; doi: [https://dx.doi.org/10.1002/pmic.201600223 10.1002/pmic.201600223]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27402257 28].
 +
#Xue L, <i>et al.</i> (2016) &quot;Valosin-containing protein (VCP)-Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(9):2970&ndash;86; PMID: [https://pubmed.ncbi.nlm.nih.gov/27406709 27406709]; doi: [https://dx.doi.org/10.1074/mcp.M116.061036 10.1074/mcp.M116.061036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27406709 148].
 +
#Shraibman B, <i>et al.</i> (2016) &quot;Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(9):3058&ndash;70; PMID: [https://pubmed.ncbi.nlm.nih.gov/27412690 27412690]; doi: [https://dx.doi.org/10.1074/mcp.M116.060350 10.1074/mcp.M116.060350]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27412690 60].
 +
#M&uuml;ller S, <i>et al.</i> (2016) &quot;Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.&quot; <i>Sci Rep</i> <b>6</b>:30030; PMID: [https://pubmed.ncbi.nlm.nih.gov/27418403 27418403]; doi: [https://dx.doi.org/10.1038/srep30030 10.1038/srep30030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27418403 32].
 +
#Rice RH, <i>et al.</i> (2016) &quot;Proteomic Analysis of Loricrin Knockout Mouse Epidermis.&quot; <i>J Proteome Res</i> <b>15</b>(8):2560&ndash;6; PMID: [https://pubmed.ncbi.nlm.nih.gov/27418529 27418529]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00108 10.1021/acs.jproteome.6b00108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27418529 42].
 +
#Wojtowicz EE, <i>et al.</i> (2016) &quot;Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors.&quot; <i>Cell Stem Cell</i> <b>19</b>(3):383&ndash;96; PMID: [https://pubmed.ncbi.nlm.nih.gov/27424784 27424784]; doi: [https://dx.doi.org/10.1016/j.stem.2016.06.008 10.1016/j.stem.2016.06.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27424784 36].
 +
#Petrera A, <i>et al.</i> (2016) &quot;Proteomic Profiling of Cardiomyocyte-Specific Cathepsin A Overexpression Links Cathepsin A to the Oxidative Stress Response.&quot; <i>J Proteome Res</i> <b>15</b>(9):3188&ndash;95; PMID: [https://pubmed.ncbi.nlm.nih.gov/27432266 27432266]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00413 10.1021/acs.jproteome.6b00413]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27432266 3].
 +
#Zhou Y, <i>et al.</i> (2016) &quot;Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells.&quot; <i>J Proteomics</i> <b>148</b>:94&ndash;104; PMID: [https://pubmed.ncbi.nlm.nih.gov/27432471 27432471]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.07.015 10.1016/j.jprot.2016.07.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27432471 14].
 +
#Li X, <i>et al.</i> (2016) &quot;Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(9):3030&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/27432908 27432908]; doi: [https://dx.doi.org/10.1074/mcp.M116.060277 10.1074/mcp.M116.060277]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27432908 88].
 +
#Su&aacute;rez-Cort&eacute;s P, <i>et al.</i> (2016) &quot;Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3243&ndash;3255; PMID: [https://pubmed.ncbi.nlm.nih.gov/27432909 27432909]; doi: [https://dx.doi.org/10.1074/mcp.M116.060681 10.1074/mcp.M116.060681]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27432909 162].
 +
#Vandenbrouck Y, <i>et al.</i> (2016) &quot;Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update.&quot; <i>J Proteome Res</i> <b>15</b>(11):3998&ndash;4019; PMID: [https://pubmed.ncbi.nlm.nih.gov/27444420 27444420]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00400 10.1021/acs.jproteome.6b00400]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27444420 108].
 +
#Martinez-Val A, <i>et al.</i> (2016) &quot;On the Statistical Significance of Compressed Ratios in Isobaric Labeling: A Cross-Platform Comparison.&quot; <i>J Proteome Res</i> <b>15</b>(9):3029&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/27452035 27452035]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00151 10.1021/acs.jproteome.6b00151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27452035 18].
 +
#Gautier EF, <i>et al.</i> (2016) &quot;Comprehensive Proteomic Analysis of Human Erythropoiesis.&quot; <i>Cell Rep</i> <b>16</b>(5):1470&ndash;1484; PMID: [https://pubmed.ncbi.nlm.nih.gov/27452463 27452463]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.06.085 10.1016/j.celrep.2016.06.085]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27452463 235].
 +
#Liao Y, <i>et al.</i> (2016) &quot;The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease.&quot; <i>Cell Rep</i> <b>16</b>(5):1456&ndash;1469; PMID: [https://pubmed.ncbi.nlm.nih.gov/27452465 27452465]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.06.084 10.1016/j.celrep.2016.06.084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27452465 7].
 +
#Castello A, <i>et al.</i> (2016) &quot;Comprehensive Identification of RNA-Binding Domains in Human Cells.&quot; <i>Mol Cell</i> <b>63</b>(4):696&ndash;710; PMID: [https://pubmed.ncbi.nlm.nih.gov/27453046 27453046]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.06.029 10.1016/j.molcel.2016.06.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27453046 12].
 +
#Thomsen MS, <i>et al.</i> (2017) &quot;Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier.&quot; <i>J Neurochem</i> <b>140</b>(5):741&ndash;754; PMID: [https://pubmed.ncbi.nlm.nih.gov/27456748 27456748]; doi: [https://dx.doi.org/10.1111/jnc.13747 10.1111/jnc.13747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27456748 12].
 +
#Zhao Y, <i>et al.</i> (2016) &quot;Integrative proteomic analysis reveals reprograming tumor necrosis factor signaling in epithelial mesenchymal transition.&quot; <i>J Proteomics</i> <b>148</b>:126&ndash;38; PMID: [https://pubmed.ncbi.nlm.nih.gov/27461979 27461979]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.07.014 10.1016/j.jprot.2016.07.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27461979 30].
 +
#Osinalde N, <i>et al.</i> (2017) &quot;Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines.&quot; <i>J Proteome Res</i> <b>16</b>(1):106&ndash;121; PMID: [https://pubmed.ncbi.nlm.nih.gov/27463037 27463037]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00233 10.1021/acs.jproteome.6b00233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27463037 55].
 +
#Liu Z, <i>et al.</i> (2016) &quot;Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.&quot; <i>J Chromatogr A</i> <b>1461</b>:35&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/27470094 27470094]; doi: [https://dx.doi.org/10.1016/j.chroma.2016.07.042 10.1016/j.chroma.2016.07.042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27470094 9].
 +
#Voisinne G, <i>et al.</i> (2016) &quot;Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation.&quot; <i>Mol Syst Biol</i> <b>12</b>(7):876; PMID: [https://pubmed.ncbi.nlm.nih.gov/27474268 27474268]; doi: [https://dx.doi.org/10.15252/msb.20166837 10.15252/msb.20166837]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27474268 178].
 +
#Uyy E, <i>et al.</i> (2016) &quot;Endoplasmic Reticulum Chaperones Are Potential Active Factors in Thyroid Tumorigenesis.&quot; <i>J Proteome Res</i> <b>15</b>(9):3377&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/27480176 27480176]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00567 10.1021/acs.jproteome.6b00567]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27480176 100].
 +
#S&ouml;derholm S, <i>et al.</i> (2016) &quot;Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3203&ndash;3219; PMID: [https://pubmed.ncbi.nlm.nih.gov/27486199 27486199]; doi: [https://dx.doi.org/10.1074/mcp.M116.057984 10.1074/mcp.M116.057984]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27486199 20].
 +
#Deslyper G, <i>et al.</i> (2016) &quot;A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model.&quot; <i>PLoS Negl Trop Dis</i> <b>10</b>(8):e0004837; PMID: [https://pubmed.ncbi.nlm.nih.gov/27490109 27490109]; doi: [https://dx.doi.org/10.1371/journal.pntd.0004837 10.1371/journal.pntd.0004837]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27490109 12].
 +
#Peltier J, <i>et al.</i> (2016) &quot;Quantitative proteomic analysis exploring progression of colorectal cancer: Modulation of the serpin family.&quot; <i>J Proteomics</i> <b>148</b>:139&ndash;48; PMID: [https://pubmed.ncbi.nlm.nih.gov/27492143 27492143]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.07.031 10.1016/j.jprot.2016.07.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27492143 2].
 +
#Roberts AJ, <i>et al.</i> (2016) &quot;The N-myristoylome of Trypanosoma cruzi.&quot; <i>Sci Rep</i> <b>6</b>:31078; PMID: [https://pubmed.ncbi.nlm.nih.gov/27492267 27492267]; doi: [https://dx.doi.org/10.1038/srep31078 10.1038/srep31078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27492267 12].
 +
#Dubois ML, <i>et al.</i> (2016) &quot;Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(9):2924&ndash;34; PMID: [https://pubmed.ncbi.nlm.nih.gov/27494197 27494197]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b01081 10.1021/acs.jproteome.5b01081]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27494197 109].
 +
#Lach&eacute;n-Montes M, <i>et al.</i> (2016) &quot;An early dysregulation of FAK and MEK/ERK signaling pathways precedes the &beta;-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer&#39;s disease.&quot; <i>J Proteomics</i> <b>148</b>:149&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/27498392 27498392]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.07.032 10.1016/j.jprot.2016.07.032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27498392 20].
 +
#Drake JM, <i>et al.</i> (2016) &quot;Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer.&quot; <i>Cell</i> <b>166</b>(4):1041&ndash;1054; PMID: [https://pubmed.ncbi.nlm.nih.gov/27499020 27499020]; doi: [https://dx.doi.org/10.1016/j.cell.2016.07.007 10.1016/j.cell.2016.07.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27499020 69].
 +
#Marino F, <i>et al.</i> (2017) &quot;Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07.&quot; <i>J Proteome Res</i> <b>16</b>(1):34&ndash;44; PMID: [https://pubmed.ncbi.nlm.nih.gov/27503676 27503676]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00528 10.1021/acs.jproteome.6b00528]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27503676 31].
 +
#Budayeva HG, <i>et al.</i> (2016) &quot;Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3107&ndash;3125; PMID: [https://pubmed.ncbi.nlm.nih.gov/27503897 27503897]; doi: [https://dx.doi.org/10.1074/mcp.M116.061333 10.1074/mcp.M116.061333]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27503897 15].
 +
#Gat-Yablonski G, <i>et al.</i> (2016) &quot;Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span.&quot; <i>Aging (Albany NY)</i> <b>8</b>(8):1735&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/27508340 27508340]; doi: [https://dx.doi.org/10.18632/aging.101009 10.18632/aging.101009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27508340 18].
 +
#Swenson JM, <i>et al.</i> (2016) &quot;The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/27514026 27514026]; doi: [https://dx.doi.org/10.7554/eLife.16096 10.7554/eLife.16096]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27514026 4].
 +
#Naboulsi W, <i>et al.</i> (2016) &quot;Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.&quot; <i>Biochim Biophys Acta</i> <b>1864</b>(11):1579&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/27519163 27519163]; doi: [https://dx.doi.org/10.1016/j.bbapap.2016.08.005 10.1016/j.bbapap.2016.08.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27519163 36].
 +
#Hoare M, <i>et al.</i> (2016) &quot;NOTCH1 mediates a switch between two distinct secretomes during senescence.&quot; <i>Nat Cell Biol</i> <b>18</b>(9):979&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/27525720 27525720]; doi: [https://dx.doi.org/10.1038/ncb3397 10.1038/ncb3397]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27525720 4].
 +
#Rasmussen MH, <i>et al.</i> (2016) &quot;miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.&quot; <i>Nat Commun</i> <b>7</b>:12436; PMID: [https://pubmed.ncbi.nlm.nih.gov/27526785 27526785]; doi: [https://dx.doi.org/10.1038/ncomms12436 10.1038/ncomms12436]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27526785 24].
 +
#Chatterjee S, <i>et al.</i> (2016) &quot;A comprehensive and scalable database search system for metaproteomics.&quot; <i>BMC Genomics</i> <b>17</b>(1):642; PMID: [https://pubmed.ncbi.nlm.nih.gov/27528457 27528457]; doi: [https://dx.doi.org/10.1186/s12864-016-2855-3 10.1186/s12864-016-2855-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27528457 28].
 +
#Liu L, <i>et al.</i> (2016) &quot;Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases.&quot; <i>J Biol Chem</i> <b>291</b>(41):21571&ndash;21583; PMID: [https://pubmed.ncbi.nlm.nih.gov/27531744 27531744]; doi: [https://dx.doi.org/10.1074/jbc.M116.748897 10.1074/jbc.M116.748897]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27531744 6].
 +
#Mattei B, <i>et al.</i> (2016) &quot;Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana.&quot; <i>Front Plant Sci</i> <b>7</b>:1107; PMID: [https://pubmed.ncbi.nlm.nih.gov/27532006 27532006]; doi: [https://dx.doi.org/10.3389/fpls.2016.01107 10.3389/fpls.2016.01107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27532006 12].
 +
#Zacharias LG, <i>et al.</i> (2016) &quot;HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells.&quot; <i>J Proteome Res</i> <b>15</b>(10):3624&ndash;3634; PMID: [https://pubmed.ncbi.nlm.nih.gov/27533485 27533485]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00429 10.1021/acs.jproteome.6b00429]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27533485 36].
 +
#Solari FA, <i>et al.</i> (2016) &quot;Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(10):3154&ndash;3169; PMID: [https://pubmed.ncbi.nlm.nih.gov/27535140 27535140]; doi: [https://dx.doi.org/10.1074/mcp.M116.060368 10.1074/mcp.M116.060368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535140 23].
 +
#Wei W, <i>et al.</i> (2016) &quot;Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer.&quot; <i>J Proteome Res</i> <b>15</b>(11):3988&ndash;3997; PMID: [https://pubmed.ncbi.nlm.nih.gov/27535590 27535590]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00390 10.1021/acs.jproteome.6b00390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535590 150].
 +
#Dob&oacute; J, <i>et al.</i> (2016) &quot;MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked.&quot; <i>Sci Rep</i> <b>6</b>:31877; PMID: [https://pubmed.ncbi.nlm.nih.gov/27535802 27535802]; doi: [https://dx.doi.org/10.1038/srep31877 10.1038/srep31877]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27535802 6].
 +
#Zhang P, <i>et al.</i> (2016) &quot;The proteome of normal human retrobulbar optic nerve and sclera.&quot; <i>Proteomics</i> <b>16</b>(19):2592&ndash;2596; PMID: [https://pubmed.ncbi.nlm.nih.gov/27538499 27538499]; doi: [https://dx.doi.org/10.1002/pmic.201600229 10.1002/pmic.201600229]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27538499 65].
 +
#Walley JW, <i>et al.</i> (2016) &quot;Integration of omic networks in a developmental atlas of maize.&quot; <i>Science</i> <b>353</b>(6301):814&ndash;8; PMID: [https://pubmed.ncbi.nlm.nih.gov/27540173 27540173]; doi: [https://dx.doi.org/10.1126/science.aag1125 10.1126/science.aag1125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27540173 10350].
 +
#Xie Y, <i>et al.</i> (2016) &quot;Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells.&quot; <i>Sci Rep</i> <b>6</b>:31811; PMID: [https://pubmed.ncbi.nlm.nih.gov/27554326 27554326]; doi: [https://dx.doi.org/10.1038/srep31811 10.1038/srep31811]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27554326 6].
 +
#He PH, <i>et al.</i> (2016) &quot;The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana.&quot; <i>Environ Microbiol</i> <b>18</b>(11):4153&ndash;4169; PMID: [https://pubmed.ncbi.nlm.nih.gov/27554994 27554994]; doi: [https://dx.doi.org/10.1111/1462-2920.13500 10.1111/1462-2920.13500]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27554994 34].
 +
#Viktorovskaya OV, <i>et al.</i> (2016) &quot;Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.&quot; <i>PLoS Negl Trop Dis</i> <b>10</b>(8):e0004921; PMID: [https://pubmed.ncbi.nlm.nih.gov/27556644 27556644]; doi: [https://dx.doi.org/10.1371/journal.pntd.0004921 10.1371/journal.pntd.0004921]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27556644 7].
 +
#Cassidy L, <i>et al.</i> (2016) &quot;Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei.&quot; <i>J Proteome Res</i> <b>15</b>(10):3773&ndash;3783; PMID: [https://pubmed.ncbi.nlm.nih.gov/27557128 27557128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00569 10.1021/acs.jproteome.6b00569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27557128 12].
 +
#H&auml;upl B, <i>et al.</i> (2016) &quot;Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(10):3686&ndash;3699; PMID: [https://pubmed.ncbi.nlm.nih.gov/27559607 27559607]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00513 10.1021/acs.jproteome.6b00513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27559607 81].
 +
#Jiang Y, <i>et al.</i> (2016) &quot;The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins.&quot; <i>Autophagy</i> <b>12</b>(11):2197&ndash;2212; PMID: [https://pubmed.ncbi.nlm.nih.gov/27560450 27560450]; doi: [https://dx.doi.org/10.1080/15548627.2016.1222991 10.1080/15548627.2016.1222991]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560450 2].
 +
#Hesse AM, <i>et al.</i> (2016) &quot;hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data.&quot; <i>J Proteome Res</i> <b>15</b>(10):3896&ndash;3903; PMID: [https://pubmed.ncbi.nlm.nih.gov/27560970 27560970]; doi: [https://dx.doi.org/10.1021/acs.jproteome.5b00853 10.1021/acs.jproteome.5b00853]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27560970 142].
 +
#Ross SH, <i>et al.</i> (2016) &quot;Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells.&quot; <i>Immunity</i> <b>45</b>(3):685&ndash;700; PMID: [https://pubmed.ncbi.nlm.nih.gov/27566939 27566939]; doi: [https://dx.doi.org/10.1016/j.immuni.2016.07.022 10.1016/j.immuni.2016.07.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27566939 208].
 +
#Moulos P, <i>et al.</i> (2016) &quot;Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands.&quot; <i>Sci Data</i> <b>3</b>:160073; PMID: [https://pubmed.ncbi.nlm.nih.gov/27576083 27576083]; doi: [https://dx.doi.org/10.1038/sdata.2016.73 10.1038/sdata.2016.73]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27576083 6].
 +
#Larsen SC, <i>et al.</i> (2016) &quot;Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.&quot; <i>Sci Signal</i> <b>9</b>(443):rs9; PMID: [https://pubmed.ncbi.nlm.nih.gov/27577262 27577262]; doi: [https://dx.doi.org/10.1126/scisignal.aaf7329 10.1126/scisignal.aaf7329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27577262 10].
 +
#Delaveau T, <i>et al.</i> (2016) &quot;Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae.&quot; <i>Nucleic Acids Res</i> <b>44</b>(18):8826&ndash;8841; PMID: [https://pubmed.ncbi.nlm.nih.gov/27580715 27580715]; doi: [https://dx.doi.org/10.1093/nar/gkw732 10.1093/nar/gkw732]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27580715 19].
 +
#Lee H, <i>et al.</i> (2016) &quot;Comprehensive Proteome Profiling of Platelet Identified a Protein Profile Predictive of Responses to An Antiplatelet Agent Sarpogrelate.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(11):3461&ndash;3472; PMID: [https://pubmed.ncbi.nlm.nih.gov/27601597 27601597]; doi: [https://dx.doi.org/10.1074/mcp.M116.059154 10.1074/mcp.M116.059154]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27601597 96].
 +
#Treitz C, <i>et al.</i> (2016) &quot;Differential quantitative proteome analysis of Escherichia coli grown on acetate versus glucose.&quot; <i>Proteomics</i> <b>16</b>(21):2742&ndash;2746; PMID: [https://pubmed.ncbi.nlm.nih.gov/27604403 27604403]; doi: [https://dx.doi.org/10.1002/pmic.201600303 10.1002/pmic.201600303]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27604403 42].
 +
#Mauri M, <i>et al.</i> (2017) &quot;Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution.&quot; <i>Nucleic Acids Res</i> <b>45</b>(2):938&ndash;950; PMID: [https://pubmed.ncbi.nlm.nih.gov/27604873 27604873]; doi: [https://dx.doi.org/10.1093/nar/gkw792 10.1093/nar/gkw792]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27604873 35].
 +
#Lee J, <i>et al.</i> (2016) &quot;Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis.&quot; <i>Clin Chim Acta</i> <b>462</b>:118&ndash;126; PMID: [https://pubmed.ncbi.nlm.nih.gov/27609124 27609124]; doi: [https://dx.doi.org/10.1016/j.cca.2016.09.001 10.1016/j.cca.2016.09.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27609124 24].
 +
#Mulvaney KM, <i>et al.</i> (2016) &quot;Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate.&quot; <i>J Biol Chem</i> <b>291</b>(45):23719&ndash;23733; PMID: [https://pubmed.ncbi.nlm.nih.gov/27621311 27621311]; doi: [https://dx.doi.org/10.1074/jbc.M116.729418 10.1074/jbc.M116.729418]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27621311 22].
 +
#Subramanian S, <i>et al.</i> (2016) &quot;Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana.&quot; <i>Front Plant Sci</i> <b>7</b>:1314; PMID: [https://pubmed.ncbi.nlm.nih.gov/27625672 27625672]; doi: [https://dx.doi.org/10.3389/fpls.2016.01314 10.3389/fpls.2016.01314]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27625672 36].
 +
#Stroud DA, <i>et al.</i> (2016) &quot;Accessory subunits are integral for assembly and function of human mitochondrial complex I.&quot; <i>Nature</i> <b>538</b>(7623):123&ndash;126; PMID: [https://pubmed.ncbi.nlm.nih.gov/27626371 27626371]; doi: [https://dx.doi.org/10.1038/nature19754 10.1038/nature19754]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27626371 10].
 +
#Worah K, <i>et al.</i> (2016) &quot;Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function.&quot; <i>Cell Rep</i> <b>16</b>(11):2953&ndash;2966; PMID: [https://pubmed.ncbi.nlm.nih.gov/27626665 27626665]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.08.023 10.1016/j.celrep.2016.08.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27626665 719].
 +
#Bennike TB, <i>et al.</i> (2017) &quot;Proteome Analysis of Rheumatoid Arthritis Gut Mucosa.&quot; <i>J Proteome Res</i> <b>16</b>(1):346&ndash;354; PMID: [https://pubmed.ncbi.nlm.nih.gov/27627584 27627584]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00598 10.1021/acs.jproteome.6b00598]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27627584 33].
 +
#Altmann C, <i>et al.</i> (2016) &quot;Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.&quot; <i>Neurobiol Dis</i> <b>96</b>:294&ndash;311; PMID: [https://pubmed.ncbi.nlm.nih.gov/27629805 27629805]; doi: [https://dx.doi.org/10.1016/j.nbd.2016.09.010 10.1016/j.nbd.2016.09.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27629805 12].
 +
#Musunuri S, <i>et al.</i> (2016) &quot;Increased Levels of Extracellular Microvesicle Markers and Decreased Levels of Endocytic/Exocytic Proteins in the Alzheimer&#39;s Disease Brain.&quot; <i>J Alzheimers Dis</i> <b>54</b>(4):1671&ndash;1686; PMID: [https://pubmed.ncbi.nlm.nih.gov/27636840 27636840]; doi: [https://dx.doi.org/10.3233/JAD-160271 10.3233/JAD-160271]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27636840 107].
 +
#Eyckerman S, <i>et al.</i> (2016) &quot;Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>15</b>(10):3929&ndash;3937; PMID: [https://pubmed.ncbi.nlm.nih.gov/27640904 27640904]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00517 10.1021/acs.jproteome.6b00517]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27640904 95].
 +
#Jean Beltran PM, <i>et al.</i> (2016) &quot;A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection.&quot; <i>Cell Syst</i> <b>3</b>(4):361&ndash;373.e6; PMID: [https://pubmed.ncbi.nlm.nih.gov/27641956 27641956]; doi: [https://dx.doi.org/10.1016/j.cels.2016.08.012 10.1016/j.cels.2016.08.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27641956 45].
 +
#Athanason MG, <i>et al.</i> (2016) &quot;Hepatic SILAC proteomic data from PANDER transgenic model.&quot; <i>Data Brief</i> <b>9</b>:159&ndash;62; PMID: [https://pubmed.ncbi.nlm.nih.gov/27642623 27642623]; doi: [https://dx.doi.org/10.1016/j.dib.2016.08.017 10.1016/j.dib.2016.08.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27642623 18].
 +
#Bian Y, <i>et al.</i> (2016) &quot;Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.&quot; <i>Nat Chem Biol</i> <b>12</b>(11):959&ndash;966; PMID: [https://pubmed.ncbi.nlm.nih.gov/27642862 27642862]; doi: [https://dx.doi.org/10.1038/nchembio.2178 10.1038/nchembio.2178]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27642862 215].
 +
#Vu LD, <i>et al.</i> (2016) &quot;Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves.&quot; <i>J Proteome Res</i> <b>15</b>(12):4304&ndash;4317; PMID: [https://pubmed.ncbi.nlm.nih.gov/27643528 27643528]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00348 10.1021/acs.jproteome.6b00348]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27643528 28].
 +
#Kubicek-Sutherland JZ, <i>et al.</i> (2017) &quot;Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides.&quot; <i>J Antimicrob Chemother</i> <b>72</b>(1):115&ndash;127; PMID: [https://pubmed.ncbi.nlm.nih.gov/27650186 27650186]; doi: [https://dx.doi.org/10.1093/jac/dkw381 10.1093/jac/dkw381]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27650186 42].
 +
#Goldman AR, <i>et al.</i> (2016) &quot;The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level.&quot; <i>Mol Cell Proteomics</i> <b>15</b>(11):3348&ndash;3360; PMID: [https://pubmed.ncbi.nlm.nih.gov/27654507 27654507]; doi: [https://dx.doi.org/10.1074/mcp.M116.062539 10.1074/mcp.M116.062539]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27654507 12].
 +
#Radzikowski JL, <i>et al.</i> (2016) &quot;Bacterial persistence is an active &sigma;S stress response to metabolic flux limitation.&quot; <i>Mol Syst Biol</i> <b>12</b>(9):882; PMID: [https://pubmed.ncbi.nlm.nih.gov/27655400 27655400]; doi: [https://dx.doi.org/10.15252/msb.20166998 10.15252/msb.20166998]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27655400 30].
 +
#Rose CM, <i>et al.</i> (2016) &quot;Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes.&quot; <i>Cell Syst</i> <b>3</b>(4):395&ndash;403.e4; PMID: [https://pubmed.ncbi.nlm.nih.gov/27667366 27667366]; doi: [https://dx.doi.org/10.1016/j.cels.2016.08.009 10.1016/j.cels.2016.08.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27667366 26].
 +
#Abad MA, <i>et al.</i> (2016) &quot;Ska3 Ensures Timely Mitotic Progression by Interacting Directly With Microtubules and Ska1 Microtubule Binding Domain.&quot; <i>Sci Rep</i> <b>6</b>:34042; PMID: [https://pubmed.ncbi.nlm.nih.gov/27667719 27667719]; doi: [https://dx.doi.org/10.1038/srep34042 10.1038/srep34042]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27667719 10].
 +
#D&ouml;rfel MJ, <i>et al.</i> (2017) &quot;Proteomic and genomic characterization of a yeast model for Ogden syndrome.&quot; <i>Yeast</i> <b>34</b>(1):19&ndash;37; PMID: [https://pubmed.ncbi.nlm.nih.gov/27668839 27668839]; doi: [https://dx.doi.org/10.1002/yea.3211 10.1002/yea.3211]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27668839 1].
 +
#Lee A, <i>et al.</i> (2016) &quot;Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress.&quot; <i>J Proteome Res</i> <b>15</b>(12):4318&ndash;4336; PMID: [https://pubmed.ncbi.nlm.nih.gov/27669760 27669760]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00369 10.1021/acs.jproteome.6b00369]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27669760 14].
 +
#Smirnov A, <i>et al.</i> (2016) &quot;Grad-seq guides the discovery of ProQ as a major small RNA-binding protein.&quot; <i>Proc Natl Acad Sci U S A</i> <b>113</b>(41):11591&ndash;11596; PMID: [https://pubmed.ncbi.nlm.nih.gov/27671629 27671629]; doi: [https://dx.doi.org/10.1073/pnas.1609981113 10.1073/pnas.1609981113]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27671629 200].
 +
#Lyon SM, <i>et al.</i> (2016) &quot;A method for whole protein isolation from human cranial bone.&quot; <i>Anal Biochem</i> <b>515</b>:33&ndash;39; PMID: [https://pubmed.ncbi.nlm.nih.gov/27677936 27677936]; doi: [https://dx.doi.org/10.1016/j.ab.2016.09.021 10.1016/j.ab.2016.09.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27677936 10].
 +
#Larkin SE, <i>et al.</i> (2016) &quot;Detection of candidate biomarkers of prostate cancer progression in serum: a depletion-free 3D LC/MS quantitative proteomics pilot study.&quot; <i>Br J Cancer</i> <b>115</b>(9):1078&ndash;1086; PMID: [https://pubmed.ncbi.nlm.nih.gov/27685442 27685442]; doi: [https://dx.doi.org/10.1038/bjc.2016.291 10.1038/bjc.2016.291]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27685442 8].
 +
#Martello R, <i>et al.</i> (2016) &quot;Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue.&quot; <i>Nat Commun</i> <b>7</b>:12917; PMID: [https://pubmed.ncbi.nlm.nih.gov/27686526 27686526]; doi: [https://dx.doi.org/10.1038/ncomms12917 10.1038/ncomms12917]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27686526 15].
 +
#Mathieu AA, <i>et al.</i> (2016) &quot;Subcellular proteomics analysis of different stages of colorectal cancer cell lines.&quot; <i>Proteomics</i> <b>16</b>(23):3009&ndash;3018; PMID: [https://pubmed.ncbi.nlm.nih.gov/27689624 27689624]; doi: [https://dx.doi.org/10.1002/pmic.201600314 10.1002/pmic.201600314]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27689624 52].
 +
#Greenwood EJ, <i>et al.</i> (2016) &quot;Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/27690223 27690223]; doi: [https://dx.doi.org/10.7554/eLife.18296 10.7554/eLife.18296]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27690223 10].
 +
#Gautier V, <i>et al.</i> (2016) &quot;Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells.&quot; <i>Sci Rep</i> <b>6</b>:34255; PMID: [https://pubmed.ncbi.nlm.nih.gov/27694941 27694941]; doi: [https://dx.doi.org/10.1038/srep34255 10.1038/srep34255]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27694941 252].
 +
#Kwon OK, <i>et al.</i> (2016) &quot;Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos.&quot; <i>Electrophoresis</i> <b>37</b>(23-24):3137&ndash;3145; PMID: [https://pubmed.ncbi.nlm.nih.gov/27696471 27696471]; doi: [https://dx.doi.org/10.1002/elps.201600210 10.1002/elps.201600210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27696471 2].
 +
#Witzke KE, <i>et al.</i> (2017) &quot;Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.&quot; <i>J Proteome Res</i> <b>16</b>(1):137&ndash;146; PMID: [https://pubmed.ncbi.nlm.nih.gov/27696881 27696881]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00575 10.1021/acs.jproteome.6b00575]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27696881 82].
 +
#Baas R, <i>et al.</i> (2016) &quot;Quantitative Proteomics of the SMAD (Suppressor of Mothers against Decapentaplegic) Transcription Factor Family Identifies Importin 5 as a Bone Morphogenic Protein Receptor SMAD-specific Importin.&quot; <i>J Biol Chem</i> <b>291</b>(46):24121&ndash;24132; PMID: [https://pubmed.ncbi.nlm.nih.gov/27703004 27703004]; doi: [https://dx.doi.org/10.1074/jbc.M116.748582 10.1074/jbc.M116.748582]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27703004 108].
 +
#Hughes CS, <i>et al.</i> (2016) &quot;Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational research.&quot; <i>Sci Rep</i> <b>6</b>:34949; PMID: [https://pubmed.ncbi.nlm.nih.gov/27713570 27713570]; doi: [https://dx.doi.org/10.1038/srep34949 10.1038/srep34949]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27713570 172].
 +
#McShane E, <i>et al.</i> (2016) &quot;Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation.&quot; <i>Cell</i> <b>167</b>(3):803&ndash;815.e21; PMID: [https://pubmed.ncbi.nlm.nih.gov/27720452 27720452]; doi: [https://dx.doi.org/10.1016/j.cell.2016.09.015 10.1016/j.cell.2016.09.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27720452 153].
 +
#Sivadasan R, <i>et al.</i> (2016) &quot;C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.&quot; <i>Nat Neurosci</i> <b>19</b>(12):1610&ndash;1618; PMID: [https://pubmed.ncbi.nlm.nih.gov/27723745 27723745]; doi: [https://dx.doi.org/10.1038/nn.4407 10.1038/nn.4407]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27723745 6].
 +
#Wang Q, <i>et al.</i> (2017) &quot;Immunogenic HLA-DR-Presented Self-Peptides Identified Directly from Clinical Samples of Synovial Tissue, Synovial Fluid, or Peripheral Blood in Patients with Rheumatoid Arthritis or Lyme Arthritis.&quot; <i>J Proteome Res</i> <b>16</b>(1):122&ndash;136; PMID: [https://pubmed.ncbi.nlm.nih.gov/27726376 27726376]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00386 10.1021/acs.jproteome.6b00386]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27726376 61].
 +
#Al-Daghri NM, <i>et al.</i> (2016) &quot;Sex-specific vitamin D effects on blood coagulation among overweight adults.&quot; <i>Eur J Clin Invest</i> <b>46</b>(12):1031&ndash;1040; PMID: [https://pubmed.ncbi.nlm.nih.gov/27727459 27727459]; doi: [https://dx.doi.org/10.1111/eci.12688 10.1111/eci.12688]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27727459 50].
 +
#Kroksveen AC, <i>et al.</i> (2017) &quot;In-Depth Cerebrospinal Fluid Quantitative Proteome and Deglycoproteome Analysis: Presenting a Comprehensive Picture of Pathways and Processes Affected by Multiple Sclerosis.&quot; <i>J Proteome Res</i> <b>16</b>(1):179&ndash;194; PMID: [https://pubmed.ncbi.nlm.nih.gov/27728768 27728768]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00659 10.1021/acs.jproteome.6b00659]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27728768 26].
 +
#Streeter I, <i>et al.</i> (2017) &quot;The human-induced pluripotent stem cell initiative-data resources for cellular genetics.&quot; <i>Nucleic Acids Res</i> <b>45</b>(D1):D691&ndash;D697; PMID: [https://pubmed.ncbi.nlm.nih.gov/27733501 27733501]; doi: [https://dx.doi.org/10.1093/nar/gkw928 10.1093/nar/gkw928]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27733501 20].
 +
#Kuzmanov U, <i>et al.</i> (2016) &quot;Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy.&quot; <i>Proc Natl Acad Sci U S A</i> <b>113</b>(44):12592&ndash;12597; PMID: [https://pubmed.ncbi.nlm.nih.gov/27742792 27742792]; doi: [https://dx.doi.org/10.1073/pnas.1606444113 10.1073/pnas.1606444113]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27742792 126].
 +
#Seb&eacute;-Pedr&oacute;s A, <i>et al.</i> (2016) &quot;High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation.&quot; <i>Dev Cell</i> <b>39</b>(2):186&ndash;197; PMID: [https://pubmed.ncbi.nlm.nih.gov/27746046 27746046]; doi: [https://dx.doi.org/10.1016/j.devcel.2016.09.019 10.1016/j.devcel.2016.09.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27746046 30].
 +
#Varano M, <i>et al.</i> (2016) &quot;Temperature-dependent regulation of the Ochrobactrum anthropi proteome.&quot; <i>Proteomics</i> <b>16</b>(23):3019&ndash;3024; PMID: [https://pubmed.ncbi.nlm.nih.gov/27753207 27753207]; doi: [https://dx.doi.org/10.1002/pmic.201600048 10.1002/pmic.201600048]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27753207 12].
 +
#Liljedahl L, <i>et al.</i> (2016) &quot;N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models.&quot; <i>Clin Proteomics</i> <b>13</b>:22; PMID: [https://pubmed.ncbi.nlm.nih.gov/27757071 27757071]; doi: [https://dx.doi.org/10.1186/s12014-016-9123-z 10.1186/s12014-016-9123-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27757071 48].
 +
#Zammit CM, <i>et al.</i> (2016) &quot;Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34.&quot; <i>Metallomics</i> <b>8</b>(11):1204&ndash;1216; PMID: [https://pubmed.ncbi.nlm.nih.gov/27757465 27757465]; doi: [https://dx.doi.org/10.1039/c6mt00142d 10.1039/c6mt00142d]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27757465 56].
 +
#Sialana FJ, <i>et al.</i> (2016) &quot;Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels.&quot; <i>Proteomics</i> <b>16</b>(22):2911&ndash;2920; PMID: [https://pubmed.ncbi.nlm.nih.gov/27759936 27759936]; doi: [https://dx.doi.org/10.1002/pmic.201600234 10.1002/pmic.201600234]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27759936 86].
 +
#Duteil D, <i>et al.</i> (2016) &quot;Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue.&quot; <i>Cell Rep</i> <b>17</b>(4):1008&ndash;1021; PMID: [https://pubmed.ncbi.nlm.nih.gov/27760309 27760309]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.09.053 10.1016/j.celrep.2016.09.053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27760309 142].
 +
#Sarvaiya HA, <i>et al.</i> (2016) &quot;Insulin stimulated MCF7 breast cancer cells: Proteome dataset.&quot; <i>Data Brief</i> <b>9</b>:579&ndash;584; PMID: [https://pubmed.ncbi.nlm.nih.gov/27761513 27761513]; doi: [https://dx.doi.org/10.1016/j.dib.2016.09.025 10.1016/j.dib.2016.09.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27761513 1].
 +
#Richter E, <i>et al.</i> (2016) &quot;Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus.&quot; <i>J Proteome Res</i> <b>15</b>(12):4369&ndash;4386; PMID: [https://pubmed.ncbi.nlm.nih.gov/27762562 27762562]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00421 10.1021/acs.jproteome.6b00421]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27762562 75].
 +
#Assoni A, <i>et al.</i> (2017) &quot;Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use.&quot; <i>Stem Cells Dev</i> <b>26</b>(3):206&ndash;214; PMID: [https://pubmed.ncbi.nlm.nih.gov/27762666 27762666]; doi: [https://dx.doi.org/10.1089/scd.2016.0218 10.1089/scd.2016.0218]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27762666 48].
 +
#Schanzenb&auml;cher CT, <i>et al.</i> (2016) &quot;Nascent Proteome Remodeling following Homeostatic Scaling at Hippocampal Synapses.&quot; <i>Neuron</i> <b>92</b>(2):358&ndash;371; PMID: [https://pubmed.ncbi.nlm.nih.gov/27764671 27764671]; doi: [https://dx.doi.org/10.1016/j.neuron.2016.09.058 10.1016/j.neuron.2016.09.058]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27764671 80].
 +
#Yu P, <i>et al.</i> (2017) &quot;Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics.&quot; <i>Anal Bioanal Chem</i> <b>409</b>(4):1049&ndash;1057; PMID: [https://pubmed.ncbi.nlm.nih.gov/27766361 27766361]; doi: [https://dx.doi.org/10.1007/s00216-016-0023-x 10.1007/s00216-016-0023-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27766361 147].
 +
#Isogai T, <i>et al.</i> (2016) &quot;Quantitative Proteomics Illuminates a Functional Interaction between mDia2 and the Proteasome.&quot; <i>J Proteome Res</i> <b>15</b>(12):4624&ndash;4637; PMID: [https://pubmed.ncbi.nlm.nih.gov/27769112 27769112]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00718 10.1021/acs.jproteome.6b00718]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27769112 44].
 +
#Peng J, <i>et al.</i> (2017) &quot;Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes.&quot; <i>J Proteomics</i> <b>152</b>:75&ndash;87; PMID: [https://pubmed.ncbi.nlm.nih.gov/27771372 27771372]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.10.005 10.1016/j.jprot.2016.10.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27771372 25].
 +
#Rafiee MR, <i>et al.</i> (2016) &quot;Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins.&quot; <i>Mol Cell</i> <b>64</b>(3):624&ndash;635; PMID: [https://pubmed.ncbi.nlm.nih.gov/27773674 27773674]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.09.019 10.1016/j.molcel.2016.09.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27773674 13].
 +
#Duncan O, <i>et al.</i> (2017) &quot;Resource: Mapping the Triticum aestivum proteome.&quot; <i>Plant J</i> <b>89</b>(3):601&ndash;616; PMID: [https://pubmed.ncbi.nlm.nih.gov/27775198 27775198]; doi: [https://dx.doi.org/10.1111/tpj.13402 10.1111/tpj.13402]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27775198 28].
 +
#Maleki S, <i>et al.</i> (2016) &quot;Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves.&quot; <i>Sci Rep</i> <b>6</b>:35712; PMID: [https://pubmed.ncbi.nlm.nih.gov/27779199 27779199]; doi: [https://dx.doi.org/10.1038/srep35712 10.1038/srep35712]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27779199 6].
 +
#Ward JA, <i>et al.</i> (2016) &quot;Quantitative Chemical Proteomic Profiling of Ubiquitin Specific Proteases in Intact Cancer Cells.&quot; <i>ACS Chem Biol</i> <b>11</b>(12):3268&ndash;3272; PMID: [https://pubmed.ncbi.nlm.nih.gov/27779380 27779380]; doi: [https://dx.doi.org/10.1021/acschembio.6b00766 10.1021/acschembio.6b00766]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27779380 18].
 +
#Cunsolo V, <i>et al.</i> (2017) &quot;Polyphemus, Odysseus and the ovine milk proteome.&quot; <i>J Proteomics</i> <b>152</b>:58&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/27784645 27784645]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.10.007 10.1016/j.jprot.2016.10.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27784645 40].
 +
#Weisser H, <i>et al.</i> (2016) &quot;Flexible Data Analysis Pipeline for High-Confidence Proteogenomics.&quot; <i>J Proteome Res</i> <b>15</b>(12):4686&ndash;4695; PMID: [https://pubmed.ncbi.nlm.nih.gov/27786492 27786492]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00765 10.1021/acs.jproteome.6b00765]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27786492 35].
 +
#Shishkova E, <i>et al.</i> (2016) &quot;Now, More Than Ever, Proteomics Needs Better Chromatography.&quot; <i>Cell Syst</i> <b>3</b>(4):321&ndash;324; PMID: [https://pubmed.ncbi.nlm.nih.gov/27788355 27788355]; doi: [https://dx.doi.org/10.1016/j.cels.2016.10.007 10.1016/j.cels.2016.10.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27788355 35].
 +
#Zhao M, <i>et al.</i> (2016) &quot;iTRAQ-Based Membrane Proteomics Reveals Plasma Membrane Proteins Change During HepaRG Cell Differentiation.&quot; <i>J Proteome Res</i> <b>15</b>(12):4245&ndash;4257; PMID: [https://pubmed.ncbi.nlm.nih.gov/27790907 27790907]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00305 10.1021/acs.jproteome.6b00305]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27790907 1].
 +
#Ren Y, <i>et al.</i> (2016) &quot;Irradiation of Epithelial Carcinoma Cells Upregulates Calcium-Binding Proteins That Promote Survival under Hypoxic Conditions.&quot; <i>J Proteome Res</i> <b>15</b>(12):4258&ndash;4264; PMID: [https://pubmed.ncbi.nlm.nih.gov/27790916 27790916]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00340 10.1021/acs.jproteome.6b00340]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27790916 3].
 +
#Lundquist PK, <i>et al.</i> (2017) &quot;Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.&quot; <i>Mol Plant</i> <b>10</b>(1):197&ndash;211; PMID: [https://pubmed.ncbi.nlm.nih.gov/27794502 27794502]; doi: [https://dx.doi.org/10.1016/j.molp.2016.10.011 10.1016/j.molp.2016.10.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27794502 42].
 +
#Fournier M, <i>et al.</i> (2016) &quot;KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification.&quot; <i>Nat Commun</i> <b>7</b>:13227; PMID: [https://pubmed.ncbi.nlm.nih.gov/27796307 27796307]; doi: [https://dx.doi.org/10.1038/ncomms13227 10.1038/ncomms13227]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27796307 114].
 +
#Kentache T, <i>et al.</i> (2017) &quot;Global Dynamic Proteome Study of a Pellicle-forming Acinetobacter baumannii Strain.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(1):100&ndash;112; PMID: [https://pubmed.ncbi.nlm.nih.gov/27799293 27799293]; doi: [https://dx.doi.org/10.1074/mcp.M116.061044 10.1074/mcp.M116.061044]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27799293 35].
 +
#Danda R, <i>et al.</i> (2016) &quot;Proteomic profiling of retinoblastoma by high resolution mass spectrometry.&quot; <i>Clin Proteomics</i> <b>13</b>:29; PMID: [https://pubmed.ncbi.nlm.nih.gov/27799869 27799869]; doi: [https://dx.doi.org/10.1186/s12014-016-9128-7 10.1186/s12014-016-9128-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27799869 1].
 +
#Fahrmann JF, <i>et al.</i> (2016) &quot;Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival.&quot; <i>Clin Proteomics</i> <b>13</b>:31; PMID: [https://pubmed.ncbi.nlm.nih.gov/27799870 27799870]; doi: [https://dx.doi.org/10.1186/s12014-016-9132-y 10.1186/s12014-016-9132-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27799870 234].
 +
#Michalak M, <i>et al.</i> (2016) &quot;Detection of Proteome Changes in Human Colon Cancer Induced by Cell Surface Binding of Growth-Inhibitory Human Galectin-4 Using Quantitative SILAC-Based Proteomics.&quot; <i>J Proteome Res</i> <b>15</b>(12):4412&ndash;4422; PMID: [https://pubmed.ncbi.nlm.nih.gov/27801591 27801591]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00473 10.1021/acs.jproteome.6b00473]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27801591 6].
 +
#Karunakaran KP, <i>et al.</i> (2017) &quot;Identification of MHC-Bound Peptides from Dendritic Cells Infected with Salmonella enterica Strain SL1344: Implications for a Nontyphoidal Salmonella Vaccine.&quot; <i>J Proteome Res</i> <b>16</b>(1):298&ndash;306; PMID: [https://pubmed.ncbi.nlm.nih.gov/27802388 27802388]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00926 10.1021/acs.jproteome.6b00926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27802388 3].
 +
#Borziak K, <i>et al.</i> (2016) &quot;The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication.&quot; <i>Sci Rep</i> <b>6</b>:35864; PMID: [https://pubmed.ncbi.nlm.nih.gov/27804984 27804984]; doi: [https://dx.doi.org/10.1038/srep35864 10.1038/srep35864]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27804984 144].
 +
#Roberts JH, <i>et al.</i> (2016) &quot;Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome.&quot; <i>J Proteome Res</i> <b>15</b>(12):4731&ndash;4741; PMID: [https://pubmed.ncbi.nlm.nih.gov/27806573 27806573]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00927 10.1021/acs.jproteome.6b00927]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27806573 48].
 +
#Mardakheh FK, <i>et al.</i> (2016) &quot;RHO binding to FAM65A regulates Golgi reorientation during cell migration.&quot; <i>J Cell Sci</i> <b>129</b>(24):4466&ndash;4479; PMID: [https://pubmed.ncbi.nlm.nih.gov/27807006 27807006]; doi: [https://dx.doi.org/10.1242/jcs.198614 10.1242/jcs.198614]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27807006 18].
 +
#Leach MD, <i>et al.</i> (2017) &quot;Candida albicans Is Resistant to Polyglutamine Aggregation and Toxicity.&quot; <i>G3 (Bethesda)</i> <b>7</b>(1):95&ndash;108; PMID: [https://pubmed.ncbi.nlm.nih.gov/27807047 27807047]; doi: [https://dx.doi.org/10.1534/g3.116.035675 10.1534/g3.116.035675]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27807047 6].
 +
#Chen Y, <i>et al.</i> (2017) &quot;Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics.&quot; <i>Int J Cancer</i> <b>140</b>(4):900&ndash;913; PMID: [https://pubmed.ncbi.nlm.nih.gov/27813080 27813080]; doi: [https://dx.doi.org/10.1002/ijc.30496 10.1002/ijc.30496]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27813080 1].
 +
#Wang J, <i>et al.</i> (2017) &quot;Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver.&quot; <i>Cell Metab</i> <b>25</b>(1):102&ndash;117; PMID: [https://pubmed.ncbi.nlm.nih.gov/27818260 27818260]; doi: [https://dx.doi.org/10.1016/j.cmet.2016.10.003 10.1016/j.cmet.2016.10.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27818260 28].
 +
#Kogel U, <i>et al.</i> (2016) &quot;Evaluation of the Tobacco Heating System 2.2. Part 7: Systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke.&quot; <i>Regul Toxicol Pharmacol</i> <b>81 Suppl 2</b>:S123&ndash;S138; PMID: [https://pubmed.ncbi.nlm.nih.gov/27818347 27818347]; doi: [https://dx.doi.org/10.1016/j.yrtph.2016.11.001 10.1016/j.yrtph.2016.11.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27818347 36].
 +
#Hansen RK, <i>et al.</i> (2016) &quot;SCAI promotes DNA double-strand break repair in distinct chromosomal contexts.&quot; <i>Nat Cell Biol</i> <b>18</b>(12):1357&ndash;1366; PMID: [https://pubmed.ncbi.nlm.nih.gov/27820601 27820601]; doi: [https://dx.doi.org/10.1038/ncb3436 10.1038/ncb3436]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27820601 12].
 +
#Schmitt K, <i>et al.</i> (2017) &quot;Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling.&quot; <i>Mol Cell Biol</i> <b>37</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/27821475 27821475]; doi: [https://dx.doi.org/10.1128/MCB.00279-16 10.1128/MCB.00279-16]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27821475 274].
 +
#Mardakheh FK, <i>et al.</i> (2016) &quot;Proteomics profiling of interactome dynamics by colocalisation analysis (COLA).&quot; <i>Mol Biosyst</i> <b>13</b>(1):92&ndash;105; PMID: [https://pubmed.ncbi.nlm.nih.gov/27824369 27824369]; doi: [https://dx.doi.org/10.1039/c6mb00701e 10.1039/c6mb00701e]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27824369 16].
 +
#Warpman Berglund U, <i>et al.</i> (2016) &quot;Validation and development of MTH1 inhibitors for treatment of cancer.&quot; <i>Ann Oncol</i> <b>27</b>(12):2275&ndash;2283; PMID: [https://pubmed.ncbi.nlm.nih.gov/27827301 27827301]; doi: [https://dx.doi.org/10.1093/annonc/mdw429 10.1093/annonc/mdw429]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27827301 4].
 +
#Liu Y, <i>et al.</i> (2016) &quot;Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans.&quot; <i>Sci Rep</i> <b>6</b>:36832; PMID: [https://pubmed.ncbi.nlm.nih.gov/27833098 27833098]; doi: [https://dx.doi.org/10.1038/srep36832 10.1038/srep36832]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27833098 20].
 +
#Doll S, <i>et al.</i> (2017) &quot;Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(1):39&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/27834733 27834733]; doi: [https://dx.doi.org/10.1074/mcp.M116.063883 10.1074/mcp.M116.063883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27834733 14].
 +
#Vald&eacute;s A, <i>et al.</i> (2017) &quot;Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(1):8&ndash;22; PMID: [https://pubmed.ncbi.nlm.nih.gov/27834734 27834734]; doi: [https://dx.doi.org/10.1074/mcp.M116.061481 10.1074/mcp.M116.061481]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27834734 54].
 +
#Plum S, <i>et al.</i> (2016) &quot;Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection.&quot; <i>Sci Rep</i> <b>6</b>:37139; PMID: [https://pubmed.ncbi.nlm.nih.gov/27841354 27841354]; doi: [https://dx.doi.org/10.1038/srep37139 10.1038/srep37139]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27841354 9].
 +
#Eisenberg T, <i>et al.</i> (2016) &quot;Cardioprotection and lifespan extension by the natural polyamine spermidine.&quot; <i>Nat Med</i> <b>22</b>(12):1428&ndash;1438; PMID: [https://pubmed.ncbi.nlm.nih.gov/27841876 27841876]; doi: [https://dx.doi.org/10.1038/nm.4222 10.1038/nm.4222]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27841876 9].
 +
#Villoria MT, <i>et al.</i> (2017) &quot;Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair.&quot; <i>EMBO J</i> <b>36</b>(1):79&ndash;101; PMID: [https://pubmed.ncbi.nlm.nih.gov/27852625 27852625]; doi: [https://dx.doi.org/10.15252/embj.201593540 10.15252/embj.201593540]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27852625 12].
 +
#Schmitges FW, <i>et al.</i> (2016) &quot;Multiparameter functional diversity of human C2H2 zinc finger proteins.&quot; <i>Genome Res</i> <b>26</b>(12):1742&ndash;1752; PMID: [https://pubmed.ncbi.nlm.nih.gov/27852650 27852650]; doi: [https://dx.doi.org/10.1101/gr.209643.116 10.1101/gr.209643.116]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27852650 224].
 +
#Beringer M, <i>et al.</i> (2016) &quot;EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells.&quot; <i>Mol Cell</i> <b>64</b>(4):645&ndash;658; PMID: [https://pubmed.ncbi.nlm.nih.gov/27863225 27863225]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.10.018 10.1016/j.molcel.2016.10.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27863225 12].
 +
#Bassani-Sternberg M, <i>et al.</i> (2016) &quot;Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry.&quot; <i>Nat Commun</i> <b>7</b>:13404; PMID: [https://pubmed.ncbi.nlm.nih.gov/27869121 27869121]; doi: [https://dx.doi.org/10.1038/ncomms13404 10.1038/ncomms13404]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27869121 138].
 +
#Wallace PW, <i>et al.</i> (2017) &quot;PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes.&quot; <i>Appl Microbiol Biotechnol</i> <b>101</b>(6):2291&ndash;2303; PMID: [https://pubmed.ncbi.nlm.nih.gov/27872998 27872998]; doi: [https://dx.doi.org/10.1007/s00253-016-7992-8 10.1007/s00253-016-7992-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27872998 28].
 +
#Muqaku B, <i>et al.</i> (2017) &quot;Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(1):86&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/27879288 27879288]; doi: [https://dx.doi.org/10.1074/mcp.M116.063313 10.1074/mcp.M116.063313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27879288 18].
 +
#St-Denis N, <i>et al.</i> (2016) &quot;Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators.&quot; <i>Cell Rep</i> <b>17</b>(9):2488&ndash;2501; PMID: [https://pubmed.ncbi.nlm.nih.gov/27880917 27880917]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.10.078 10.1016/j.celrep.2016.10.078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27880917 315].
 +
#Sheppard C, <i>et al.</i> (2016) &quot;Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP.&quot; <i>Nat Commun</i> <b>7</b>:13595; PMID: [https://pubmed.ncbi.nlm.nih.gov/27882920 27882920]; doi: [https://dx.doi.org/10.1038/ncomms13595 10.1038/ncomms13595]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27882920 9].
 +
#Mossina A, <i>et al.</i> (2017) &quot;Cigarette smoke alters the secretome of lung epithelial cells.&quot; <i>Proteomics</i> <b>17</b>(1-2):; PMID: [https://pubmed.ncbi.nlm.nih.gov/27891773 27891773]; doi: [https://dx.doi.org/10.1002/pmic.201600243 10.1002/pmic.201600243]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27891773 24].
 +
#Hurwitz SN, <i>et al.</i> (2016) &quot;Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers.&quot; <i>Oncotarget</i> <b>7</b>(52):86999&ndash;87015; PMID: [https://pubmed.ncbi.nlm.nih.gov/27894104 27894104]; doi: [https://dx.doi.org/10.18632/oncotarget.13569 10.18632/oncotarget.13569]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27894104 898].
 +
#Gonneaud A, <i>et al.</i> (2016) &quot;A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids.&quot; <i>Sci Rep</i> <b>6</b>:38195; PMID: [https://pubmed.ncbi.nlm.nih.gov/27901089 27901089]; doi: [https://dx.doi.org/10.1038/srep38195 10.1038/srep38195]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27901089 38].
 +
#Song L, <i>et al.</i> (2017) &quot;Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide.&quot; <i>J Proteomics</i> <b>154</b>:49&ndash;58; PMID: [https://pubmed.ncbi.nlm.nih.gov/27903465 27903465]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.11.018 10.1016/j.jprot.2016.11.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27903465 6].
 +
#Sundberg M, <i>et al.</i> (2016) &quot;Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.&quot; <i>PLoS One</i> <b>11</b>(12):e0167138; PMID: [https://pubmed.ncbi.nlm.nih.gov/27907059 27907059]; doi: [https://dx.doi.org/10.1371/journal.pone.0167138 10.1371/journal.pone.0167138]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27907059 3].
 +
#Tatham MH, <i>et al.</i> (2017) &quot;A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(2):310&ndash;326; PMID: [https://pubmed.ncbi.nlm.nih.gov/27913581 27913581]; doi: [https://dx.doi.org/10.1074/mcp.O116.065219 10.1074/mcp.O116.065219]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27913581 40].
 +
#Beaumont V, <i>et al.</i> (2016) &quot;Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington&#39;s Disease Models.&quot; <i>Neuron</i> <b>92</b>(6):1220&ndash;1237; PMID: [https://pubmed.ncbi.nlm.nih.gov/27916455 27916455]; doi: [https://dx.doi.org/10.1016/j.neuron.2016.10.064 10.1016/j.neuron.2016.10.064]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27916455 377].
 +
#Tiberti N, <i>et al.</i> (2016) &quot;Exploring experimental cerebral malaria pathogenesis through the characterisation of host-derived plasma microparticle protein content.&quot; <i>Sci Rep</i> <b>6</b>:37871; PMID: [https://pubmed.ncbi.nlm.nih.gov/27917875 27917875]; doi: [https://dx.doi.org/10.1038/srep37871 10.1038/srep37871]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27917875 4].
 +
#Tedeschi G, <i>et al.</i> (2017) &quot;Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality.&quot; <i>J Assist Reprod Genet</i> <b>34</b>(2):225&ndash;238; PMID: [https://pubmed.ncbi.nlm.nih.gov/27924460 27924460]; doi: [https://dx.doi.org/10.1007/s10815-016-0842-x 10.1007/s10815-016-0842-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27924460 10].
 +
#Sharma R, <i>et al.</i> (2016) &quot;Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition.&quot; <i>J Proteome Res</i> <b>15</b>(12):4476&ndash;4489; PMID: [https://pubmed.ncbi.nlm.nih.gov/27934295 27934295]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00613 10.1021/acs.jproteome.6b00613]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27934295 18].
 +
#Zhao H, <i>et al.</i> (2017) &quot;Posttranscriptional Regulation in Adenovirus Infected Cells.&quot; <i>J Proteome Res</i> <b>16</b>(2):872&ndash;888; PMID: [https://pubmed.ncbi.nlm.nih.gov/27959563 27959563]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00834 10.1021/acs.jproteome.6b00834]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27959563 6].
 +
#Seidel G, <i>et al.</i> (2017) &quot;Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes.&quot; <i>J Proteome Res</i> <b>16</b>(2):504&ndash;515; PMID: [https://pubmed.ncbi.nlm.nih.gov/27966978 27966978]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00647 10.1021/acs.jproteome.6b00647]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27966978 27].
 +
#Dauden MI, <i>et al.</i> (2017) &quot;Architecture of the yeast Elongator complex.&quot; <i>EMBO Rep</i> <b>18</b>(2):264&ndash;279; PMID: [https://pubmed.ncbi.nlm.nih.gov/27974378 27974378]; doi: [https://dx.doi.org/10.15252/embr.201643353 10.15252/embr.201643353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27974378 44].
 +
#Herfs M, <i>et al.</i> (2017) &quot;Proteomic signatures reveal a dualistic and clinically relevant classification of anal canal carcinoma.&quot; <i>J Pathol</i> <b>241</b>(4):522&ndash;533; PMID: [https://pubmed.ncbi.nlm.nih.gov/27976366 27976366]; doi: [https://dx.doi.org/10.1002/path.4858 10.1002/path.4858]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27976366 60].
 +
#Zhang S, <i>et al.</i> (2017) &quot;Phosphatase POPX2 Exhibits Dual Regulatory Functions in Cancer Metastasis.&quot; <i>J Proteome Res</i> <b>16</b>(2):698&ndash;711; PMID: [https://pubmed.ncbi.nlm.nih.gov/27976581 27976581]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00748 10.1021/acs.jproteome.6b00748]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27976581 60].
 +
#Schunter AJ, <i>et al.</i> (2017) &quot;Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620.&quot; <i>Anal Bioanal Chem</i> <b>409</b>(7):1749&ndash;1763; PMID: [https://pubmed.ncbi.nlm.nih.gov/27987026 27987026]; doi: [https://dx.doi.org/10.1007/s00216-016-0125-5 10.1007/s00216-016-0125-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27987026 35].
 +
#Choi M, <i>et al.</i> (2017) &quot;ABRF Proteome Informatics Research Group (iPRG) 2015 Study: Detection of Differentially Abundant Proteins in Label-Free Quantitative LC-MS/MS Experiments.&quot; <i>J Proteome Res</i> <b>16</b>(2):945&ndash;957; PMID: [https://pubmed.ncbi.nlm.nih.gov/27990823 27990823]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00881 10.1021/acs.jproteome.6b00881]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27990823 12].
 +
#Bertile F, <i>et al.</i> (2016) &quot;The Safety Limits Of An Extended Fast: Lessons from a Non-Model Organism.&quot; <i>Sci Rep</i> <b>6</b>:39008; PMID: [https://pubmed.ncbi.nlm.nih.gov/27991520 27991520]; doi: [https://dx.doi.org/10.1038/srep39008 10.1038/srep39008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/27991520 194].
 +
#Evans IM, <i>et al.</i> (2017) &quot;Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(2):168&ndash;180; PMID: [https://pubmed.ncbi.nlm.nih.gov/28007913 28007913]; doi: [https://dx.doi.org/10.1074/mcp.M116.064428 10.1074/mcp.M116.064428]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28007913 89].
 +
#Geyer PE, <i>et al.</i> (2016) &quot;Proteomics reveals the effects of sustained weight loss on the human plasma proteome.&quot; <i>Mol Syst Biol</i> <b>12</b>(12):901; PMID: [https://pubmed.ncbi.nlm.nih.gov/28007936 28007936]; doi: [https://dx.doi.org/10.15252/msb.20167357 10.15252/msb.20167357]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28007936 1145].
 +
#Reimann L, <i>et al.</i> (2017) &quot;Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKC&alpha;) Modulating Protein Dynamics.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(3):346&ndash;367; PMID: [https://pubmed.ncbi.nlm.nih.gov/28028127 28028127]; doi: [https://dx.doi.org/10.1074/mcp.M116.065425 10.1074/mcp.M116.065425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28028127 278].
 +
#Rougemont B, <i>et al.</i> (2017) &quot;Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection.&quot; <i>Anal Chem</i> <b>89</b>(3):1421&ndash;1426; PMID: [https://pubmed.ncbi.nlm.nih.gov/28029036 28029036]; doi: [https://dx.doi.org/10.1021/acs.analchem.6b03201 10.1021/acs.analchem.6b03201]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28029036 8].
 +
#Hickox AE, <i>et al.</i> (2017) &quot;Global Analysis of Protein Expression of Inner Ear Hair Cells.&quot; <i>J Neurosci</i> <b>37</b>(5):1320&ndash;1339; PMID: [https://pubmed.ncbi.nlm.nih.gov/28039372 28039372]; doi: [https://dx.doi.org/10.1523/JNEUROSCI.2267-16.2016 10.1523/JNEUROSCI.2267-16.2016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28039372 71].
 +
#Hansson KT, <i>et al.</i> (2017) &quot;Expanding the cerebrospinal fluid endopeptidome.&quot; <i>Proteomics</i> <b>17</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28044435 28044435]; doi: [https://dx.doi.org/10.1002/pmic.201600384 10.1002/pmic.201600384]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28044435 36].
 +
#Chen J, <i>et al.</i> (2017) &quot;Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics.&quot; <i>Cell Rep</i> <b>18</b>(1):237&ndash;247; PMID: [https://pubmed.ncbi.nlm.nih.gov/28052253 28052253]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.12.013 10.1016/j.celrep.2016.12.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28052253 128].
 +
#Cristobal A, <i>et al.</i> (2017) &quot;Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer.&quot; <i>Cell Rep</i> <b>18</b>(1):263&ndash;274; PMID: [https://pubmed.ncbi.nlm.nih.gov/28052255 28052255]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.12.016 10.1016/j.celrep.2016.12.016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28052255 175].
 +
#Degroote RL, <i>et al.</i> (2017) &quot;Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis.&quot; <i>J Proteomics</i> <b>154</b>:102&ndash;108; PMID: [https://pubmed.ncbi.nlm.nih.gov/28057602 28057602]; doi: [https://dx.doi.org/10.1016/j.jprot.2016.12.015 10.1016/j.jprot.2016.12.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28057602 6].
 +
#Braakman RB, <i>et al.</i> (2017) &quot;Proteomic characterization of microdissected breast tissue environment provides a protein-level overview of malignant transformation.&quot; <i>Proteomics</i> <b>17</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28058811 28058811]; doi: [https://dx.doi.org/10.1002/pmic.201600213 10.1002/pmic.201600213]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28058811 70].
 +
#Beck F, <i>et al.</i> (2017) &quot;Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition.&quot; <i>Blood</i> <b>129</b>(2):e1&ndash;e12; PMID: [https://pubmed.ncbi.nlm.nih.gov/28060719 28060719]; doi: [https://dx.doi.org/10.1182/blood-2016-05-714048 10.1182/blood-2016-05-714048]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28060719 12].
 +
#Clotet S, <i>et al.</i> (2017) &quot;Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(3):368&ndash;385; PMID: [https://pubmed.ncbi.nlm.nih.gov/28062795 28062795]; doi: [https://dx.doi.org/10.1074/mcp.M116.061903 10.1074/mcp.M116.061903]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28062795 11].
 +
#Johnston HE, <i>et al.</i> (2017) &quot;Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(3):386&ndash;406; PMID: [https://pubmed.ncbi.nlm.nih.gov/28062796 28062796]; doi: [https://dx.doi.org/10.1074/mcp.M116.063511 10.1074/mcp.M116.063511]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28062796 166].
 +
#Diaz-Vera J, <i>et al.</i> (2017) &quot;A proteomic approach to identify endosomal cargoes controlling cancer invasiveness.&quot; <i>J Cell Sci</i> <b>130</b>(4):697&ndash;711; PMID: [https://pubmed.ncbi.nlm.nih.gov/28062852 28062852]; doi: [https://dx.doi.org/10.1242/jcs.190835 10.1242/jcs.190835]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28062852 106].
 +
#Pietzner M, <i>et al.</i> (2017) &quot;Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model.&quot; <i>BMC Med</i> <b>15</b>(1):6; PMID: [https://pubmed.ncbi.nlm.nih.gov/28065164 28065164]; doi: [https://dx.doi.org/10.1186/s12916-016-0770-8 10.1186/s12916-016-0770-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28065164 80].
 +
#Kreutz D, <i>et al.</i> (2017) &quot;Response Profiling Using Shotgun Proteomics Enables Global Metallodrug Mechanisms of Action To Be Established.&quot; <i>Chemistry</i> <b>23</b>(8):1881&ndash;1890; PMID: [https://pubmed.ncbi.nlm.nih.gov/28071820 28071820]; doi: [https://dx.doi.org/10.1002/chem.201604516 10.1002/chem.201604516]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28071820 6].
 +
#Xing F, <i>et al.</i> (2017) &quot;The Anti-Warburg Effect Elicited by the cAMP-PGC1&alpha; Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.&quot; <i>Cell Rep</i> <b>18</b>(2):468&ndash;481; PMID: [https://pubmed.ncbi.nlm.nih.gov/28076790 28076790]; doi: [https://dx.doi.org/10.1016/j.celrep.2016.12.037 10.1016/j.celrep.2016.12.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28076790 60].
 +
#Loroch S, <i>et al.</i> (2017) &quot;Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B.&quot; <i>Thromb Haemost</i> <b>117</b>(3):556&ndash;569; PMID: [https://pubmed.ncbi.nlm.nih.gov/28078347 28078347]; doi: [https://dx.doi.org/10.1160/TH16-07-0515 10.1160/TH16-07-0515]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28078347 20].
 +
#Scott NE, <i>et al.</i> (2017) &quot;Interactome disassembly during apoptosis occurs independent of caspase cleavage.&quot; <i>Mol Syst Biol</i> <b>13</b>(1):906; PMID: [https://pubmed.ncbi.nlm.nih.gov/28082348 28082348]; doi: [https://dx.doi.org/10.15252/msb.20167067 10.15252/msb.20167067]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28082348 521].
 +
#Emmott E, <i>et al.</i> (2017) &quot;Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S215&ndash;S229; PMID: [https://pubmed.ncbi.nlm.nih.gov/28087593 28087593]; doi: [https://dx.doi.org/10.1074/mcp.M116.062448 10.1074/mcp.M116.062448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28087593 3].
 +
#Niklasson M, <i>et al.</i> (2017) &quot;Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses.&quot; <i>Cancer Res</i> <b>77</b>(7):1741&ndash;1752; PMID: [https://pubmed.ncbi.nlm.nih.gov/28087597 28087597]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-16-2274 10.1158/0008-5472.CAN-16-2274]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28087597 6].
 +
#Gao Y, <i>et al.</i> (2017) &quot;Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses.&quot; <i>Oncotarget</i> <b>8</b>(5):7420&ndash;7440; PMID: [https://pubmed.ncbi.nlm.nih.gov/28088779 28088779]; doi: [https://dx.doi.org/10.18632/oncotarget.14558 10.18632/oncotarget.14558]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28088779 2].
 +
#Riesner K, <i>et al.</i> (2017) &quot;Initiation of acute graft-versus-host disease by angiogenesis.&quot; <i>Blood</i> <b>129</b>(14):2021&ndash;2032; PMID: [https://pubmed.ncbi.nlm.nih.gov/28096092 28096092]; doi: [https://dx.doi.org/10.1182/blood-2016-08-736314 10.1182/blood-2016-08-736314]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28096092 1].
 +
#Princz LN, <i>et al.</i> (2017) &quot;Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.&quot; <i>EMBO J</i> <b>36</b>(5):664&ndash;678; PMID: [https://pubmed.ncbi.nlm.nih.gov/28096179 28096179]; doi: [https://dx.doi.org/10.15252/embj.201694831 10.15252/embj.201694831]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28096179 130].
 +
#Chymkowitch P, <i>et al.</i> (2017) &quot;TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(5):1039&ndash;1044; PMID: [https://pubmed.ncbi.nlm.nih.gov/28096404 28096404]; doi: [https://dx.doi.org/10.1073/pnas.1615093114 10.1073/pnas.1615093114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28096404 21].
 +
#Reckel S, <i>et al.</i> (2017) &quot;Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics.&quot; <i>Leukemia</i> <b>31</b>(7):1502&ndash;1512; PMID: [https://pubmed.ncbi.nlm.nih.gov/28111465 28111465]; doi: [https://dx.doi.org/10.1038/leu.2017.36 10.1038/leu.2017.36]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28111465 10].
 +
#Tsiatsiani L, <i>et al.</i> (2017) &quot;Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)<sub>n</sub> and (X)<sub>n</sub>K/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics.&quot; <i>J Proteome Res</i> <b>16</b>(2):852&ndash;861; PMID: [https://pubmed.ncbi.nlm.nih.gov/28111955 28111955]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00825 10.1021/acs.jproteome.6b00825]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28111955 28].
 +
#Hendriks IA, <i>et al.</i> (2017) &quot;Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation.&quot; <i>Nat Struct Mol Biol</i> <b>24</b>(3):325&ndash;336; PMID: [https://pubmed.ncbi.nlm.nih.gov/28112733 28112733]; doi: [https://dx.doi.org/10.1038/nsmb.3366 10.1038/nsmb.3366]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28112733 311].
 +
#Badalato N, <i>et al.</i> (2017) &quot;Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties.&quot; <i>PLoS One</i> <b>12</b>(1):e0170524; PMID: [https://pubmed.ncbi.nlm.nih.gov/28114419 28114419]; doi: [https://dx.doi.org/10.1371/journal.pone.0170524 10.1371/journal.pone.0170524]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28114419 24].
 +
#Glisovic-Aplenc T, <i>et al.</i> (2017) &quot;Improved surfaceome coverage with a label-free nonaffinity-purified workflow.&quot; <i>Proteomics</i> <b>17</b>(7):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28116781 28116781]; doi: [https://dx.doi.org/10.1002/pmic.201600344 10.1002/pmic.201600344]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28116781 41].
 +
#Baker MS, <i>et al.</i> (2017) &quot;Accelerating the search for the missing proteins in the human proteome.&quot; <i>Nat Commun</i> <b>8</b>:14271; PMID: [https://pubmed.ncbi.nlm.nih.gov/28117396 28117396]; doi: [https://dx.doi.org/10.1038/ncomms14271 10.1038/ncomms14271]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28117396 12].
 +
#Kulak NA, <i>et al.</i> (2017) &quot;Loss-less Nano-fractionator for High Sensitivity, High Coverage Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):694&ndash;705; PMID: [https://pubmed.ncbi.nlm.nih.gov/28126900 28126900]; doi: [https://dx.doi.org/10.1074/mcp.O116.065136 10.1074/mcp.O116.065136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28126900 60].
 +
#Yu Y, <i>et al.</i> (2017) &quot;Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections.&quot; <i>PLoS Pathog</i> <b>13</b>(1):e1006151; PMID: [https://pubmed.ncbi.nlm.nih.gov/28129394 28129394]; doi: [https://dx.doi.org/10.1371/journal.ppat.1006151 10.1371/journal.ppat.1006151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28129394 72].
 +
#Tuveng TR, <i>et al.</i> (2017) &quot;Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200.&quot; <i>Biochim Biophys Acta Proteins Proteom</i> <b>1865</b>(4):414&ndash;421; PMID: [https://pubmed.ncbi.nlm.nih.gov/28130068 28130068]; doi: [https://dx.doi.org/10.1016/j.bbapap.2017.01.007 10.1016/j.bbapap.2017.01.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28130068 54].
 +
#Lorenz C, <i>et al.</i> (2017) &quot;Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.&quot; <i>Cell Stem Cell</i> <b>20</b>(5):659&ndash;674.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/28132834 28132834]; doi: [https://dx.doi.org/10.1016/j.stem.2016.12.013 10.1016/j.stem.2016.12.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132834 14].
 +
#Godfrey M, <i>et al.</i> (2017) &quot;PP2A<sup>Cdc55</sup> Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation.&quot; <i>Mol Cell</i> <b>65</b>(3):393&ndash;402.e3; PMID: [https://pubmed.ncbi.nlm.nih.gov/28132839 28132839]; doi: [https://dx.doi.org/10.1016/j.molcel.2016.12.018 10.1016/j.molcel.2016.12.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28132839 120].
 +
#Liu X, <i>et al.</i> (2017) &quot;Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes.&quot; <i>Nat Commun</i> <b>8</b>:14286; PMID: [https://pubmed.ncbi.nlm.nih.gov/28134249 28134249]; doi: [https://dx.doi.org/10.1038/ncomms14286 10.1038/ncomms14286]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28134249 5].
 +
#Zolg DP, <i>et al.</i> (2017) &quot;Building ProteomeTools based on a complete synthetic human proteome.&quot; <i>Nat Methods</i> <b>14</b>(3):259&ndash;262; PMID: [https://pubmed.ncbi.nlm.nih.gov/28135259 28135259]; doi: [https://dx.doi.org/10.1038/nmeth.4153 10.1038/nmeth.4153]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28135259 1095].
 +
#Zhang F, <i>et al.</i> (2017) &quot;SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells.&quot; <i>Chem Res Toxicol</i> <b>30</b>(4):1006&ndash;1014; PMID: [https://pubmed.ncbi.nlm.nih.gov/28140569 28140569]; doi: [https://dx.doi.org/10.1021/acs.chemrestox.6b00416 10.1021/acs.chemrestox.6b00416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28140569 66].
 +
#Abe Y, <i>et al.</i> (2017) &quot;Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters.&quot; <i>J Proteome Res</i> <b>16</b>(2):1077&ndash;1086; PMID: [https://pubmed.ncbi.nlm.nih.gov/28152594 28152594]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00576 10.1021/acs.jproteome.6b00576]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28152594 41].
 +
#Jung SY, <i>et al.</i> (2017) &quot;An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):581&ndash;593; PMID: [https://pubmed.ncbi.nlm.nih.gov/28153913 28153913]; doi: [https://dx.doi.org/10.1074/mcp.M116.061440 10.1074/mcp.M116.061440]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28153913 610].
 +
#Diering GH, <i>et al.</i> (2017) &quot;Homer1a drives homeostatic scaling-down of excitatory synapses during sleep.&quot; <i>Science</i> <b>355</b>(6324):511&ndash;515; PMID: [https://pubmed.ncbi.nlm.nih.gov/28154077 28154077]; doi: [https://dx.doi.org/10.1126/science.aai8355 10.1126/science.aai8355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28154077 25].
 +
#Nuzzo D, <i>et al.</i> (2017) &quot;A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer&#39;s Disease A&beta; Peptide: Spliceosome Impairment.&quot; <i>J Proteome Res</i> <b>16</b>(4):1526&ndash;1541; PMID: [https://pubmed.ncbi.nlm.nih.gov/28157316 28157316]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00925 10.1021/acs.jproteome.6b00925]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28157316 8].
 +
#Park YJ, <i>et al.</i> (2017) &quot;Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes.&quot; <i>PLoS One</i> <b>12</b>(2):e0169677; PMID: [https://pubmed.ncbi.nlm.nih.gov/28158262 28158262]; doi: [https://dx.doi.org/10.1371/journal.pone.0169677 10.1371/journal.pone.0169677]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28158262 2].
 +
#Davis S, <i>et al.</i> (2017) &quot;Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis.&quot; <i>J Proteome Res</i> <b>16</b>(3):1288&ndash;1299; PMID: [https://pubmed.ncbi.nlm.nih.gov/28164708 28164708]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00915 10.1021/acs.jproteome.6b00915]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28164708 7].
 +
#Petrovic V, <i>et al.</i> (2017) &quot;On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay.&quot; <i>Anal Biochem</i> <b>523</b>:10&ndash;16; PMID: [https://pubmed.ncbi.nlm.nih.gov/28167071 28167071]; doi: [https://dx.doi.org/10.1016/j.ab.2017.01.027 10.1016/j.ab.2017.01.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28167071 3].
 +
#Worthington J, <i>et al.</i> (2017) &quot;Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):608&ndash;621; PMID: [https://pubmed.ncbi.nlm.nih.gov/28174229 28174229]; doi: [https://dx.doi.org/10.1074/mcp.M116.061267 10.1074/mcp.M116.061267]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174229 190].
 +
#Li X, <i>et al.</i> (2017) &quot;Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):594&ndash;607; PMID: [https://pubmed.ncbi.nlm.nih.gov/28174230 28174230]; doi: [https://dx.doi.org/10.1074/mcp.M116.064543 10.1074/mcp.M116.064543]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174230 44].
 +
#Kalkan T, <i>et al.</i> (2017) &quot;Tracking the embryonic stem cell transition from ground state pluripotency.&quot; <i>Development</i> <b>144</b>(7):1221&ndash;1234; PMID: [https://pubmed.ncbi.nlm.nih.gov/28174249 28174249]; doi: [https://dx.doi.org/10.1242/dev.142711 10.1242/dev.142711]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174249 24].
 +
#Cant&ugrave; C, <i>et al.</i> (2017) &quot;A cytoplasmic role of Wnt/&beta;-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation.&quot; <i>Sci Signal</i> <b>10</b>(465):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28174279 28174279]; doi: [https://dx.doi.org/10.1126/scisignal.aah4598 10.1126/scisignal.aah4598]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28174279 3].
 +
#Massafra V, <i>et al.</i> (2017) &quot;Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation.&quot; <i>PLoS One</i> <b>12</b>(2):e0171185; PMID: [https://pubmed.ncbi.nlm.nih.gov/28178326 28178326]; doi: [https://dx.doi.org/10.1371/journal.pone.0171185 10.1371/journal.pone.0171185]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28178326 9].
 +
#Kulej K, <i>et al.</i> (2017) &quot;Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S92&ndash;S107; PMID: [https://pubmed.ncbi.nlm.nih.gov/28179408 28179408]; doi: [https://dx.doi.org/10.1074/mcp.M116.065987 10.1074/mcp.M116.065987]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28179408 63].
 +
#Schm&ouml;lders J, <i>et al.</i> (2017) &quot;Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of <i>Legionella pneumophila</i> with the Small GTPase Ras-related protein 1 (Rap1).&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):622&ndash;641; PMID: [https://pubmed.ncbi.nlm.nih.gov/28183814 28183814]; doi: [https://dx.doi.org/10.1074/mcp.M116.063453 10.1074/mcp.M116.063453]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28183814 118].
 +
#Greseth MD, <i>et al.</i> (2017) &quot;Proteomic Screen for Cellular Targets of the Vaccinia Virus F10 Protein Kinase Reveals that Phosphorylation of mDia Regulates Stress Fiber Formation.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S124&ndash;S143; PMID: [https://pubmed.ncbi.nlm.nih.gov/28183815 28183815]; doi: [https://dx.doi.org/10.1074/mcp.M116.065003 10.1074/mcp.M116.065003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28183815 9].
 +
#Fielding CA, <i>et al.</i> (2017) &quot;Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/28186488 28186488]; doi: [https://dx.doi.org/10.7554/eLife.22206 10.7554/eLife.22206]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28186488 9].
 +
#Barnea E, <i>et al.</i> (2017) &quot;The Human Leukocyte Antigen (HLA)-B27 Peptidome <i>in Vivo</i>, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):642&ndash;662; PMID: [https://pubmed.ncbi.nlm.nih.gov/28188227 28188227]; doi: [https://dx.doi.org/10.1074/mcp.M116.066241 10.1074/mcp.M116.066241]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28188227 49].
 +
#Howie D, <i>et al.</i> (2017) &quot;Foxp3 drives oxidative phosphorylation and protection from lipotoxicity.&quot; <i>JCI Insight</i> <b>2</b>(3):e89160; PMID: [https://pubmed.ncbi.nlm.nih.gov/28194435 28194435]; doi: [https://dx.doi.org/10.1172/jci.insight.89160 10.1172/jci.insight.89160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28194435 7].
 +
#Liu NQ, <i>et al.</i> (2017) &quot;The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression.&quot; <i>Nat Commun</i> <b>8</b>:14418; PMID: [https://pubmed.ncbi.nlm.nih.gov/28195176 28195176]; doi: [https://dx.doi.org/10.1038/ncomms14418 10.1038/ncomms14418]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28195176 250].
 +
#Stewart PA, <i>et al.</i> (2017) &quot;Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms.&quot; <i>Proteomics</i> <b>17</b>(6):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28195392 28195392]; doi: [https://dx.doi.org/10.1002/pmic.201600300 10.1002/pmic.201600300]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28195392 36].
 +
#Lorey MB, <i>et al.</i> (2017) &quot;Global Characterization of Protein Secretion from Human Macrophages Following Non-canonical Caspase-4/5 Inflammasome Activation.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S187&ndash;S199; PMID: [https://pubmed.ncbi.nlm.nih.gov/28196878 28196878]; doi: [https://dx.doi.org/10.1074/mcp.M116.064840 10.1074/mcp.M116.064840]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28196878 60].
 +
#Suh MJ, <i>et al.</i> (2017) &quot;Antibiotic-dependent perturbations of extended spectrum beta-lactamase producing Klebsiella pneumoniae proteome.&quot; <i>Proteomics</i> <b>17</b>(9):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28198105 28198105]; doi: [https://dx.doi.org/10.1002/pmic.201700003 10.1002/pmic.201700003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28198105 24].
 +
#Potu H, <i>et al.</i> (2017) &quot;Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma.&quot; <i>Nat Commun</i> <b>8</b>:14449; PMID: [https://pubmed.ncbi.nlm.nih.gov/28198367 28198367]; doi: [https://dx.doi.org/10.1038/ncomms14449 10.1038/ncomms14449]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28198367 6].
 +
#Tahir A, <i>et al.</i> (2017) &quot;Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation.&quot; <i>Anal Chem</i> <b>89</b>(3):1945&ndash;1954; PMID: [https://pubmed.ncbi.nlm.nih.gov/28208246 28208246]; doi: [https://dx.doi.org/10.1021/acs.analchem.6b04433 10.1021/acs.analchem.6b04433]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28208246 32].
 +
#Cutler JA, <i>et al.</i> (2017) &quot;Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis.&quot; <i>Leukemia</i> <b>31</b>(7):1513&ndash;1524; PMID: [https://pubmed.ncbi.nlm.nih.gov/28210003 28210003]; doi: [https://dx.doi.org/10.1038/leu.2017.61 10.1038/leu.2017.61]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28210003 20].
 +
#Hartwig T, <i>et al.</i> (2017) &quot;The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2.&quot; <i>Mol Cell</i> <b>65</b>(4):730&ndash;742.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/28212753 28212753]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.01.021 10.1016/j.molcel.2017.01.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28212753 6].
 +
#Al Shweiki MR, <i>et al.</i> (2017) &quot;Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance.&quot; <i>J Proteome Res</i> <b>16</b>(4):1410&ndash;1424; PMID: [https://pubmed.ncbi.nlm.nih.gov/28217993 28217993]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00645 10.1021/acs.jproteome.6b00645]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28217993 54].
 +
#Swertfeger DK, <i>et al.</i> (2017) &quot;Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4):680&ndash;693; PMID: [https://pubmed.ncbi.nlm.nih.gov/28223350 28223350]; doi: [https://dx.doi.org/10.1074/mcp.M116.066290 10.1074/mcp.M116.066290]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28223350 180].
 +
#Abelin JG, <i>et al.</i> (2017) &quot;Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction.&quot; <i>Immunity</i> <b>46</b>(2):315&ndash;326; PMID: [https://pubmed.ncbi.nlm.nih.gov/28228285 28228285]; doi: [https://dx.doi.org/10.1016/j.immuni.2017.02.007 10.1016/j.immuni.2017.02.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28228285 87].
 +
#Groves JA, <i>et al.</i> (2017) &quot;Fatty acid synthase inhibits the <i>O-</i>GlcNAcase during oxidative stress.&quot; <i>J Biol Chem</i> <b>292</b>(16):6493&ndash;6511; PMID: [https://pubmed.ncbi.nlm.nih.gov/28232487 28232487]; doi: [https://dx.doi.org/10.1074/jbc.M116.760785 10.1074/jbc.M116.760785]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28232487 2].
 +
#Funnell T, <i>et al.</i> (2017) &quot;CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor.&quot; <i>Nat Commun</i> <b>8</b>(1):7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28232751 28232751]; doi: [https://dx.doi.org/10.1038/s41467-016-0008-7 10.1038/s41467-016-0008-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28232751 3].
 +
#Koppenol-Raab M, <i>et al.</i> (2017) &quot;Proteome and Secretome Analysis Reveals Differential Post-transcriptional Regulation of Toll-like Receptor Responses.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S172&ndash;S186; PMID: [https://pubmed.ncbi.nlm.nih.gov/28235783 28235783]; doi: [https://dx.doi.org/10.1074/mcp.M116.064261 10.1074/mcp.M116.064261]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28235783 629].
 +
#Arend KC, <i>et al.</i> (2017) &quot;Kinome Profiling Identifies Druggable Targets for Novel Human Cytomegalovirus (HCMV) Antivirals.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S263&ndash;S276; PMID: [https://pubmed.ncbi.nlm.nih.gov/28237943 28237943]; doi: [https://dx.doi.org/10.1074/mcp.M116.065375 10.1074/mcp.M116.065375]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28237943 14].
 +
#Jia X, <i>et al.</i> (2017) &quot;Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(4 suppl 1):S144&ndash;S160; PMID: [https://pubmed.ncbi.nlm.nih.gov/28242843 28242843]; doi: [https://dx.doi.org/10.1074/mcp.M116.063503 10.1074/mcp.M116.063503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28242843 12].
 +
#Bay&eacute;s &Agrave;, <i>et al.</i> (2017) &quot;Evolution of complexity in the zebrafish synapse proteome.&quot; <i>Nat Commun</i> <b>8</b>:14613; PMID: [https://pubmed.ncbi.nlm.nih.gov/28252024 28252024]; doi: [https://dx.doi.org/10.1038/ncomms14613 10.1038/ncomms14613]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28252024 17].
 +
#Liberton M, <i>et al.</i> (2017) &quot;Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803.&quot; <i>PLoS One</i> <b>12</b>(3):e0173251; PMID: [https://pubmed.ncbi.nlm.nih.gov/28253354 28253354]; doi: [https://dx.doi.org/10.1371/journal.pone.0173251 10.1371/journal.pone.0173251]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28253354 36].
 +
#Ib&aacute;&ntilde;ez MI, <i>et al.</i> (2017) &quot;Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS).&quot; <i>PLoS One</i> <b>12</b>(3):e0172908; PMID: [https://pubmed.ncbi.nlm.nih.gov/28253357 28253357]; doi: [https://dx.doi.org/10.1371/journal.pone.0172908 10.1371/journal.pone.0172908]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28253357 8].
 +
#Weinert BT, <i>et al.</i> (2017) &quot;Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the <i>E. coli</i> Acetylome.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(5):759&ndash;769; PMID: [https://pubmed.ncbi.nlm.nih.gov/28254776 28254776]; doi: [https://dx.doi.org/10.1074/mcp.M117.067587 10.1074/mcp.M117.067587]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28254776 140].
 +
#Casanovas A, <i>et al.</i> (2017) &quot;Large-Scale Filter-Aided Sample Preparation Method for the Analysis of the Ubiquitinome.&quot; <i>Anal Chem</i> <b>89</b>(7):3840&ndash;3846; PMID: [https://pubmed.ncbi.nlm.nih.gov/28260372 28260372]; doi: [https://dx.doi.org/10.1021/acs.analchem.6b04804 10.1021/acs.analchem.6b04804]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28260372 76].
 +
#Giddey AD, <i>et al.</i> (2017) &quot;A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations.&quot; <i>Sci Rep</i> <b>7</b>:43858; PMID: [https://pubmed.ncbi.nlm.nih.gov/28262820 28262820]; doi: [https://dx.doi.org/10.1038/srep43858 10.1038/srep43858]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28262820 18].
 +
#Rieckmann JC, <i>et al.</i> (2017) &quot;Social network architecture of human immune cells unveiled by quantitative proteomics.&quot; <i>Nat Immunol</i> <b>18</b>(5):583&ndash;593; PMID: [https://pubmed.ncbi.nlm.nih.gov/28263321 28263321]; doi: [https://dx.doi.org/10.1038/ni.3693 10.1038/ni.3693]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28263321 454].
 +
#Kanshin E, <i>et al.</i> (2017) &quot;Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(5):786&ndash;798; PMID: [https://pubmed.ncbi.nlm.nih.gov/28265048 28265048]; doi: [https://dx.doi.org/10.1074/mcp.M116.066233 10.1074/mcp.M116.066233]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28265048 32].
 +
#Espadas G, <i>et al.</i> (2017) &quot;Evaluation of different peptide fragmentation types and mass analyzers in data-dependent methods using an Orbitrap Fusion Lumos Tribrid mass spectrometer.&quot; <i>Proteomics</i> <b>17</b>(9):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28266123 28266123]; doi: [https://dx.doi.org/10.1002/pmic.201600416 10.1002/pmic.201600416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28266123 57].
 +
#Rapisarda V, <i>et al.</i> (2017) &quot;Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-&beta; Pathway.&quot; <i>Cell Rep</i> <b>18</b>(10):2480&ndash;2493; PMID: [https://pubmed.ncbi.nlm.nih.gov/28273461 28273461]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.02.012 10.1016/j.celrep.2017.02.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28273461 32].
 +
#Zhang T, <i>et al.</i> (2017) &quot;Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury.&quot; <i>Int J Mol Sci</i> <b>18</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28275217 28275217]; doi: [https://dx.doi.org/10.3390/ijms18010167 10.3390/ijms18010167]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28275217 4].
 +
#Sadewasser A, <i>et al.</i> (2017) &quot;Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(5):728&ndash;742; PMID: [https://pubmed.ncbi.nlm.nih.gov/28289176 28289176]; doi: [https://dx.doi.org/10.1074/mcp.M116.065904 10.1074/mcp.M116.065904]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28289176 20].
 +
#Blattner M, <i>et al.</i> (2017) &quot;SPOP Mutation Drives Prostate Tumorigenesis In&nbsp;Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling.&quot; <i>Cancer Cell</i> <b>31</b>(3):436&ndash;451; PMID: [https://pubmed.ncbi.nlm.nih.gov/28292441 28292441]; doi: [https://dx.doi.org/10.1016/j.ccell.2017.02.004 10.1016/j.ccell.2017.02.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28292441 96].
 +
#Bundy JL, <i>et al.</i> (2017) &quot;Sex differences in the molecular signature of the developing mouse hippocampus.&quot; <i>BMC Genomics</i> <b>18</b>(1):237; PMID: [https://pubmed.ncbi.nlm.nih.gov/28302071 28302071]; doi: [https://dx.doi.org/10.1186/s12864-017-3608-7 10.1186/s12864-017-3608-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28302071 51].
 +
#Winter M, <i>et al.</i> (2017) &quot;Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(5):855&ndash;872; PMID: [https://pubmed.ncbi.nlm.nih.gov/28302921 28302921]; doi: [https://dx.doi.org/10.1074/mcp.M116.066597 10.1074/mcp.M116.066597]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28302921 269].
 +
#Langley SR, <i>et al.</i> (2017) &quot;Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques.&quot; <i>J Clin Invest</i> <b>127</b>(4):1546&ndash;1560; PMID: [https://pubmed.ncbi.nlm.nih.gov/28319050 28319050]; doi: [https://dx.doi.org/10.1172/JCI86924 10.1172/JCI86924]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28319050 936].
 +
#Kliza K, <i>et al.</i> (2017) &quot;Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry.&quot; <i>Nat Methods</i> <b>14</b>(5):504&ndash;512; PMID: [https://pubmed.ncbi.nlm.nih.gov/28319114 28319114]; doi: [https://dx.doi.org/10.1038/nmeth.4228 10.1038/nmeth.4228]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28319114 32].
 +
#Khodadoust MS, <i>et al.</i> (2017) &quot;Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens.&quot; <i>Nature</i> <b>543</b>(7647):723&ndash;727; PMID: [https://pubmed.ncbi.nlm.nih.gov/28329770 28329770]; doi: [https://dx.doi.org/10.1038/nature21433 10.1038/nature21433]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28329770 147].
 +
#Yadav L, <i>et al.</i> (2017) &quot;Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics.&quot; <i>Cell Syst</i> <b>4</b>(4):430&ndash;444.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/28330616 28330616]; doi: [https://dx.doi.org/10.1016/j.cels.2017.02.011 10.1016/j.cels.2017.02.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28330616 512].
 +
#Zhang X, <i>et al.</i> (2017) &quot;Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(5):891&ndash;910; PMID: [https://pubmed.ncbi.nlm.nih.gov/28331001 28331001]; doi: [https://dx.doi.org/10.1074/mcp.M117.067439 10.1074/mcp.M117.067439]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28331001 41].
 +
#Nathan A, <i>et al.</i> (2017) &quot;The Wilms tumor protein Wt1 contributes to female fertility by regulating oviductal proteostasis.&quot; <i>Hum Mol Genet</i> <b>26</b>(9):1694&ndash;1705; PMID: [https://pubmed.ncbi.nlm.nih.gov/28334862 28334862]; doi: [https://dx.doi.org/10.1093/hmg/ddx075 10.1093/hmg/ddx075]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28334862 48].
 +
#Tien JF, <i>et al.</i> (2017) &quot;CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion.&quot; <i>Nucleic Acids Res</i> <b>45</b>(11):6698&ndash;6716; PMID: [https://pubmed.ncbi.nlm.nih.gov/28334900 28334900]; doi: [https://dx.doi.org/10.1093/nar/gkx187 10.1093/nar/gkx187]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28334900 11].
 +
#O&#39;Neill JR, <i>et al.</i> (2017) &quot;Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(6):1138&ndash;1150; PMID: [https://pubmed.ncbi.nlm.nih.gov/28336725 28336725]; doi: [https://dx.doi.org/10.1074/mcp.M116.065078 10.1074/mcp.M116.065078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28336725 7].
 +
#Francavilla C, <i>et al.</i> (2017) &quot;Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.&quot; <i>Cell Rep</i> <b>18</b>(13):3242&ndash;3256; PMID: [https://pubmed.ncbi.nlm.nih.gov/28355574 28355574]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.03.015 10.1016/j.celrep.2017.03.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28355574 59].
 +
#Casanova R, <i>et al.</i> (2017) &quot;Morphoproteomic Characterization of Lung Squamous Cell Carcinoma Fragmentation, a Histological Marker of Increased Tumor Invasiveness.&quot; <i>Cancer Res</i> <b>77</b>(10):2585&ndash;2593; PMID: [https://pubmed.ncbi.nlm.nih.gov/28364001 28364001]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-16-2363 10.1158/0008-5472.CAN-16-2363]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28364001 49].
 +
#Chatzinikolaou G, <i>et al.</i> (2017) &quot;ERCC1-XPF cooperates with CTCF and cohesin to&nbsp;facilitate the developmental silencing of imprinted&nbsp;genes.&quot; <i>Nat Cell Biol</i> <b>19</b>(5):421&ndash;432; PMID: [https://pubmed.ncbi.nlm.nih.gov/28368372 28368372]; doi: [https://dx.doi.org/10.1038/ncb3499 10.1038/ncb3499]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28368372 146].
 +
#Schaible B, <i>et al.</i> (2017) &quot;Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors.&quot; <i>J Infect Dis</i> <b>215</b>(9):1459&ndash;1467; PMID: [https://pubmed.ncbi.nlm.nih.gov/28368464 28368464]; doi: [https://dx.doi.org/10.1093/infdis/jix139 10.1093/infdis/jix139]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28368464 18].
 +
#Duguet F, <i>et al.</i> (2017) &quot;Proteomic Analysis of Regulatory T Cells Reveals the Importance of Themis1 in the Control of Their Suppressive Function.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(8):1416&ndash;1432; PMID: [https://pubmed.ncbi.nlm.nih.gov/28373295 28373295]; doi: [https://dx.doi.org/10.1074/mcp.M116.062745 10.1074/mcp.M116.062745]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28373295 26].
 +
#Namuduri AV, <i>et al.</i> (2017) &quot;A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(6):1081&ndash;1097; PMID: [https://pubmed.ncbi.nlm.nih.gov/28373296 28373296]; doi: [https://dx.doi.org/10.1074/mcp.M116.066159 10.1074/mcp.M116.066159]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28373296 80].
 +
#Anderson KA, <i>et al.</i> (2017) &quot;SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion.&quot; <i>Cell Metab</i> <b>25</b>(4):838&ndash;855.e15; PMID: [https://pubmed.ncbi.nlm.nih.gov/28380376 28380376]; doi: [https://dx.doi.org/10.1016/j.cmet.2017.03.003 10.1016/j.cmet.2017.03.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28380376 4].
 +
#Casas-Vila N, <i>et al.</i> (2017) &quot;The developmental proteome of <i>Drosophila melanogaster</i>.&quot; <i>Genome Res</i> <b>27</b>(7):1273&ndash;1285; PMID: [https://pubmed.ncbi.nlm.nih.gov/28381612 28381612]; doi: [https://dx.doi.org/10.1101/gr.213694.116 10.1101/gr.213694.116]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28381612 124].
 +
#Chiang CK, <i>et al.</i> (2017) &quot;Phosphoproteome Profiling Reveals Circadian Clock Regulation of Posttranslational Modifications in the Murine Hippocampus.&quot; <i>Front Neurol</i> <b>8</b>:110; PMID: [https://pubmed.ncbi.nlm.nih.gov/28382018 28382018]; doi: [https://dx.doi.org/10.3389/fneur.2017.00110 10.3389/fneur.2017.00110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28382018 299].
 +
#Young C, <i>et al.</i> (2017) &quot;Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature.&quot; <i>J Proteome Res</i> <b>16</b>(6):2307&ndash;2317; PMID: [https://pubmed.ncbi.nlm.nih.gov/28387123 28387123]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b01055 10.1021/acs.jproteome.6b01055]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28387123 12].
 +
#Beach RR, <i>et al.</i> (2017) &quot;Aneuploidy Causes Non-genetic Individuality.&quot; <i>Cell</i> <b>169</b>(2):229&ndash;242.e21; PMID: [https://pubmed.ncbi.nlm.nih.gov/28388408 28388408]; doi: [https://dx.doi.org/10.1016/j.cell.2017.03.021 10.1016/j.cell.2017.03.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28388408 3].
 +
#Lobingier BT, <i>et al.</i> (2017) &quot;An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells.&quot; <i>Cell</i> <b>169</b>(2):350&ndash;360.e12; PMID: [https://pubmed.ncbi.nlm.nih.gov/28388416 28388416]; doi: [https://dx.doi.org/10.1016/j.cell.2017.03.022 10.1016/j.cell.2017.03.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28388416 45].
 +
#Worst TS, <i>et al.</i> (2017) &quot;Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(6):998&ndash;1008; PMID: [https://pubmed.ncbi.nlm.nih.gov/28396511 28396511]; doi: [https://dx.doi.org/10.1074/mcp.M117.068577 10.1074/mcp.M117.068577]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28396511 17].
 +
#Mohr S, <i>et al.</i> (2017) &quot;Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia.&quot; <i>Cancer Cell</i> <b>31</b>(4):549&ndash;562.e11; PMID: [https://pubmed.ncbi.nlm.nih.gov/28399410 28399410]; doi: [https://dx.doi.org/10.1016/j.ccell.2017.03.001 10.1016/j.ccell.2017.03.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28399410 30].
 +
#Rinschen MM, <i>et al.</i> (2017) &quot;YAP-mediated mechanotransduction determines the podocyte&#39;s response to damage.&quot; <i>Sci Signal</i> <b>10</b>(474):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28400537 28400537]; doi: [https://dx.doi.org/10.1126/scisignal.aaf8165 10.1126/scisignal.aaf8165]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28400537 23].
 +
#M&uuml;ller MM, <i>et al.</i> (2017) &quot;Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNF&alpha; expression.&quot; <i>Sci Rep</i> <b>7</b>(1):838; PMID: [https://pubmed.ncbi.nlm.nih.gov/28404994 28404994]; doi: [https://dx.doi.org/10.1038/s41598-017-00828-y 10.1038/s41598-017-00828-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28404994 138].
 +
#Wang M, <i>et al.</i> (2017) &quot;The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(6):982&ndash;997; PMID: [https://pubmed.ncbi.nlm.nih.gov/28408662 28408662]; doi: [https://dx.doi.org/10.1074/mcp.M116.065797 10.1074/mcp.M116.065797]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28408662 21].
 +
#Shen X, <i>et al.</i> (2017) &quot;An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts.&quot; <i>J Proteome Res</i> <b>16</b>(7):2445&ndash;2456; PMID: [https://pubmed.ncbi.nlm.nih.gov/28412812 28412812]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00061 10.1021/acs.jproteome.7b00061]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28412812 20].
 +
#Kathiriya JJ, <i>et al.</i> (2017) &quot;Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis.&quot; <i>Cell Death Discov</i> <b>3</b>:17010; PMID: [https://pubmed.ncbi.nlm.nih.gov/28417017 28417017]; doi: [https://dx.doi.org/10.1038/cddiscovery.2017.10 10.1038/cddiscovery.2017.10]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28417017 3].
 +
#Perl K, <i>et al.</i> (2017) &quot;Reduced changes in protein compared to mRNA levels across non-proliferating tissues.&quot; <i>BMC Genomics</i> <b>18</b>(1):305; PMID: [https://pubmed.ncbi.nlm.nih.gov/28420336 28420336]; doi: [https://dx.doi.org/10.1186/s12864-017-3683-9 10.1186/s12864-017-3683-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28420336 6].
 +
#Mendoza-Viveros L, <i>et al.</i> (2017) &quot;miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock.&quot; <i>Cell Rep</i> <b>19</b>(3):505&ndash;520; PMID: [https://pubmed.ncbi.nlm.nih.gov/28423315 28423315]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.03.057 10.1016/j.celrep.2017.03.057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28423315 128].
 +
#Maus RLG, <i>et al.</i> (2017) &quot;Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation.&quot; <i>Front Immunol</i> <b>8</b>:358; PMID: [https://pubmed.ncbi.nlm.nih.gov/28424693 28424693]; doi: [https://dx.doi.org/10.3389/fimmu.2017.00358 10.3389/fimmu.2017.00358]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28424693 18].
 +
#Treiber T, <i>et al.</i> (2017) &quot;A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis.&quot; <i>Mol Cell</i> <b>66</b>(2):270&ndash;284.e13; PMID: [https://pubmed.ncbi.nlm.nih.gov/28431233 28431233]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.03.014 10.1016/j.molcel.2017.03.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431233 3033].
 +
#Beyene GT, <i>et al.</i> (2017) &quot;Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis.&quot; <i>BMC Microbiol</i> <b>17</b>(1):96; PMID: [https://pubmed.ncbi.nlm.nih.gov/28431522 28431522]; doi: [https://dx.doi.org/10.1186/s12866-017-1004-8 10.1186/s12866-017-1004-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28431522 108].
 +
#Xu B, <i>et al.</i> (2017) &quot;Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections.&quot; <i>Mol Immunol</i> <b>87</b>:122&ndash;131; PMID: [https://pubmed.ncbi.nlm.nih.gov/28433889 28433889]; doi: [https://dx.doi.org/10.1016/j.molimm.2017.04.002 10.1016/j.molimm.2017.04.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28433889 2].
 +
#Clulow JA, <i>et al.</i> (2017) &quot;Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane.&quot; <i>Chem Commun (Camb)</i> <b>53</b>(37):5182&ndash;5185; PMID: [https://pubmed.ncbi.nlm.nih.gov/28439590 28439590]; doi: [https://dx.doi.org/10.1039/c6cc08797c 10.1039/c6cc08797c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28439590 32].
 +
#Yeung ATY, <i>et al.</i> (2017) &quot;Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis.&quot; <i>Nat Commun</i> <b>8</b>:15013; PMID: [https://pubmed.ncbi.nlm.nih.gov/28440293 28440293]; doi: [https://dx.doi.org/10.1038/ncomms15013 10.1038/ncomms15013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28440293 1].
 +
#Labots M, <i>et al.</i> (2017) &quot;Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.&quot; <i>J Proteomics</i> <b>162</b>:99&ndash;107; PMID: [https://pubmed.ncbi.nlm.nih.gov/28442448 28442448]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.04.014 10.1016/j.jprot.2017.04.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28442448 40].
 +
#Arntzen M&Oslash;, <i>et al.</i> (2017) &quot;Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity.&quot; <i>Environ Microbiol</i> <b>19</b>(7):2701&ndash;2714; PMID: [https://pubmed.ncbi.nlm.nih.gov/28447389 28447389]; doi: [https://dx.doi.org/10.1111/1462-2920.13770 10.1111/1462-2920.13770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28447389 20].
 +
#Nguyen EV, <i>et al.</i> (2017) &quot;Hyper-phosphorylation of Sequestosome-1 Distinguishes Resistance to Cisplatin in Patient Derived High Grade Serous Ovarian Cancer Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(7):1377&ndash;1392; PMID: [https://pubmed.ncbi.nlm.nih.gov/28455291 28455291]; doi: [https://dx.doi.org/10.1074/mcp.M116.058321 10.1074/mcp.M116.058321]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28455291 60].
 +
#Aviner R, <i>et al.</i> (2017) &quot;Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.&quot; <i>Nucleic Acids Res</i> <b>45</b>(10):5945&ndash;5957; PMID: [https://pubmed.ncbi.nlm.nih.gov/28460002 28460002]; doi: [https://dx.doi.org/10.1093/nar/gkx326 10.1093/nar/gkx326]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28460002 15].
 +
#Tran TT, <i>et al.</i> (2017) &quot;Quantitative phosphoproteome analysis of cisplatin-induced apoptosis in Jurkat T cells.&quot; <i>Proteomics</i> <b>17</b>(11):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28464451 28464451]; doi: [https://dx.doi.org/10.1002/pmic.201600470 10.1002/pmic.201600470]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28464451 32].
 +
#Ooi JD, <i>et al.</i> (2017) &quot;Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells.&quot; <i>Nature</i> <b>545</b>(7653):243&ndash;247; PMID: [https://pubmed.ncbi.nlm.nih.gov/28467828 28467828]; doi: [https://dx.doi.org/10.1038/nature22329 10.1038/nature22329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28467828 30].
 +
#van Aalderen MC, <i>et al.</i> (2017) &quot;Label-free Analysis of CD8<sup>+</sup> T Cell Subset Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells.&quot; <i>Cell Rep</i> <b>19</b>(5):1068&ndash;1079; PMID: [https://pubmed.ncbi.nlm.nih.gov/28467900 28467900]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.04.014 10.1016/j.celrep.2017.04.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28467900 84].
 +
#Tello-Lafoz M, <i>et al.</i> (2017) &quot;Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse.&quot; <i>Traffic</i> <b>18</b>(8):491&ndash;504; PMID: [https://pubmed.ncbi.nlm.nih.gov/28477369 28477369]; doi: [https://dx.doi.org/10.1111/tra.12492 10.1111/tra.12492]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28477369 57].
 +
#Ozdian T, <i>et al.</i> (2017) &quot;Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells.&quot; <i>J Proteomics</i> <b>162</b>:73&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/28478306 28478306]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.05.005 10.1016/j.jprot.2017.05.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28478306 63].
 +
#Murr A, <i>et al.</i> (2017) &quot;Cross-Sectional Association of Salivary Proteins with Age, Sex, Body Mass Index, Smoking, and Education.&quot; <i>J Proteome Res</i> <b>16</b>(6):2273&ndash;2281; PMID: [https://pubmed.ncbi.nlm.nih.gov/28481548 28481548]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00133 10.1021/acs.jproteome.7b00133]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28481548 209].
 +
#Kilpinen H, <i>et al.</i> (2017) &quot;Common genetic variation drives molecular heterogeneity in human iPSCs.&quot; <i>Nature</i> <b>546</b>(7658):370&ndash;375; PMID: [https://pubmed.ncbi.nlm.nih.gov/28489815 28489815]; doi: [https://dx.doi.org/10.1038/nature22403 10.1038/nature22403]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28489815 72].
 +
#Jahn A, <i>et al.</i> (2017) &quot;ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator.&quot; <i>EMBO Rep</i> <b>18</b>(6):929&ndash;946; PMID: [https://pubmed.ncbi.nlm.nih.gov/28500257 28500257]; doi: [https://dx.doi.org/10.15252/embr.201744095 10.15252/embr.201744095]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28500257 35].
 +
#Kramer DA, <i>et al.</i> (2017) &quot;Proteomic characterization of EL4 lymphoma-derived tumors upon chemotherapy treatment reveals potential roles for lysosomes and caspase-6 during tumor cell death in vivo.&quot; <i>Proteomics</i> <b>17</b>(12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28508578 28508578]; doi: [https://dx.doi.org/10.1002/pmic.201700060 10.1002/pmic.201700060]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28508578 150].
 +
#Peng W, <i>et al.</i> (2017) &quot;Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.&quot; <i>Electrophoresis</i> <b>38</b>(17):2124&ndash;2134; PMID: [https://pubmed.ncbi.nlm.nih.gov/28523741 28523741]; doi: [https://dx.doi.org/10.1002/elps.201700027 10.1002/elps.201700027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28523741 18].
 +
#Zai X, <i>et al.</i> (2017) &quot;A comprehensive proteogenomic study of the human Brucella vaccine strain 104&nbsp;M.&quot; <i>BMC Genomics</i> <b>18</b>(1):402; PMID: [https://pubmed.ncbi.nlm.nih.gov/28535754 28535754]; doi: [https://dx.doi.org/10.1186/s12864-017-3800-9 10.1186/s12864-017-3800-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28535754 90].
 +
#Yimer SA, <i>et al.</i> (2017) &quot;Comparative Proteomic Analysis of <i>Mycobacterium tuberculosis</i> Lineage 7 and Lineage 4 Strains Reveals Differentially Abundant Proteins Linked to Slow Growth and Virulence.&quot; <i>Front Microbiol</i> <b>8</b>:795; PMID: [https://pubmed.ncbi.nlm.nih.gov/28536560 28536560]; doi: [https://dx.doi.org/10.3389/fmicb.2017.00795 10.3389/fmicb.2017.00795]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28536560 158].
 +
#Smallwood HS, <i>et al.</i> (2017) &quot;Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention.&quot; <i>Cell Rep</i> <b>19</b>(8):1640&ndash;1653; PMID: [https://pubmed.ncbi.nlm.nih.gov/28538182 28538182]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.04.039 10.1016/j.celrep.2017.04.039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28538182 11].
 +
#Elmasri WA, <i>et al.</i> (2017) &quot;Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus aureus: A Proteomic Characterization.&quot; <i>J Proteome Res</i> <b>16</b>(7):2579&ndash;2586; PMID: [https://pubmed.ncbi.nlm.nih.gov/28541047 28541047]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00137 10.1021/acs.jproteome.7b00137]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28541047 12].
 +
#Fijalkowska D, <i>et al.</i> (2017) &quot;eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs.&quot; <i>Nucleic Acids Res</i> <b>45</b>(13):7997&ndash;8013; PMID: [https://pubmed.ncbi.nlm.nih.gov/28541577 28541577]; doi: [https://dx.doi.org/10.1093/nar/gkx469 10.1093/nar/gkx469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28541577 19].
 +
#Hakimi O, <i>et al.</i> (2017) &quot;A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue.&quot; <i>PLoS One</i> <b>12</b>(5):e0177656; PMID: [https://pubmed.ncbi.nlm.nih.gov/28542244 28542244]; doi: [https://dx.doi.org/10.1371/journal.pone.0177656 10.1371/journal.pone.0177656]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28542244 116].
 +
#Wu PW, <i>et al.</i> (2017) &quot;Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically variant peptides.&quot; <i>Proteomics</i> <b>17</b>(13-14):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28544375 28544375]; doi: [https://dx.doi.org/10.1002/pmic.201600462 10.1002/pmic.201600462]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28544375 24].
 +
#Kume K, <i>et al.</i> (2017) &quot;A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control.&quot; <i>PLoS Genet</i> <b>13</b>(5):e1006767; PMID: [https://pubmed.ncbi.nlm.nih.gov/28545058 28545058]; doi: [https://dx.doi.org/10.1371/journal.pgen.1006767 10.1371/journal.pgen.1006767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28545058 192].
 +
#Meier SM, <i>et al.</i> (2017) &quot;An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin.&quot; <i>Angew Chem Int Ed Engl</i> <b>56</b>(28):8267&ndash;8271; PMID: [https://pubmed.ncbi.nlm.nih.gov/28547791 28547791]; doi: [https://dx.doi.org/10.1002/anie.201702242 10.1002/anie.201702242]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28547791 4].
 +
#Hou J, <i>et al.</i> (2017) &quot;Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats.&quot; <i>Diabetes</i> <b>66</b>(8):2188&ndash;2200; PMID: [https://pubmed.ncbi.nlm.nih.gov/28559245 28559245]; doi: [https://dx.doi.org/10.2337/db16-1305 10.2337/db16-1305]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28559245 12].
 +
#Li JY, <i>et al.</i> (2017) &quot;Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication.&quot; <i>J Proteome Res</i> <b>16</b>(7):2495&ndash;2507; PMID: [https://pubmed.ncbi.nlm.nih.gov/28569067 28569067]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00077 10.1021/acs.jproteome.7b00077]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28569067 72].
 +
#Sanchez-Quiles V, <i>et al.</i> (2017) &quot;Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(8):1433&ndash;1446; PMID: [https://pubmed.ncbi.nlm.nih.gov/28572092 28572092]; doi: [https://dx.doi.org/10.1074/mcp.M116.066423 10.1074/mcp.M116.066423]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28572092 108].
 +
#Bj R&aring;s K&Oslash;, <i>et al.</i> (2017) &quot;Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication.&quot; <i>Nucleic Acids Res</i> <b>45</b>(14):8291&ndash;8301; PMID: [https://pubmed.ncbi.nlm.nih.gov/28575236 28575236]; doi: [https://dx.doi.org/10.1093/nar/gkx476 10.1093/nar/gkx476]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28575236 31].
 +
#Obermann J, <i>et al.</i> (2017) &quot;Proteome-wide Identification of Glycosylation-dependent Interactors of Galectin-1 and Galectin-3 on Mesenchymal Retinal Pigment Epithelial (RPE) Cells.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(8):1528&ndash;1546; PMID: [https://pubmed.ncbi.nlm.nih.gov/28576849 28576849]; doi: [https://dx.doi.org/10.1074/mcp.M116.066381 10.1074/mcp.M116.066381]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28576849 193].
 +
#Sun C, <i>et al.</i> (2017) &quot;Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function.&quot; <i>Stem Cells</i> <b>35</b>(8):1958&ndash;1972; PMID: [https://pubmed.ncbi.nlm.nih.gov/28589555 28589555]; doi: [https://dx.doi.org/10.1002/stem.2652 10.1002/stem.2652]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28589555 36].
 +
#Zhang J, <i>et al.</i> (2017) &quot;Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.&quot; <i>Proteomics</i> <b>17</b>(13-14):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28590090 28590090]; doi: [https://dx.doi.org/10.1002/pmic.201700103 10.1002/pmic.201700103]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28590090 6].
 +
#Jensen SR, <i>et al.</i> (2017) &quot;Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors.&quot; <i>Endocrinology</i> <b>158</b>(8):2470&ndash;2485; PMID: [https://pubmed.ncbi.nlm.nih.gov/28591806 28591806]; doi: [https://dx.doi.org/10.1210/en.2017-00194 10.1210/en.2017-00194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28591806 10].
 +
#Pearson LJ, <i>et al.</i> (2017) &quot;Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers.&quot; <i>PLoS One</i> <b>12</b>(6):e0178601; PMID: [https://pubmed.ncbi.nlm.nih.gov/28594924 28594924]; doi: [https://dx.doi.org/10.1371/journal.pone.0178601 10.1371/journal.pone.0178601]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28594924 90].
 +
#Bekker-Jensen DB, <i>et al.</i> (2017) &quot;An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes.&quot; <i>Cell Syst</i> <b>4</b>(6):587&ndash;599.e4; PMID: [https://pubmed.ncbi.nlm.nih.gov/28601559 28601559]; doi: [https://dx.doi.org/10.1016/j.cels.2017.05.009 10.1016/j.cels.2017.05.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28601559 93].
 +
#Haas TL, <i>et al.</i> (2017) &quot;Integrin &alpha;7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma.&quot; <i>Cell Stem Cell</i> <b>21</b>(1):35&ndash;50.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/28602620 28602620]; doi: [https://dx.doi.org/10.1016/j.stem.2017.04.009 10.1016/j.stem.2017.04.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28602620 3].
 +
#Lapek JD Jr, <i>et al.</i> (2017) &quot;Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(8):1447&ndash;1461; PMID: [https://pubmed.ncbi.nlm.nih.gov/28606917 28606917]; doi: [https://dx.doi.org/10.1074/mcp.M116.066019 10.1074/mcp.M116.066019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28606917 4].
 +
#Brocard L, <i>et al.</i> (2017) &quot;Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions.&quot; <i>Front Plant Sci</i> <b>8</b>:894; PMID: [https://pubmed.ncbi.nlm.nih.gov/28611809 28611809]; doi: [https://dx.doi.org/10.3389/fpls.2017.00894 10.3389/fpls.2017.00894]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28611809 3].
 +
#Erdmann J, <i>et al.</i> (2017) &quot;Glucosyltransferase-dependent and -independent effects of TcdB on the proteome of HEp-2 cells.&quot; <i>Proteomics</i> <b>17</b>(15-16):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28612519 28612519]; doi: [https://dx.doi.org/10.1002/pmic.201600435 10.1002/pmic.201600435]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28612519 36].
 +
#Murgia M, <i>et al.</i> (2017) &quot;Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging.&quot; <i>Cell Rep</i> <b>19</b>(11):2396&ndash;2409; PMID: [https://pubmed.ncbi.nlm.nih.gov/28614723 28614723]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.05.054 10.1016/j.celrep.2017.05.054]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28614723 174].
 +
#Plenker D, <i>et al.</i> (2017) &quot;Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors.&quot; <i>Sci Transl Med</i> <b>9</b>(394):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28615362 28615362]; doi: [https://dx.doi.org/10.1126/scitranslmed.aah6144 10.1126/scitranslmed.aah6144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28615362 17].
 +
#Marx H, <i>et al.</i> (2017) &quot;Annotation of the Domestic Pig Genome by Quantitative Proteogenomics.&quot; <i>J Proteome Res</i> <b>16</b>(8):2887&ndash;2898; PMID: [https://pubmed.ncbi.nlm.nih.gov/28625053 28625053]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00184 10.1021/acs.jproteome.7b00184]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28625053 181].
 +
#Wang J, <i>et al.</i> (2017) &quot;Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.&quot; <i>Gastroenterology</i> <b>153</b>(4):1082&ndash;1095; PMID: [https://pubmed.ncbi.nlm.nih.gov/28625833 28625833]; doi: [https://dx.doi.org/10.1053/j.gastro.2017.06.008 10.1053/j.gastro.2017.06.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28625833 44].
 +
#Taleb RSZ, <i>et al.</i> (2017) &quot;Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma.&quot; <i>Proteomics Clin Appl</i> <b>11</b>(11-12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28626882 28626882]; doi: [https://dx.doi.org/10.1002/prca.201700014 10.1002/prca.201700014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28626882 56].
 +
#Qin G, <i>et al.</i> (2017) &quot;Deciphering the protein-protein interaction network regulating hepatocellular carcinoma metastasis.&quot; <i>Biochim Biophys Acta Proteins Proteom</i> <b>1865</b>(9):1114&ndash;1122; PMID: [https://pubmed.ncbi.nlm.nih.gov/28627476 28627476]; doi: [https://dx.doi.org/10.1016/j.bbapap.2017.06.005 10.1016/j.bbapap.2017.06.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28627476 6].
 +
#Sung E, <i>et al.</i> (2017) &quot;Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells.&quot; <i>Electrophoresis</i> <b>38</b>(20):2638&ndash;2645; PMID: [https://pubmed.ncbi.nlm.nih.gov/28627741 28627741]; doi: [https://dx.doi.org/10.1002/elps.201700052 10.1002/elps.201700052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28627741 2].
 +
#Loke I, <i>et al.</i> (2017) &quot;Paucimannose-Rich <i>N</i>-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(8):1507&ndash;1527; PMID: [https://pubmed.ncbi.nlm.nih.gov/28630087 28630087]; doi: [https://dx.doi.org/10.1074/mcp.M116.066746 10.1074/mcp.M116.066746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28630087 118].
 +
#Ahsan N, <i>et al.</i> (2017) &quot;Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction.&quot; <i>J Proteomics</i> <b>165</b>:69&ndash;74; PMID: [https://pubmed.ncbi.nlm.nih.gov/28634120 28634120]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.06.013 10.1016/j.jprot.2017.06.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28634120 30].
 +
#Feil G, <i>et al.</i> (2017) &quot;Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(9):1563&ndash;1577; PMID: [https://pubmed.ncbi.nlm.nih.gov/28637836 28637836]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000001 10.1074/mcp.RA117.000001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28637836 2].
 +
#Cosme J, <i>et al.</i> (2017) &quot;Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice.&quot; <i>J Proteome Res</i> <b>16</b>(8):2836&ndash;2847; PMID: [https://pubmed.ncbi.nlm.nih.gov/28641008 28641008]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00144 10.1021/acs.jproteome.7b00144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28641008 39].
 +
#Belmont J, <i>et al.</i> (2017) &quot;A PLC-&gamma;1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex.&quot; <i>J Proteome Res</i> <b>16</b>(8):2729&ndash;2742; PMID: [https://pubmed.ncbi.nlm.nih.gov/28644030 28644030]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b01026 10.1021/acs.jproteome.6b01026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28644030 60].
 +
#Henriet E, <i>et al.</i> (2017) &quot;Argininosuccinate synthase 1 (ASS1): A marker of unclassified hepatocellular adenoma and high bleeding risk.&quot; <i>Hepatology</i> <b>66</b>(6):2016&ndash;2028; PMID: [https://pubmed.ncbi.nlm.nih.gov/28646562 28646562]; doi: [https://dx.doi.org/10.1002/hep.29336 10.1002/hep.29336]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28646562 124].
 +
#Gu Y, <i>et al.</i> (2017) &quot;mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT.&quot; <i>Mol Cell</i> <b>67</b>(1):128&ndash;138.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28648777 28648777]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.05.030 10.1016/j.molcel.2017.05.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28648777 2].
 +
#Flury V, <i>et al.</i> (2017) &quot;The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1.&quot; <i>Mol Cell</i> <b>67</b>(2):294&ndash;307.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/28648780 28648780]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.05.026 10.1016/j.molcel.2017.05.026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28648780 50].
 +
#Morgenstern M, <i>et al.</i> (2017) &quot;Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale.&quot; <i>Cell Rep</i> <b>19</b>(13):2836&ndash;2852; PMID: [https://pubmed.ncbi.nlm.nih.gov/28658629 28658629]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.06.014 10.1016/j.celrep.2017.06.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28658629 697].
 +
#Offenburger SL, <i>et al.</i> (2017) &quot;Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development.&quot; <i>Sci Rep</i> <b>7</b>(1):4314; PMID: [https://pubmed.ncbi.nlm.nih.gov/28659600 28659600]; doi: [https://dx.doi.org/10.1038/s41598-017-04375-4 10.1038/s41598-017-04375-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28659600 289].
 +
#Govaert E, <i>et al.</i> (2017) &quot;Comparison of fractionation proteomics for local SWATH library building.&quot; <i>Proteomics</i> <b>17</b>(15-16):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28664598 28664598]; doi: [https://dx.doi.org/10.1002/pmic.201700052 10.1002/pmic.201700052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28664598 4].
 +
#Sap KA, <i>et al.</i> (2017) &quot;Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila.&quot; <i>J Proteome Res</i> <b>16</b>(8):2848&ndash;2862; PMID: [https://pubmed.ncbi.nlm.nih.gov/28665616 28665616]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00156 10.1021/acs.jproteome.7b00156]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28665616 290].
 +
#Hulme CH, <i>et al.</i> (2017) &quot;Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles.&quot; <i>Arthritis Res Ther</i> <b>19</b>(1):150; PMID: [https://pubmed.ncbi.nlm.nih.gov/28666451 28666451]; doi: [https://dx.doi.org/10.1186/s13075-017-1336-7 10.1186/s13075-017-1336-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28666451 37].
 +
#Yu Y, <i>et al.</i> (2017) &quot;Quick 96FASP for high throughput quantitative proteome analysis.&quot; <i>J Proteomics</i> <b>166</b>:1&ndash;7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28669814 28669814]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.06.019 10.1016/j.jprot.2017.06.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28669814 15].
 +
#Kim JH, <i>et al.</i> (2017) &quot;Mechanism Investigation of Rifampicin-Induced Liver Injury Using Comparative Toxicoproteomics in Mice.&quot; <i>Int J Mol Sci</i> <b>18</b>(7):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28671602 28671602]; doi: [https://dx.doi.org/10.3390/ijms18071417 10.3390/ijms18071417]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28671602 10].
 +
#Liu F, <i>et al.</i> (2017) &quot;Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using SILAC-SPROX.&quot; <i>J Proteome Res</i> <b>16</b>(9):3277&ndash;3286; PMID: [https://pubmed.ncbi.nlm.nih.gov/28673085 28673085]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00283 10.1021/acs.jproteome.7b00283]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28673085 6].
 +
#Bleuyard JY, <i>et al.</i> (2017) &quot;MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(29):7671&ndash;7676; PMID: [https://pubmed.ncbi.nlm.nih.gov/28673974 28673974]; doi: [https://dx.doi.org/10.1073/pnas.1620208114 10.1073/pnas.1620208114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28673974 6].
 +
#Panizza E, <i>et al.</i> (2017) &quot;Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome.&quot; <i>Sci Rep</i> <b>7</b>(1):4513; PMID: [https://pubmed.ncbi.nlm.nih.gov/28674419 28674419]; doi: [https://dx.doi.org/10.1038/s41598-017-04798-z 10.1038/s41598-017-04798-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28674419 133].
 +
#Yang J, <i>et al.</i> (2017) &quot;Genes essential for phototrophic growth by a purple alphaproteobacterium.&quot; <i>Environ Microbiol</i> <b>19</b>(9):3567&ndash;3578; PMID: [https://pubmed.ncbi.nlm.nih.gov/28677146 28677146]; doi: [https://dx.doi.org/10.1111/1462-2920.13852 10.1111/1462-2920.13852]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28677146 6].
 +
#Soman KV, <i>et al.</i> (2017) &quot;Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study.&quot; <i>J Proteome Res</i> <b>16</b>(8):2663&ndash;2679; PMID: [https://pubmed.ncbi.nlm.nih.gov/28679203 28679203]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00367 10.1021/acs.jproteome.6b00367]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28679203 47].
 +
#Miikkulainen P, <i>et al.</i> (2017) &quot;HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma.&quot; <i>Cancer Metab</i> <b>5</b>:5; PMID: [https://pubmed.ncbi.nlm.nih.gov/28680592 28680592]; doi: [https://dx.doi.org/10.1186/s40170-017-0167-y 10.1186/s40170-017-0167-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28680592 12].
 +
#Zwittink RD, <i>et al.</i> (2017) &quot;Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(9):1610&ndash;1620; PMID: [https://pubmed.ncbi.nlm.nih.gov/28684633 28684633]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000102 10.1074/mcp.RA117.000102]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28684633 65].
 +
#Djuric U, <i>et al.</i> (2017) &quot;Spatiotemporal Proteomic Profiling of Human Cerebral Development.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(9):1548&ndash;1562; PMID: [https://pubmed.ncbi.nlm.nih.gov/28687556 28687556]; doi: [https://dx.doi.org/10.1074/mcp.M116.066274 10.1074/mcp.M116.066274]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28687556 99].
 +
#Bryk AH, <i>et al.</i> (2017) &quot;Quantitative Analysis of Human Red Blood Cell Proteome.&quot; <i>J Proteome Res</i> <b>16</b>(8):2752&ndash;2761; PMID: [https://pubmed.ncbi.nlm.nih.gov/28689405 28689405]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00025 10.1021/acs.jproteome.7b00025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28689405 96].
 +
#Reid SE, <i>et al.</i> (2017) &quot;Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium.&quot; <i>EMBO J</i> <b>36</b>(16):2373&ndash;2389; PMID: [https://pubmed.ncbi.nlm.nih.gov/28694244 28694244]; doi: [https://dx.doi.org/10.15252/embj.201694912 10.15252/embj.201694912]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28694244 19].
 +
#Ovelleiro D, <i>et al.</i> (2017) &quot;Comparative proteomic study of early hypoxic response in the cerebral cortex of rats submitted to two different hypoxic models.&quot; <i>Proteomics Clin Appl</i> <b>11</b>(11-12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28697276 28697276]; doi: [https://dx.doi.org/10.1002/prca.201700058 10.1002/prca.201700058]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28697276 19].
 +
#Zhang X, <i>et al.</i> (2018) &quot;Assessing the impact of protein extraction methods for human gut metaproteomics.&quot; <i>J Proteomics</i> <b>180</b>:120&ndash;127; PMID: [https://pubmed.ncbi.nlm.nih.gov/28705725 28705725]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.07.001 10.1016/j.jprot.2017.07.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28705725 30].
 +
#Kohli P, <i>et al.</i> (2017) &quot;The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia.&quot; <i>EMBO Rep</i> <b>18</b>(9):1521&ndash;1535; PMID: [https://pubmed.ncbi.nlm.nih.gov/28710093 28710093]; doi: [https://dx.doi.org/10.15252/embr.201643846 10.15252/embr.201643846]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28710093 20].
 +
#Liu H, <i>et al.</i> (2017) &quot;Comprehensive Proteomic Analysis of PGC7-Interacting Proteins.&quot; <i>J Proteome Res</i> <b>16</b>(9):3113&ndash;3123; PMID: [https://pubmed.ncbi.nlm.nih.gov/28712289 28712289]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b00883 10.1021/acs.jproteome.6b00883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28712289 10].
 +
#Chai H, <i>et al.</i> (2017) &quot;Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence.&quot; <i>Neuron</i> <b>95</b>(3):531&ndash;549.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/28712653 28712653]; doi: [https://dx.doi.org/10.1016/j.neuron.2017.06.029 10.1016/j.neuron.2017.06.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28712653 4].
 +
#Vukotic M, <i>et al.</i> (2017) &quot;Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria.&quot; <i>Mol Cell</i> <b>67</b>(3):471&ndash;483.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28712724 28712724]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.06.013 10.1016/j.molcel.2017.06.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28712724 59].
 +
#Alfieri A, <i>et al.</i> (2017) &quot;Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders.&quot; <i>Front Mol Neurosci</i> <b>10</b>:212; PMID: [https://pubmed.ncbi.nlm.nih.gov/28713243 28713243]; doi: [https://dx.doi.org/10.3389/fnmol.2017.00212 10.3389/fnmol.2017.00212]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28713243 12].
 +
#Poppleton DI, <i>et al.</i> (2017) &quot;Outer Membrane Proteome of <i>Veillonella parvula:</i> A Diderm Firmicute of the Human Microbiome.&quot; <i>Front Microbiol</i> <b>8</b>:1215; PMID: [https://pubmed.ncbi.nlm.nih.gov/28713344 28713344]; doi: [https://dx.doi.org/10.3389/fmicb.2017.01215 10.3389/fmicb.2017.01215]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28713344 16].
 +
#Lee HJ, <i>et al.</i> (2017) &quot;Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation.&quot; <i>Cell Rep</i> <b>20</b>(3):721&ndash;736; PMID: [https://pubmed.ncbi.nlm.nih.gov/28723573 28723573]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.06.074 10.1016/j.celrep.2017.06.074]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28723573 2].
 +
#La Barbera G, <i>et al.</i> (2017) &quot;Proteomic analysis and bioluminescent reporter gene assays to investigate effects of simulated microgravity on Caco-2 cells.&quot; <i>Proteomics</i> <b>17</b>(15-16):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28727291 28727291]; doi: [https://dx.doi.org/10.1002/pmic.201700081 10.1002/pmic.201700081]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28727291 13].
 +
#Mir SA, <i>et al.</i> (2017) &quot;Altered signaling associated with chronic arsenic exposure in human skin keratinocytes.&quot; <i>Proteomics Clin Appl</i> <b>11</b>(11-12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28731282 28731282]; doi: [https://dx.doi.org/10.1002/prca.201700004 10.1002/prca.201700004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28731282 2].
 +
#Maffioli E, <i>et al.</i> (2017) &quot;Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines.&quot; <i>J Proteomics</i> <b>166</b>:115&ndash;126; PMID: [https://pubmed.ncbi.nlm.nih.gov/28739509 28739509]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.07.012 10.1016/j.jprot.2017.07.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28739509 20].
 +
#Hau AC, <i>et al.</i> (2017) &quot;MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1.&quot; <i>J Cell Biol</i> <b>216</b>(9):2715&ndash;2729; PMID: [https://pubmed.ncbi.nlm.nih.gov/28739678 28739678]; doi: [https://dx.doi.org/10.1083/jcb.201701154 10.1083/jcb.201701154]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28739678 6].
 +
#Girardi T, <i>et al.</i> (2018) &quot;The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.&quot; <i>Leukemia</i> <b>32</b>(3):809&ndash;819; PMID: [https://pubmed.ncbi.nlm.nih.gov/28744013 28744013]; doi: [https://dx.doi.org/10.1038/leu.2017.225 10.1038/leu.2017.225]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28744013 36].
 +
#D&#39;Angelo G, <i>et al.</i> (2017) &quot;Statistical Models for the Analysis of Isobaric Tags Multiplexed Quantitative Proteomics.&quot; <i>J Proteome Res</i> <b>16</b>(9):3124&ndash;3136; PMID: [https://pubmed.ncbi.nlm.nih.gov/28745510 28745510]; doi: [https://dx.doi.org/10.1021/acs.jproteome.6b01050 10.1021/acs.jproteome.6b01050]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28745510 5].
 +
#Komor MA, <i>et al.</i> (2017) &quot;Identification of Differentially Expressed Splice Variants by the Proteogenomic Pipeline Splicify.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(10):1850&ndash;1863; PMID: [https://pubmed.ncbi.nlm.nih.gov/28747380 28747380]; doi: [https://dx.doi.org/10.1074/mcp.TIR117.000056 10.1074/mcp.TIR117.000056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28747380 14].
 +
#Zhang X, <i>et al.</i> (2017) &quot;Deep Metaproteomics Approach for the Study of Human Microbiomes.&quot; <i>Anal Chem</i> <b>89</b>(17):9407&ndash;9415; PMID: [https://pubmed.ncbi.nlm.nih.gov/28749657 28749657]; doi: [https://dx.doi.org/10.1021/acs.analchem.7b02224 10.1021/acs.analchem.7b02224]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28749657 43].
 +
#Haderk F, <i>et al.</i> (2017) &quot;Tumor-derived exosomes modulate PD-L1 expression in monocytes.&quot; <i>Sci Immunol</i> <b>2</b>(13):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28754746 28754746]; doi: [https://dx.doi.org/10.1126/sciimmunol.aah5509 10.1126/sciimmunol.aah5509]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28754746 32].
 +
#Singh KD, <i>et al.</i> (2017) &quot;Differential regulation of germ line apoptosis and germ cell differentiation by CPEB family members in C. elegans.&quot; <i>PLoS One</i> <b>12</b>(7):e0182270; PMID: [https://pubmed.ncbi.nlm.nih.gov/28759574 28759574]; doi: [https://dx.doi.org/10.1371/journal.pone.0182270 10.1371/journal.pone.0182270]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28759574 6].
 +
#G&oacute;mez-Baena G, <i>et al.</i> (2017) &quot;Quantitative Proteomics of Cerebrospinal Fluid in Paediatric Pneumococcal Meningitis.&quot; <i>Sci Rep</i> <b>7</b>(1):7042; PMID: [https://pubmed.ncbi.nlm.nih.gov/28765563 28765563]; doi: [https://dx.doi.org/10.1038/s41598-017-07127-6 10.1038/s41598-017-07127-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28765563 28].
 +
#Wegler C, <i>et al.</i> (2017) &quot;Variability in Mass Spectrometry-based Quantification of Clinically Relevant Drug Transporters and Drug Metabolizing Enzymes.&quot; <i>Mol Pharm</i> <b>14</b>(9):3142&ndash;3151; PMID: [https://pubmed.ncbi.nlm.nih.gov/28767254 28767254]; doi: [https://dx.doi.org/10.1021/acs.molpharmaceut.7b00364 10.1021/acs.molpharmaceut.7b00364]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28767254 6].
 +
#Fabiani FD, <i>et al.</i> (2017) &quot;A flagellum-specific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum.&quot; <i>PLoS Biol</i> <b>15</b>(8):e2002267; PMID: [https://pubmed.ncbi.nlm.nih.gov/28771474 28771474]; doi: [https://dx.doi.org/10.1371/journal.pbio.2002267 10.1371/journal.pbio.2002267]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28771474 26].
 +
#Nguyen AT, <i>et al.</i> (2017) &quot;UBE2O remodels the proteome during terminal erythroid differentiation.&quot; <i>Science</i> <b>357</b>(6350):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28774900 28774900]; doi: [https://dx.doi.org/10.1126/science.aan0218 10.1126/science.aan0218]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28774900 13].
 +
#Khan MH, <i>et al.</i> (2017) &quot;The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex.&quot; <i>J Cell Sci</i> <b>130</b>(18):3094&ndash;3107; PMID: [https://pubmed.ncbi.nlm.nih.gov/28775156 28775156]; doi: [https://dx.doi.org/10.1242/jcs.200329 10.1242/jcs.200329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28775156 51].
 +
#Woo J, <i>et al.</i> (2017) &quot;Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.&quot; <i>J Proteome Res</i> <b>16</b>(9):3419&ndash;3432; PMID: [https://pubmed.ncbi.nlm.nih.gov/28777000 28777000]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00445 10.1021/acs.jproteome.7b00445]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28777000 18].
 +
#Danielsen HN, <i>et al.</i> (2017) &quot;Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry.&quot; <i>Biomolecules</i> <b>7</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28777328 28777328]; doi: [https://dx.doi.org/10.3390/biom7030058 10.3390/biom7030058]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28777328 24].
 +
#Wang X, <i>et al.</i> (2017) &quot;Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner.&quot; <i>Sci Signal</i> <b>10</b>(491):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28790197 28790197]; doi: [https://dx.doi.org/10.1126/scisignal.aam8065 10.1126/scisignal.aam8065]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28790197 10].
 +
#Dong M, <i>et al.</i> (2017) &quot;Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis.&quot; <i>Anal Chem</i> <b>89</b>(17):9307&ndash;9314; PMID: [https://pubmed.ncbi.nlm.nih.gov/28796482 28796482]; doi: [https://dx.doi.org/10.1021/acs.analchem.7b02078 10.1021/acs.analchem.7b02078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28796482 24].
 +
#Anselm V, <i>et al.</i> (2017) &quot;Re-adaption on Earth after Spaceflights Affects the Mouse Liver Proteome.&quot; <i>Int J Mol Sci</i> <b>18</b>(8):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28805685 28805685]; doi: [https://dx.doi.org/10.3390/ijms18081763 10.3390/ijms18081763]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28805685 28].
 +
#Barb&eacute; C, <i>et al.</i> (2017) &quot;Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.&quot; <i>J Proteome Res</i> <b>16</b>(10):3477&ndash;3490; PMID: [https://pubmed.ncbi.nlm.nih.gov/28810121 28810121]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00069 10.1021/acs.jproteome.7b00069]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28810121 72].
 +
#Cortes T, <i>et al.</i> (2017) &quot;Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival.&quot; <i>Sci Rep</i> <b>7</b>(1):8208; PMID: [https://pubmed.ncbi.nlm.nih.gov/28811595 28811595]; doi: [https://dx.doi.org/10.1038/s41598-017-08306-1 10.1038/s41598-017-08306-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28811595 30].
 +
#Pardo M, <i>et al.</i> (2017) &quot;Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells.&quot; <i>Sci Rep</i> <b>7</b>(1):8157; PMID: [https://pubmed.ncbi.nlm.nih.gov/28811661 28811661]; doi: [https://dx.doi.org/10.1038/s41598-017-08456-2 10.1038/s41598-017-08456-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28811661 236].
 +
#Park J, <i>et al.</i> (2017) &quot;Proteome characterization of human pancreatic cyst fluid from intraductal papillary mucinous neoplasm by liquid chromatography/tandem mass spectrometry.&quot; <i>Rapid Commun Mass Spectrom</i> <b>31</b>(20):1761&ndash;1772; PMID: [https://pubmed.ncbi.nlm.nih.gov/28815810 28815810]; doi: [https://dx.doi.org/10.1002/rcm.7959 10.1002/rcm.7959]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28815810 60].
 +
#Dammalli M, <i>et al.</i> (2017) &quot;Proteomic Analysis of the Human Olfactory Bulb.&quot; <i>OMICS</i> <b>21</b>(8):440&ndash;453; PMID: [https://pubmed.ncbi.nlm.nih.gov/28816642 28816642]; doi: [https://dx.doi.org/10.1089/omi.2017.0084 10.1089/omi.2017.0084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28816642 2].
 +
#van den Eshof BL, <i>et al.</i> (2017) &quot;Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics.&quot; <i>Arterioscler Thromb Vasc Biol</i> <b>37</b>(10):1891&ndash;1902; PMID: [https://pubmed.ncbi.nlm.nih.gov/28818855 28818855]; doi: [https://dx.doi.org/10.1161/ATVBAHA.117.309926 10.1161/ATVBAHA.117.309926]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28818855 57].
 +
#Ayre DC, <i>et al.</i> (2017) &quot;CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo.&quot; <i>Sci Rep</i> <b>7</b>(1):8642; PMID: [https://pubmed.ncbi.nlm.nih.gov/28819186 28819186]; doi: [https://dx.doi.org/10.1038/s41598-017-08094-8 10.1038/s41598-017-08094-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28819186 146].
 +
#Singh H, <i>et al.</i> (2017) &quot;Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function.&quot; <i>Theranostics</i> <b>7</b>(10):2704&ndash;2717; PMID: [https://pubmed.ncbi.nlm.nih.gov/28819457 28819457]; doi: [https://dx.doi.org/10.7150/thno.19679 10.7150/thno.19679]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28819457 663].
 +
#Shen H, <i>et al.</i> (2017) &quot;Effects of spaceflight on the muscles of the murine shoulder.&quot; <i>FASEB J</i> <b>31</b>(12):5466&ndash;5477; PMID: [https://pubmed.ncbi.nlm.nih.gov/28821629 28821629]; doi: [https://dx.doi.org/10.1096/fj.201700320R 10.1096/fj.201700320R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28821629 14].
 +
#Hung CL, <i>et al.</i> (2017) &quot;Membrane Proteomics of Impaired Energetics and Cytoskeletal Disorganization in Elderly Diet-Induced Diabetic Mice.&quot; <i>J Proteome Res</i> <b>16</b>(10):3504&ndash;3513; PMID: [https://pubmed.ncbi.nlm.nih.gov/28823169 28823169]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00148 10.1021/acs.jproteome.7b00148]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28823169 14].
 +
#Fu L, <i>et al.</i> (2017) &quot;Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(10):1815&ndash;1828; PMID: [https://pubmed.ncbi.nlm.nih.gov/28827280 28827280]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000108 10.1074/mcp.RA117.000108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28827280 12].
 +
#Phillips TJ, <i>et al.</i> (2017) &quot;Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development.&quot; <i>Sci Rep</i> <b>7</b>(1):9079; PMID: [https://pubmed.ncbi.nlm.nih.gov/28831049 28831049]; doi: [https://dx.doi.org/10.1038/s41598-017-06300-1 10.1038/s41598-017-06300-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28831049 1].
 +
#Vyse S, <i>et al.</i> (2018) &quot;Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib.&quot; <i>J Proteomics</i> <b>170</b>:130&ndash;140; PMID: [https://pubmed.ncbi.nlm.nih.gov/28842319 28842319]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.08.015 10.1016/j.jprot.2017.08.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28842319 42].
 +
#Wildburger NC, <i>et al.</i> (2017) &quot;Diversity of Amyloid-beta Proteoforms in the Alzheimer&#39;s Disease Brain.&quot; <i>Sci Rep</i> <b>7</b>(1):9520; PMID: [https://pubmed.ncbi.nlm.nih.gov/28842697 28842697]; doi: [https://dx.doi.org/10.1038/s41598-017-10422-x 10.1038/s41598-017-10422-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28842697 22].
 +
#Andersen PR, <i>et al.</i> (2017) &quot;A heterochromatin-dependent transcription machinery drives piRNA expression.&quot; <i>Nature</i> <b>549</b>(7670):54&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/28847004 28847004]; doi: [https://dx.doi.org/10.1038/nature23482 10.1038/nature23482]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28847004 46].
 +
#Guo J, <i>et al.</i> (2017) &quot;Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.).&quot; <i>J Proteomics</i> <b>168</b>:15&ndash;27; PMID: [https://pubmed.ncbi.nlm.nih.gov/28847649 28847649]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.08.013 10.1016/j.jprot.2017.08.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28847649 6].
 +
#Mohl BP, <i>et al.</i> (2017) &quot;Phosphoproteomic Analysis Reveals the Importance of Kinase Regulation During Orbivirus Infection.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(11):1990&ndash;2005; PMID: [https://pubmed.ncbi.nlm.nih.gov/28851738 28851738]; doi: [https://dx.doi.org/10.1074/mcp.M117.067355 10.1074/mcp.M117.067355]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28851738 6].
 +
#Merkley ED, <i>et al.</i> (2017) &quot;Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague.&quot; <i>PLoS One</i> <b>12</b>(8):e0183478; PMID: [https://pubmed.ncbi.nlm.nih.gov/28854255 28854255]; doi: [https://dx.doi.org/10.1371/journal.pone.0183478 10.1371/journal.pone.0183478]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28854255 343].
 +
#Peng X, <i>et al.</i> (2017) &quot;Identification of Missing Proteins in the Phosphoproteome of Kidney Cancer.&quot; <i>J Proteome Res</i> <b>16</b>(12):4364&ndash;4373; PMID: [https://pubmed.ncbi.nlm.nih.gov/28857561 28857561]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00332 10.1021/acs.jproteome.7b00332]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28857561 17].
 +
#Subramanian K, <i>et al.</i> (2017) &quot;Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(11):1938&ndash;1957; PMID: [https://pubmed.ncbi.nlm.nih.gov/28860124 28860124]; doi: [https://dx.doi.org/10.1074/mcp.M116.064949 10.1074/mcp.M116.064949]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28860124 7].
 +
#Rossello J, <i>et al.</i> (2017) &quot;The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism.&quot; <i>Sci Rep</i> <b>7</b>(1):10281; PMID: [https://pubmed.ncbi.nlm.nih.gov/28860517 28860517]; doi: [https://dx.doi.org/10.1038/s41598-017-09926-3 10.1038/s41598-017-09926-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28860517 21].
 +
#Mendes M, <i>et al.</i> (2017) &quot;Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer.&quot; <i>Proteomics</i> <b>17</b>(19):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28861940 28861940]; doi: [https://dx.doi.org/10.1002/pmic.201700094 10.1002/pmic.201700094]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28861940 200].
 +
#Tanabe Y, <i>et al.</i> (2017) &quot;IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2&alpha;.&quot; <i>Nat Commun</i> <b>8</b>(1):408; PMID: [https://pubmed.ncbi.nlm.nih.gov/28864826 28864826]; doi: [https://dx.doi.org/10.1038/s41467-017-00333-w 10.1038/s41467-017-00333-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28864826 32].
 +
#Kraner ME, <i>et al.</i> (2017) &quot;Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves.&quot; <i>Plant J</i> <b>92</b>(4):696&ndash;709; PMID: [https://pubmed.ncbi.nlm.nih.gov/28865150 28865150]; doi: [https://dx.doi.org/10.1111/tpj.13702 10.1111/tpj.13702]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28865150 1].
 +
#Edupuganti RR, <i>et al.</i> (2017) &quot;N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) recruits and repels proteins to regulate mRNA homeostasis.&quot; <i>Nat Struct Mol Biol</i> <b>24</b>(10):870&ndash;878; PMID: [https://pubmed.ncbi.nlm.nih.gov/28869609 28869609]; doi: [https://dx.doi.org/10.1038/nsmb.3462 10.1038/nsmb.3462]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28869609 40].
 +
#Liu MQ, <i>et al.</i> (2017) &quot;pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification.&quot; <i>Nat Commun</i> <b>8</b>(1):438; PMID: [https://pubmed.ncbi.nlm.nih.gov/28874712 28874712]; doi: [https://dx.doi.org/10.1038/s41467-017-00535-2 10.1038/s41467-017-00535-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28874712 4].
 +
#Dittus L, <i>et al.</i> (2017) &quot;Differential Kinobeads Profiling for Target Identification of Irreversible Kinase Inhibitors.&quot; <i>ACS Chem Biol</i> <b>12</b>(10):2515&ndash;2521; PMID: [https://pubmed.ncbi.nlm.nih.gov/28876896 28876896]; doi: [https://dx.doi.org/10.1021/acschembio.7b00617 10.1021/acschembio.7b00617]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28876896 154].
 +
#K&auml;lin S, <i>et al.</i> (2017) &quot;A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function.&quot; <i>Cell Metab</i> <b>26</b>(3):475&ndash;492.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28877454 28877454]; doi: [https://dx.doi.org/10.1016/j.cmet.2017.08.008 10.1016/j.cmet.2017.08.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28877454 31].
 +
#Chen TW, <i>et al.</i> (2017) &quot;APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism.&quot; <i>Nat Commun</i> <b>8</b>(1):465; PMID: [https://pubmed.ncbi.nlm.nih.gov/28878238 28878238]; doi: [https://dx.doi.org/10.1038/s41467-017-00493-9 10.1038/s41467-017-00493-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28878238 18].
 +
#Han B, <i>et al.</i> (2017) &quot;Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers.&quot; <i>J Proteome Res</i> <b>16</b>(10):3646&ndash;3663; PMID: [https://pubmed.ncbi.nlm.nih.gov/28879772 28879772]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00371 10.1021/acs.jproteome.7b00371]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28879772 47].
 +
#Phillips B, <i>et al.</i> (2017) &quot;Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints.&quot; <i>Food Chem Toxicol</i> <b>109</b>(Pt 1):315&ndash;332; PMID: [https://pubmed.ncbi.nlm.nih.gov/28882640 28882640]; doi: [https://dx.doi.org/10.1016/j.fct.2017.09.001 10.1016/j.fct.2017.09.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28882640 36].
 +
#Pawellek A, <i>et al.</i> (2017) &quot;Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/28884683 28884683]; doi: [https://dx.doi.org/10.7554/eLife.27402 10.7554/eLife.27402]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28884683 6].
 +
#Kishazi E, <i>et al.</i> (2018) &quot;Thyroid-associated orbitopathy and tears: A proteomics study.&quot; <i>J Proteomics</i> <b>170</b>:110&ndash;116; PMID: [https://pubmed.ncbi.nlm.nih.gov/28887209 28887209]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.09.001 10.1016/j.jprot.2017.09.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28887209 8].
 +
#Rijkers M, <i>et al.</i> (2017) &quot;Monitoring storage induced changes in the platelet proteome employing label free quantitative mass spectrometry.&quot; <i>Sci Rep</i> <b>7</b>(1):11045; PMID: [https://pubmed.ncbi.nlm.nih.gov/28887518 28887518]; doi: [https://dx.doi.org/10.1038/s41598-017-11643-w 10.1038/s41598-017-11643-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28887518 21].
 +
#Bachofner M, <i>et al.</i> (2017) &quot;Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration.&quot; <i>Dev Cell</i> <b>42</b>(6):616&ndash;625.e8; PMID: [https://pubmed.ncbi.nlm.nih.gov/28890072 28890072]; doi: [https://dx.doi.org/10.1016/j.devcel.2017.07.025 10.1016/j.devcel.2017.07.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28890072 20].
 +
#Lapek JD Jr, <i>et al.</i> (2017) &quot;Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.&quot; <i>Nat Biotechnol</i> <b>35</b>(10):983&ndash;989; PMID: [https://pubmed.ncbi.nlm.nih.gov/28892078 28892078]; doi: [https://dx.doi.org/10.1038/nbt.3955 10.1038/nbt.3955]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28892078 11].
 +
#McNally KE, <i>et al.</i> (2017) &quot;Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling.&quot; <i>Nat Cell Biol</i> <b>19</b>(10):1214&ndash;1225; PMID: [https://pubmed.ncbi.nlm.nih.gov/28892079 28892079]; doi: [https://dx.doi.org/10.1038/ncb3610 10.1038/ncb3610]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28892079 23].
 +
#Guccione EJ, <i>et al.</i> (2017) &quot;Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability.&quot; <i>Environ Microbiol</i> <b>19</b>(10):4326&ndash;4348; PMID: [https://pubmed.ncbi.nlm.nih.gov/28892295 28892295]; doi: [https://dx.doi.org/10.1111/1462-2920.13930 10.1111/1462-2920.13930]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28892295 54].
 +
#Bardot P, <i>et al.</i> (2017) &quot;The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo.&quot; <i>Development</i> <b>144</b>(20):3808&ndash;3818; PMID: [https://pubmed.ncbi.nlm.nih.gov/28893950 28893950]; doi: [https://dx.doi.org/10.1242/dev.146902 10.1242/dev.146902]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28893950 30].
 +
#Avenarius MR, <i>et al.</i> (2017) &quot;Heterodimeric capping protein is required for stereocilia length and width regulation.&quot; <i>J Cell Biol</i> <b>216</b>(11):3861&ndash;3881; PMID: [https://pubmed.ncbi.nlm.nih.gov/28899994 28899994]; doi: [https://dx.doi.org/10.1083/jcb.201704171 10.1083/jcb.201704171]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28899994 52].
 +
#Rowland EA, <i>et al.</i> (2017) &quot;Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes.&quot; <i>mBio</i> <b>8</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28900027 28900027]; doi: [https://dx.doi.org/10.1128/mBio.01096-17 10.1128/mBio.01096-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28900027 2].
 +
#Midgett M, <i>et al.</i> (2017) &quot;Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium.&quot; <i>Front Physiol</i> <b>8</b>:631; PMID: [https://pubmed.ncbi.nlm.nih.gov/28912723 28912723]; doi: [https://dx.doi.org/10.3389/fphys.2017.00631 10.3389/fphys.2017.00631]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28912723 1].
 +
#Hospital MA, <i>et al.</i> (2018) &quot;RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.&quot; <i>Leukemia</i> <b>32</b>(3):597&ndash;605; PMID: [https://pubmed.ncbi.nlm.nih.gov/28914261 28914261]; doi: [https://dx.doi.org/10.1038/leu.2017.284 10.1038/leu.2017.284]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28914261 17].
 +
#Tain LS, <i>et al.</i> (2017) &quot;A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance.&quot; <i>Mol Syst Biol</i> <b>13</b>(9):939; PMID: [https://pubmed.ncbi.nlm.nih.gov/28916541 28916541]; doi: [https://dx.doi.org/10.15252/msb.20177663 10.15252/msb.20177663]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28916541 92].
 +
#Mills RJ, <i>et al.</i> (2017) &quot;Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(40):E8372&ndash;E8381; PMID: [https://pubmed.ncbi.nlm.nih.gov/28916735 28916735]; doi: [https://dx.doi.org/10.1073/pnas.1707316114 10.1073/pnas.1707316114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28916735 8].
 +
#Martin-Perez M, <i>et al.</i> (2017) &quot;Determinants and Regulation of Protein Turnover in Yeast.&quot; <i>Cell Syst</i> <b>5</b>(3):283&ndash;294.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/28918244 28918244]; doi: [https://dx.doi.org/10.1016/j.cels.2017.08.008 10.1016/j.cels.2017.08.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28918244 12].
 +
#Weber A, <i>et al.</i> (2017) &quot;A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN.&quot; <i>Cell Chem Biol</i> <b>24</b>(10):1299&ndash;1313.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/28919039 28919039]; doi: [https://dx.doi.org/10.1016/j.chembiol.2017.08.006 10.1016/j.chembiol.2017.08.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28919039 16].
 +
#Kuboniwa M, <i>et al.</i> (2017) &quot;Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection.&quot; <i>Nat Microbiol</i> <b>2</b>(11):1493&ndash;1499; PMID: [https://pubmed.ncbi.nlm.nih.gov/28924191 28924191]; doi: [https://dx.doi.org/10.1038/s41564-017-0021-6 10.1038/s41564-017-0021-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28924191 15].
 +
#Liao Y, <i>et al.</i> (2017) &quot;Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation.&quot; <i>J Proteome Res</i> <b>16</b>(11):4113&ndash;4121; PMID: [https://pubmed.ncbi.nlm.nih.gov/28925267 28925267]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00486 10.1021/acs.jproteome.7b00486]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28925267 93].
 +
#Lum KM, <i>et al.</i> (2017) &quot;Mapping Protein Targets of Bioactive Small Molecules Using Lipid-Based Chemical Proteomics.&quot; <i>ACS Chem Biol</i> <b>12</b>(10):2671&ndash;2681; PMID: [https://pubmed.ncbi.nlm.nih.gov/28930429 28930429]; doi: [https://dx.doi.org/10.1021/acschembio.7b00581 10.1021/acschembio.7b00581]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28930429 43].
 +
#Whiteley AM, <i>et al.</i> (2017) &quot;Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/28933694 28933694]; doi: [https://dx.doi.org/10.7554/eLife.26435 10.7554/eLife.26435]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28933694 4].
 +
#Mackinder LCM, <i>et al.</i> (2017) &quot;A Spatial Interactome Reveals the Protein Organization of the Algal CO<sub>2</sub>-Concentrating Mechanism.&quot; <i>Cell</i> <b>171</b>(1):133&ndash;147.e14; PMID: [https://pubmed.ncbi.nlm.nih.gov/28938113 28938113]; doi: [https://dx.doi.org/10.1016/j.cell.2017.08.044 10.1016/j.cell.2017.08.044]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28938113 168].
 +
#Vel&aacute;squez E, <i>et al.</i> (2017) &quot;Synaptosomal Proteome of the Orbitofrontal Cortex from Schizophrenia Patients Using Quantitative Label-Free and iTRAQ-Based Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>16</b>(12):4481&ndash;4494; PMID: [https://pubmed.ncbi.nlm.nih.gov/28949146 28949146]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00422 10.1021/acs.jproteome.7b00422]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28949146 3].
 +
#Cuijpers SAG, <i>et al.</i> (2017) &quot;Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(12):2281&ndash;2295; PMID: [https://pubmed.ncbi.nlm.nih.gov/28951443 28951443]; doi: [https://dx.doi.org/10.1074/mcp.TIR117.000152 10.1074/mcp.TIR117.000152]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28951443 102].
 +
#Seddigh P, <i>et al.</i> (2017) &quot;Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary <i>Aspergillus fumigatus</i> Infection.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(12):2184&ndash;2198; PMID: [https://pubmed.ncbi.nlm.nih.gov/28951444 28951444]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000072 10.1074/mcp.RA117.000072]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28951444 18].
 +
#Yin X, <i>et al.</i> (2017) &quot;Proteomes of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> LBB.B5 Incubated in Milk at Optimal and Low Temperatures.&quot; <i>mSystems</i> <b>2</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/28951887 28951887]; doi: [https://dx.doi.org/10.1128/mSystems.00027-17 10.1128/mSystems.00027-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28951887 27].
 +
#Wang Q, <i>et al.</i> (2017) &quot;Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling.&quot; <i>Nat Commun</i> <b>8</b>(1):709; PMID: [https://pubmed.ncbi.nlm.nih.gov/28955033 28955033]; doi: [https://dx.doi.org/10.1038/s41467-017-00767-2 10.1038/s41467-017-00767-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28955033 2].
 +
#Triana S, <i>et al.</i> (2017) &quot;Lipid Metabolic Versatility in <i>Malassezia</i> spp. Yeasts Studied through Metabolic Modeling.&quot; <i>Front Microbiol</i> <b>8</b>:1772; PMID: [https://pubmed.ncbi.nlm.nih.gov/28959251 28959251]; doi: [https://dx.doi.org/10.3389/fmicb.2017.01772 10.3389/fmicb.2017.01772]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28959251 37].
 +
#Megger DA, <i>et al.</i> (2017) &quot;Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression.&quot; <i>Front Immunol</i> <b>8</b>:1139; PMID: [https://pubmed.ncbi.nlm.nih.gov/28959263 28959263]; doi: [https://dx.doi.org/10.3389/fimmu.2017.01139 10.3389/fimmu.2017.01139]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28959263 114].
 +
#Wang Y, <i>et al.</i> (2017) &quot;Multi-Protease Strategy Identifies Three PE2 Missing Proteins in Human Testis Tissue.&quot; <i>J Proteome Res</i> <b>16</b>(12):4352&ndash;4363; PMID: [https://pubmed.ncbi.nlm.nih.gov/28959888 28959888]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00340 10.1021/acs.jproteome.7b00340]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28959888 63].
 +
#Stadlmann J, <i>et al.</i> (2017) &quot;Comparative glycoproteomics of stem cells identifies new players in ricin toxicity.&quot; <i>Nature</i> <b>549</b>(7673):538&ndash;542; PMID: [https://pubmed.ncbi.nlm.nih.gov/28959962 28959962]; doi: [https://dx.doi.org/10.1038/nature24015 10.1038/nature24015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28959962 1].
 +
#Li S, <i>et al.</i> (2017) &quot;Digging More Missing Proteins Using an Enrichment Approach with ProteoMiner.&quot; <i>J Proteome Res</i> <b>16</b>(12):4330&ndash;4339; PMID: [https://pubmed.ncbi.nlm.nih.gov/28960076 28960076]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00353 10.1021/acs.jproteome.7b00353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28960076 199].
 +
#Hauser DN, <i>et al.</i> (2017) &quot;Hexokinases link DJ-1 to the PINK1/parkin pathway.&quot; <i>Mol Neurodegener</i> <b>12</b>(1):70; PMID: [https://pubmed.ncbi.nlm.nih.gov/28962651 28962651]; doi: [https://dx.doi.org/10.1186/s13024-017-0212-x 10.1186/s13024-017-0212-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28962651 6].
 +
#Zhang W, <i>et al.</i> (2017) &quot;Detergent-Insoluble Proteome Analysis Revealed Aberrantly Aggregated Proteins in Human Preeclampsia Placentas.&quot; <i>J Proteome Res</i> <b>16</b>(12):4468&ndash;4480; PMID: [https://pubmed.ncbi.nlm.nih.gov/28965414 28965414]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00352 10.1021/acs.jproteome.7b00352]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28965414 4].
 +
#Reyes ED, <i>et al.</i> (2017) &quot;Identifying Host Factors Associated with DNA Replicated During Virus Infection.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(12):2079&ndash;2097; PMID: [https://pubmed.ncbi.nlm.nih.gov/28972080 28972080]; doi: [https://dx.doi.org/10.1074/mcp.M117.067116 10.1074/mcp.M117.067116]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28972080 164].
 +
#Isobe K, <i>et al.</i> (2017) &quot;Systems-level identification of PKA-dependent signaling in epithelial cells.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(42):E8875&ndash;E8884; PMID: [https://pubmed.ncbi.nlm.nih.gov/28973931 28973931]; doi: [https://dx.doi.org/10.1073/pnas.1709123114 10.1073/pnas.1709123114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28973931 75].
 +
#Bj&oslash;rkum AA, <i>et al.</i> (2017) &quot;Fast hyperbaric decompression after heliox saturation altered the brain proteome in rats.&quot; <i>PLoS One</i> <b>12</b>(10):e0185765; PMID: [https://pubmed.ncbi.nlm.nih.gov/28977037 28977037]; doi: [https://dx.doi.org/10.1371/journal.pone.0185765 10.1371/journal.pone.0185765]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28977037 19].
 +
#Kollipara L, <i>et al.</i> (2017) &quot;In-depth phenotyping of lymphoblastoid cells suggests selective cellular vulnerability in Marinesco-Sj&ouml;gren syndrome.&quot; <i>Oncotarget</i> <b>8</b>(40):68493&ndash;68516; PMID: [https://pubmed.ncbi.nlm.nih.gov/28978133 28978133]; doi: [https://dx.doi.org/10.18632/oncotarget.19663 10.18632/oncotarget.19663]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28978133 23].
 +
#Opitz N, <i>et al.</i> (2017) &quot;Capturing the Asc1p/<i>R</i>eceptor for <i>A</i>ctivated <i>C K</i>inase <i>1</i> (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(12):2199&ndash;2218; PMID: [https://pubmed.ncbi.nlm.nih.gov/28982715 28982715]; doi: [https://dx.doi.org/10.1074/mcp.M116.066654 10.1074/mcp.M116.066654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28982715 268].
 +
#Parker BL, <i>et al.</i> (2017) &quot;Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome.&quot; <i>Mol Cell Proteomics</i> <b>16</b>(12):2055&ndash;2068; PMID: [https://pubmed.ncbi.nlm.nih.gov/28982716 28982716]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000020 10.1074/mcp.RA117.000020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28982716 12].
 +
#Berger CN, <i>et al.</i> (2017) &quot;Citrobacter rodentium Subverts ATP Flux and Cholesterol Homeostasis in Intestinal Epithelial Cells In&nbsp;Vivo.&quot; <i>Cell Metab</i> <b>26</b>(5):738&ndash;752.e6; PMID: [https://pubmed.ncbi.nlm.nih.gov/28988824 28988824]; doi: [https://dx.doi.org/10.1016/j.cmet.2017.09.003 10.1016/j.cmet.2017.09.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28988824 24].
 +
#Kuenzi BM, <i>et al.</i> (2017) &quot;Polypharmacology-based ceritinib repurposing using integrated functional proteomics.&quot; <i>Nat Chem Biol</i> <b>13</b>(12):1222&ndash;1231; PMID: [https://pubmed.ncbi.nlm.nih.gov/28991240 28991240]; doi: [https://dx.doi.org/10.1038/nchembio.2489 10.1038/nchembio.2489]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/28991240 73].
 +
#Novikova SE, <i>et al.</i> (2017) &quot;Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation.&quot; <i>Eur J Mass Spectrom (Chichester)</i> <b>23</b>(4):202&ndash;208; PMID: [https://pubmed.ncbi.nlm.nih.gov/29028392 29028392]; doi: [https://dx.doi.org/10.1177/1469066717719848 10.1177/1469066717719848]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29028392 25].
 +
#Saravanan R, <i>et al.</i> (2017) &quot;Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.&quot; <i>Sci Rep</i> <b>7</b>(1):13136; PMID: [https://pubmed.ncbi.nlm.nih.gov/29030565 29030565]; doi: [https://dx.doi.org/10.1038/s41598-017-13197-3 10.1038/s41598-017-13197-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29030565 43].
 +
#Grenga L, <i>et al.</i> (2017) &quot;Analyzing the Complex Regulatory Landscape of Hfq - an Integrative, Multi-Omics Approach.&quot; <i>Front Microbiol</i> <b>8</b>:1784; PMID: [https://pubmed.ncbi.nlm.nih.gov/29033902 29033902]; doi: [https://dx.doi.org/10.3389/fmicb.2017.01784 10.3389/fmicb.2017.01784]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29033902 1].
 +
#Kugeratski FG, <i>et al.</i> (2018) &quot;Mitogen-Activated Protein Kinase Kinase 5 Regulates Proliferation and Biosynthetic Processes in Procyclic Forms of Trypanosoma brucei.&quot; <i>J Proteome Res</i> <b>17</b>(1):108&ndash;118; PMID: [https://pubmed.ncbi.nlm.nih.gov/29043805 29043805]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00415 10.1021/acs.jproteome.7b00415]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29043805 15].
 +
#Bartosova M, <i>et al.</i> (2018) &quot;Complement Activation in Peritoneal Dialysis-Induced Arteriolopathy.&quot; <i>J Am Soc Nephrol</i> <b>29</b>(1):268&ndash;282; PMID: [https://pubmed.ncbi.nlm.nih.gov/29046343 29046343]; doi: [https://dx.doi.org/10.1681/ASN.2017040436 10.1681/ASN.2017040436]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29046343 2].
 +
#Fabrik I, <i>et al.</i> (2018) &quot;The Early Dendritic Cell Signaling Induced by Virulent <i>Francisella tularensis</i> Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(1):81&ndash;94; PMID: [https://pubmed.ncbi.nlm.nih.gov/29046388 29046388]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000160 10.1074/mcp.RA117.000160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29046388 364].
 +
#Raschdorf O, <i>et al.</i> (2018) &quot;A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle.&quot; <i>J Proteomics</i> <b>172</b>:89&ndash;99; PMID: [https://pubmed.ncbi.nlm.nih.gov/29054541 29054541]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.10.007 10.1016/j.jprot.2017.10.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29054541 127].
 +
#Karg E, <i>et al.</i> (2017) &quot;Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells.&quot; <i>J Mol Biol</i> <b>429</b>(24):3814&ndash;3824; PMID: [https://pubmed.ncbi.nlm.nih.gov/29055779 29055779]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.10.014 10.1016/j.jmb.2017.10.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29055779 32].
 +
#Hartl M, <i>et al.</i> (2017) &quot;Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in <i>Arabidopsis</i>.&quot; <i>Mol Syst Biol</i> <b>13</b>(10):949; PMID: [https://pubmed.ncbi.nlm.nih.gov/29061669 29061669]; doi: [https://dx.doi.org/10.15252/msb.20177819 10.15252/msb.20177819]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29061669 44].
 +
#Graham LC, <i>et al.</i> (2017) &quot;Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture.&quot; <i>Mol Neurodegener</i> <b>12</b>(1):77; PMID: [https://pubmed.ncbi.nlm.nih.gov/29078798 29078798]; doi: [https://dx.doi.org/10.1186/s13024-017-0221-9 10.1186/s13024-017-0221-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29078798 6].
 +
#Pan D, <i>et al.</i> (2017) &quot;Quantitative proteomic Analysis Reveals up-regulation of caveolin-1 in FOXP3-overexpressed human gastric cancer cells.&quot; <i>Sci Rep</i> <b>7</b>(1):14460; PMID: [https://pubmed.ncbi.nlm.nih.gov/29089565 29089565]; doi: [https://dx.doi.org/10.1038/s41598-017-14453-2 10.1038/s41598-017-14453-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29089565 10].
 +
#Schuster H, <i>et al.</i> (2017) &quot;The immunopeptidomic landscape of ovarian carcinomas.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(46):E9942&ndash;E9951; PMID: [https://pubmed.ncbi.nlm.nih.gov/29093164 29093164]; doi: [https://dx.doi.org/10.1073/pnas.1707658114 10.1073/pnas.1707658114]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29093164 275].
 +
#Naumenko N, <i>et al.</i> (2017) &quot;INA complex liaises the F<sub>1</sub>F<sub>o</sub>-ATP synthase membrane motor modules.&quot; <i>Nat Commun</i> <b>8</b>(1):1237; PMID: [https://pubmed.ncbi.nlm.nih.gov/29093463 29093463]; doi: [https://dx.doi.org/10.1038/s41467-017-01437-z 10.1038/s41467-017-01437-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29093463 82].
 +
#Chu TTT, <i>et al.</i> (2018) &quot;Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation.&quot; <i>Br J Haematol</i> <b>180</b>(1):118&ndash;133; PMID: [https://pubmed.ncbi.nlm.nih.gov/29094334 29094334]; doi: [https://dx.doi.org/10.1111/bjh.14976 10.1111/bjh.14976]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29094334 3].
 +
#Frejno M, <i>et al.</i> (2017) &quot;Pharmacoproteomic characterisation of human colon and rectal cancer.&quot; <i>Mol Syst Biol</i> <b>13</b>(11):951; PMID: [https://pubmed.ncbi.nlm.nih.gov/29101300 29101300]; doi: [https://dx.doi.org/10.15252/msb.20177701 10.15252/msb.20177701]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29101300 184].
 +
#Awazawa M, <i>et al.</i> (2017) &quot;A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle.&quot; <i>Nat Med</i> <b>23</b>(12):1466&ndash;1473; PMID: [https://pubmed.ncbi.nlm.nih.gov/29106399 29106399]; doi: [https://dx.doi.org/10.1038/nm.4420 10.1038/nm.4420]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29106399 8].
 +
#Alvarez-Castelao B, <i>et al.</i> (2017) &quot;Cell-type-specific metabolic labeling of nascent proteomes in vivo.&quot; <i>Nat Biotechnol</i> <b>35</b>(12):1196&ndash;1201; PMID: [https://pubmed.ncbi.nlm.nih.gov/29106408 29106408]; doi: [https://dx.doi.org/10.1038/nbt.4016 10.1038/nbt.4016]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29106408 98].
 +
#Gialitakis M, <i>et al.</i> (2017) &quot;Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development.&quot; <i>Stem Cell Reports</i> <b>9</b>(5):1377&ndash;1386; PMID: [https://pubmed.ncbi.nlm.nih.gov/29107595 29107595]; doi: [https://dx.doi.org/10.1016/j.stemcr.2017.09.025 10.1016/j.stemcr.2017.09.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29107595 108].
 +
#Nielsen M, <i>et al.</i> (2018) &quot;Improved Prediction of Bovine Leucocyte Antigens (BoLA) Presented Ligands by Use of Mass-Spectrometry-Determined Ligand and in Vitro Binding Data.&quot; <i>J Proteome Res</i> <b>17</b>(1):559&ndash;567; PMID: [https://pubmed.ncbi.nlm.nih.gov/29115832 29115832]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00675 10.1021/acs.jproteome.7b00675]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29115832 10].
 +
#van der Wal L, <i>et al.</i> (2018) &quot;Improvement of ubiquitylation site detection by Orbitrap mass spectrometry.&quot; <i>J Proteomics</i> <b>172</b>:49&ndash;56; PMID: [https://pubmed.ncbi.nlm.nih.gov/29122726 29122726]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.10.014 10.1016/j.jprot.2017.10.014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29122726 86].
 +
#Steger M, <i>et al.</i> (2017) &quot;Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/29125462 29125462]; doi: [https://dx.doi.org/10.7554/eLife.31012 10.7554/eLife.31012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29125462 667].
 +
#Malty RH, <i>et al.</i> (2017) &quot;A Map of Human Mitochondrial Protein Interactions Linked to Neurodegeneration Reveals New Mechanisms of Redox Homeostasis and NF-&kappa;B Signaling.&quot; <i>Cell Syst</i> <b>5</b>(6):564&ndash;577.e12; PMID: [https://pubmed.ncbi.nlm.nih.gov/29128334 29128334]; doi: [https://dx.doi.org/10.1016/j.cels.2017.10.010 10.1016/j.cels.2017.10.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29128334 109].
 +
#Ju Lee H, <i>et al.</i> (2017) &quot;A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells.&quot; <i>Nat Commun</i> <b>8</b>(1):1456; PMID: [https://pubmed.ncbi.nlm.nih.gov/29129916 29129916]; doi: [https://dx.doi.org/10.1038/s41467-017-01744-5 10.1038/s41467-017-01744-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29129916 6].
 +
#Garc&iacute;a-Berrocoso T, <i>et al.</i> (2018) &quot;Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(1):175&ndash;189; PMID: [https://pubmed.ncbi.nlm.nih.gov/29133510 29133510]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000419 10.1074/mcp.RA117.000419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29133510 102].
 +
#Negretti NM, <i>et al.</i> (2017) &quot;The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species.&quot; <i>Sci Rep</i> <b>7</b>(1):15455; PMID: [https://pubmed.ncbi.nlm.nih.gov/29133896 29133896]; doi: [https://dx.doi.org/10.1038/s41598-017-15379-5 10.1038/s41598-017-15379-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29133896 8].
 +
#Doll S, <i>et al.</i> (2017) &quot;Region and cell-type resolved quantitative proteomic map of the human heart.&quot; <i>Nat Commun</i> <b>8</b>(1):1469; PMID: [https://pubmed.ncbi.nlm.nih.gov/29133944 29133944]; doi: [https://dx.doi.org/10.1038/s41467-017-01747-2 10.1038/s41467-017-01747-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29133944 159].
 +
#Anders F, <i>et al.</i> (2017) &quot;The Small Heat Shock Protein &alpha;-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model.&quot; <i>Int J Mol Sci</i> <b>18</b>(11):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29135941 29135941]; doi: [https://dx.doi.org/10.3390/ijms18112418 10.3390/ijms18112418]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29135941 8].
 +
#Geis-Asteggiante L, <i>et al.</i> (2018) &quot;Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions.&quot; <i>J Proteome Res</i> <b>17</b>(1):486&ndash;498; PMID: [https://pubmed.ncbi.nlm.nih.gov/29139296 29139296]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00646 10.1021/acs.jproteome.7b00646]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29139296 60].
 +
#Worzfeld T, <i>et al.</i> (2018) &quot;Proteotranscriptomics Reveal Signaling Networks in the Ovarian Cancer Microenvironment.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(2):270&ndash;289; PMID: [https://pubmed.ncbi.nlm.nih.gov/29141914 29141914]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000400 10.1074/mcp.RA117.000400]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29141914 121].
 +
#Raffel S, <i>et al.</i> (2017) &quot;BCAT1 restricts &alpha;KG levels in AML stem cells leading to IDHmut-like DNA hypermethylation.&quot; <i>Nature</i> <b>551</b>(7680):384&ndash;388; PMID: [https://pubmed.ncbi.nlm.nih.gov/29144447 29144447]; doi: [https://dx.doi.org/10.1038/nature24294 10.1038/nature24294]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29144447 10].
 +
#Yilmaz O, <i>et al.</i> (2017) &quot;Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio).&quot; <i>PLoS One</i> <b>12</b>(11):e0188084; PMID: [https://pubmed.ncbi.nlm.nih.gov/29145436 29145436]; doi: [https://dx.doi.org/10.1371/journal.pone.0188084 10.1371/journal.pone.0188084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29145436 57].
 +
#Cherry JD, <i>et al.</i> (2018) &quot;Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy.&quot; <i>J Neuropathol Exp Neurol</i> <b>77</b>(1):40&ndash;49; PMID: [https://pubmed.ncbi.nlm.nih.gov/29145658 29145658]; doi: [https://dx.doi.org/10.1093/jnen/nlx100 10.1093/jnen/nlx100]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29145658 4].
 +
#Le Guerrou&eacute; F, <i>et al.</i> (2017) &quot;Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mitophagy Pathway.&quot; <i>Mol Cell</i> <b>68</b>(4):786&ndash;796.e6; PMID: [https://pubmed.ncbi.nlm.nih.gov/29149599 29149599]; doi: [https://dx.doi.org/10.1016/j.molcel.2017.10.029 10.1016/j.molcel.2017.10.029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29149599 138].
 +
#Hu D, <i>et al.</i> (2018) &quot;Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells.&quot; <i>Proteomics</i> <b>18</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29150924 29150924]; doi: [https://dx.doi.org/10.1002/pmic.201700133 10.1002/pmic.201700133]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29150924 8].
 +
#Korkmaz AG, <i>et al.</i> (2018) &quot;Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states.&quot; <i>J Proteomics</i> <b>180</b>:11&ndash;24; PMID: [https://pubmed.ncbi.nlm.nih.gov/29155090 29155090]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.11.008 10.1016/j.jprot.2017.11.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29155090 21].
 +
#F&ouml;ll MC, <i>et al.</i> (2018) &quot;Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas.&quot; <i>Matrix Biol</i> <b>66</b>:1&ndash;21; PMID: [https://pubmed.ncbi.nlm.nih.gov/29158163 29158163]; doi: [https://dx.doi.org/10.1016/j.matbio.2017.11.004 10.1016/j.matbio.2017.11.004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29158163 24].
 +
#Hoffman MA, <i>et al.</i> (2018) &quot;Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer.&quot; <i>J Proteome Res</i> <b>17</b>(1):63&ndash;75; PMID: [https://pubmed.ncbi.nlm.nih.gov/29164889 29164889]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00329 10.1021/acs.jproteome.7b00329]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29164889 18].
 +
#Hosp F, <i>et al.</i> (2017) &quot;Spatiotemporal Proteomic Profiling of Huntington&#39;s Disease Inclusions Reveals Widespread Loss of Protein Function.&quot; <i>Cell Rep</i> <b>21</b>(8):2291&ndash;2303; PMID: [https://pubmed.ncbi.nlm.nih.gov/29166617 29166617]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.10.097 10.1016/j.celrep.2017.10.097]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29166617 196].
 +
#Babu M, <i>et al.</i> (2018) &quot;Global landscape of cell envelope protein complexes in Escherichia coli.&quot; <i>Nat Biotechnol</i> <b>36</b>(1):103&ndash;112; PMID: [https://pubmed.ncbi.nlm.nih.gov/29176613 29176613]; doi: [https://dx.doi.org/10.1038/nbt.4024 10.1038/nbt.4024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29176613 2972].
 +
#Kelstrup CD, <i>et al.</i> (2018) &quot;Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(1):727&ndash;738; PMID: [https://pubmed.ncbi.nlm.nih.gov/29183128 29183128]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00602 10.1021/acs.jproteome.7b00602]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183128 107].
 +
#Winter DL, <i>et al.</i> (2018) &quot;Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification.&quot; <i>J Mol Biol</i> <b>430</b>(1):102&ndash;118; PMID: [https://pubmed.ncbi.nlm.nih.gov/29183786 29183786]; doi: [https://dx.doi.org/10.1016/j.jmb.2017.11.009 10.1016/j.jmb.2017.11.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29183786 18].
 +
#Carlyle BC, <i>et al.</i> (2017) &quot;A multiregional proteomic survey of the postnatal human brain.&quot; <i>Nat Neurosci</i> <b>20</b>(12):1787&ndash;1795; PMID: [https://pubmed.ncbi.nlm.nih.gov/29184206 29184206]; doi: [https://dx.doi.org/10.1038/s41593-017-0011-2 10.1038/s41593-017-0011-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29184206 196].
 +
#Lacombe M, <i>et al.</i> (2018) &quot;Proteomic characterization of human exhaled breath condensate.&quot; <i>J Breath Res</i> <b>12</b>(2):021001; PMID: [https://pubmed.ncbi.nlm.nih.gov/29189203 29189203]; doi: [https://dx.doi.org/10.1088/1752-7163/aa9e71 10.1088/1752-7163/aa9e71]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29189203 4].
 +
#Klaeger S, <i>et al.</i> (2017) &quot;The target landscape of clinical kinase drugs.&quot; <i>Science</i> <b>358</b>(6367):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29191878 29191878]; doi: [https://dx.doi.org/10.1126/science.aan4368 10.1126/science.aan4368]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29191878 3032].
 +
#Mayer RL, <i>et al.</i> (2018) &quot;Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(2):290&ndash;303; PMID: [https://pubmed.ncbi.nlm.nih.gov/29196338 29196338]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000425 10.1074/mcp.RA117.000425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29196338 6].
 +
#Smith MC, <i>et al.</i> (2018) &quot;Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome.&quot; <i>J Proteomics</i> <b>173</b>:89&ndash;98; PMID: [https://pubmed.ncbi.nlm.nih.gov/29208510 29208510]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.11.025 10.1016/j.jprot.2017.11.025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29208510 72].
 +
#Herzog R, <i>et al.</i> (2018) &quot;Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism-Associated Molecular Signatures.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(3):516&ndash;532; PMID: [https://pubmed.ncbi.nlm.nih.gov/29208752 29208752]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000186 10.1074/mcp.RA117.000186]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29208752 10].
 +
#Wierer M, <i>et al.</i> (2018) &quot;Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(2):321&ndash;334; PMID: [https://pubmed.ncbi.nlm.nih.gov/29208753 29208753]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000315 10.1074/mcp.RA117.000315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29208753 156].
 +
#Stachowicz A, <i>et al.</i> (2017) &quot;Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism.&quot; <i>Clin Proteomics</i> <b>14</b>:38; PMID: [https://pubmed.ncbi.nlm.nih.gov/29209155 29209155]; doi: [https://dx.doi.org/10.1186/s12014-017-9173-x 10.1186/s12014-017-9173-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29209155 36].
 +
#Muth T, <i>et al.</i> (2018) &quot;MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go.&quot; <i>Anal Chem</i> <b>90</b>(1):685&ndash;689; PMID: [https://pubmed.ncbi.nlm.nih.gov/29215871 29215871]; doi: [https://dx.doi.org/10.1021/acs.analchem.7b03544 10.1021/acs.analchem.7b03544]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29215871 3].
 +
#Sciuto MR, <i>et al.</i> (2018) &quot;Two-Step Coimmunoprecipitation (TIP) Enables Efficient and Highly Selective Isolation of Native Protein Complexes.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(5):993&ndash;1009; PMID: [https://pubmed.ncbi.nlm.nih.gov/29217617 29217617]; doi: [https://dx.doi.org/10.1074/mcp.O116.065920 10.1074/mcp.O116.065920]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29217617 36].
 +
#Soboci&#x144;ska J, <i>et al.</i> (2018) &quot;Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(2):233&ndash;254; PMID: [https://pubmed.ncbi.nlm.nih.gov/29217618 29217618]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000050 10.1074/mcp.RA117.000050]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29217618 12].
 +
#Holthoff ER, <i>et al.</i> (2017) &quot;Vulvar squamous cell carcinoma aggressiveness is associated with differential expression of collagen and STAT1.&quot; <i>Clin Proteomics</i> <b>14</b>:40; PMID: [https://pubmed.ncbi.nlm.nih.gov/29225558 29225558]; doi: [https://dx.doi.org/10.1186/s12014-017-9175-8 10.1186/s12014-017-9175-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29225558 414].
 +
#Stewart NA, <i>et al.</i> (2017) &quot;Sex determination of human remains from peptides in tooth enamel.&quot; <i>Proc Natl Acad Sci U S A</i> <b>114</b>(52):13649&ndash;13654; PMID: [https://pubmed.ncbi.nlm.nih.gov/29229823 29229823]; doi: [https://dx.doi.org/10.1073/pnas.1714926115 10.1073/pnas.1714926115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29229823 13].
 +
#Bizzotto S, <i>et al.</i> (2017) &quot;Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex.&quot; <i>Sci Rep</i> <b>7</b>(1):17308; PMID: [https://pubmed.ncbi.nlm.nih.gov/29229923 29229923]; doi: [https://dx.doi.org/10.1038/s41598-017-15253-4 10.1038/s41598-017-15253-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29229923 28].
 +
#Alli-Shaik A, <i>et al.</i> (2017) &quot;Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.&quot; <i>Breast Cancer Res</i> <b>19</b>(1):132; PMID: [https://pubmed.ncbi.nlm.nih.gov/29233185 29233185]; doi: [https://dx.doi.org/10.1186/s13058-017-0924-4 10.1186/s13058-017-0924-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29233185 263].
 +
#Maumus M, <i>et al.</i> (2017) &quot;Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis.&quot; <i>Front Immunol</i> <b>8</b>:1638; PMID: [https://pubmed.ncbi.nlm.nih.gov/29238343 29238343]; doi: [https://dx.doi.org/10.3389/fimmu.2017.01638 10.3389/fimmu.2017.01638]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29238343 120].
 +
#Chong C, <i>et al.</i> (2018) &quot;High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferon&gamma;-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(3):533&ndash;548; PMID: [https://pubmed.ncbi.nlm.nih.gov/29242379 29242379]; doi: [https://dx.doi.org/10.1074/mcp.TIR117.000383 10.1074/mcp.TIR117.000383]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29242379 121].
 +
#M&uuml;ller AK, <i>et al.</i> (2018) &quot;Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases.&quot; <i>Neoplasia</i> <b>20</b>(2):140&ndash;151; PMID: [https://pubmed.ncbi.nlm.nih.gov/29248718 29248718]; doi: [https://dx.doi.org/10.1016/j.neo.2017.10.009 10.1016/j.neo.2017.10.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29248718 15].
 +
#Brumbaugh J, <i>et al.</i> (2018) &quot;Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling.&quot; <i>Cell</i> <b>172</b>(1-2):106&ndash;120.e21; PMID: [https://pubmed.ncbi.nlm.nih.gov/29249356 29249356]; doi: [https://dx.doi.org/10.1016/j.cell.2017.11.023 10.1016/j.cell.2017.11.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29249356 24].
 +
#Krogager TP, <i>et al.</i> (2018) &quot;Labeling and identifying cell-specific proteomes in the mouse brain.&quot; <i>Nat Biotechnol</i> <b>36</b>(2):156&ndash;159; PMID: [https://pubmed.ncbi.nlm.nih.gov/29251727 29251727]; doi: [https://dx.doi.org/10.1038/nbt.4056 10.1038/nbt.4056]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29251727 33].
 +
#Mackmull MT, <i>et al.</i> (2017) &quot;Landscape of nuclear transport receptor cargo&nbsp;specificity.&quot; <i>Mol Syst Biol</i> <b>13</b>(12):962; PMID: [https://pubmed.ncbi.nlm.nih.gov/29254951 29254951]; doi: [https://dx.doi.org/10.15252/msb.20177608 10.15252/msb.20177608]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29254951 315].
 +
#Bielecka ZF, <i>et al.</i> (2017) &quot;Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells.&quot; <i>Cell Biosci</i> <b>7</b>:71; PMID: [https://pubmed.ncbi.nlm.nih.gov/29270287 29270287]; doi: [https://dx.doi.org/10.1186/s13578-017-0197-8 10.1186/s13578-017-0197-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29270287 12].
 +
#Gao Y, <i>et al.</i> (2017) &quot;Protein Expression Landscape of Mouse Embryos during Pre-implantation Development.&quot; <i>Cell Rep</i> <b>21</b>(13):3957&ndash;3969; PMID: [https://pubmed.ncbi.nlm.nih.gov/29281840 29281840]; doi: [https://dx.doi.org/10.1016/j.celrep.2017.11.111 10.1016/j.celrep.2017.11.111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29281840 2].
 +
#Abdelmegid S, <i>et al.</i> (2017) &quot;Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis.&quot; <i>Int J Mol Sci</i> <b>19</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29283389 29283389]; doi: [https://dx.doi.org/10.3390/ijms19010078 10.3390/ijms19010078]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29283389 11].
 +
#Kelley RC, <i>et al.</i> (2018) &quot;Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice.&quot; <i>Exp Gerontol</i> <b>103</b>:69&ndash;79; PMID: [https://pubmed.ncbi.nlm.nih.gov/29289553 29289553]; doi: [https://dx.doi.org/10.1016/j.exger.2017.12.017 10.1016/j.exger.2017.12.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29289553 24].
 +
#Behr M, <i>et al.</i> (2018) &quot;Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl.&quot; <i>BMC Plant Biol</i> <b>18</b>(1):1; PMID: [https://pubmed.ncbi.nlm.nih.gov/29291729 29291729]; doi: [https://dx.doi.org/10.1186/s12870-017-1213-1 10.1186/s12870-017-1213-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29291729 20].
 +
#Ritz D, <i>et al.</i> (2018) &quot;Membranal and Blood-Soluble HLA Class II Peptidome Analyses Using Data-Dependent and Independent Acquisition.&quot; <i>Proteomics</i> <b>18</b>(12):e1700246; PMID: [https://pubmed.ncbi.nlm.nih.gov/29314611 29314611]; doi: [https://dx.doi.org/10.1002/pmic.201700246 10.1002/pmic.201700246]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29314611 27].
 +
#Kooijman S, <i>et al.</i> (2018) &quot;Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness.&quot; <i>J Proteomics</i> <b>175</b>:144&ndash;155; PMID: [https://pubmed.ncbi.nlm.nih.gov/29317357 29317357]; doi: [https://dx.doi.org/10.1016/j.jprot.2017.12.021 10.1016/j.jprot.2017.12.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29317357 55].
 +
#Pavkova I, <i>et al.</i> (2017) &quot;The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the <i>Francisella tularensis dsbA</i> Deletion Mutant.&quot; <i>Front Cell Infect Microbiol</i> <b>7</b>:503; PMID: [https://pubmed.ncbi.nlm.nih.gov/29322032 29322032]; doi: [https://dx.doi.org/10.3389/fcimb.2017.00503 10.3389/fcimb.2017.00503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29322032 9].
 +
#Grube L, <i>et al.</i> (2018) &quot;Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach To Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis.&quot; <i>J Proteome Res</i> <b>17</b>(2):879&ndash;890; PMID: [https://pubmed.ncbi.nlm.nih.gov/29322779 29322779]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00684 10.1021/acs.jproteome.7b00684]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29322779 20].
 +
#Nassa G, <i>et al.</i> (2018) &quot;Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications.&quot; <i>Sci Rep</i> <b>8</b>(1):498; PMID: [https://pubmed.ncbi.nlm.nih.gov/29323256 29323256]; doi: [https://dx.doi.org/10.1038/s41598-017-18985-5 10.1038/s41598-017-18985-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29323256 1].
 +
#Thriene K, <i>et al.</i> (2018) &quot;Combinatorial Omics Analysis Reveals Perturbed Lysosomal Homeostasis in Collagen VII-deficient Keratinocytes.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(4):565&ndash;579; PMID: [https://pubmed.ncbi.nlm.nih.gov/29326176 29326176]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000437 10.1074/mcp.RA117.000437]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29326176 14].
 +
#Ashley J, <i>et al.</i> (2018) &quot;Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons.&quot; <i>Cell</i> <b>172</b>(1-2):262&ndash;274.e11; PMID: [https://pubmed.ncbi.nlm.nih.gov/29328915 29328915]; doi: [https://dx.doi.org/10.1016/j.cell.2017.12.022 10.1016/j.cell.2017.12.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29328915 6].
 +
#Khan SY, <i>et al.</i> (2018) &quot;Proteome Profiling of Developing Murine Lens Through Mass Spectrometry.&quot; <i>Invest Ophthalmol Vis Sci</i> <b>59</b>(1):100&ndash;107; PMID: [https://pubmed.ncbi.nlm.nih.gov/29332127 29332127]; doi: [https://dx.doi.org/10.1167/iovs.17-21601 10.1167/iovs.17-21601]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29332127 3].
 +
#Meng H, <i>et al.</i> (2018) &quot;Proteome-Wide Characterization of Phosphorylation-Induced Conformational Changes in Breast Cancer.&quot; <i>J Proteome Res</i> <b>17</b>(3):1129&ndash;1137; PMID: [https://pubmed.ncbi.nlm.nih.gov/29332387 29332387]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00795 10.1021/acs.jproteome.7b00795]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29332387 36].
 +
#Kim DK, <i>et al.</i> (2018) &quot;Molecular and functional signatures in a novel Alzheimer&#39;s disease mouse model assessed by quantitative proteomics.&quot; <i>Mol Neurodegener</i> <b>13</b>(1):2; PMID: [https://pubmed.ncbi.nlm.nih.gov/29338754 29338754]; doi: [https://dx.doi.org/10.1186/s13024-017-0234-4 10.1186/s13024-017-0234-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29338754 8].
 +
#Sousa DZ, <i>et al.</i> (2018) &quot;The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.&quot; <i>Nat Commun</i> <b>9</b>(1):239; PMID: [https://pubmed.ncbi.nlm.nih.gov/29339722 29339722]; doi: [https://dx.doi.org/10.1038/s41467-017-02518-9 10.1038/s41467-017-02518-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29339722 84].
 +
#Vranka JA, <i>et al.</i> (2018) &quot;Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures.&quot; <i>Invest Ophthalmol Vis Sci</i> <b>59</b>(1):246&ndash;259; PMID: [https://pubmed.ncbi.nlm.nih.gov/29340639 29340639]; doi: [https://dx.doi.org/10.1167/iovs.17-22759 10.1167/iovs.17-22759]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29340639 2].
 +
#Drabikowski K, <i>et al.</i> (2018) &quot;Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling.&quot; <i>Sci Rep</i> <b>8</b>(1):1139; PMID: [https://pubmed.ncbi.nlm.nih.gov/29348603 29348603]; doi: [https://dx.doi.org/10.1038/s41598-018-19424-9 10.1038/s41598-018-19424-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29348603 37].
 +
#Gao Y, <i>et al.</i> (2018) &quot;The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis.&quot; <i>Cell Death Dis</i> <b>9</b>(2):33; PMID: [https://pubmed.ncbi.nlm.nih.gov/29348610 29348610]; doi: [https://dx.doi.org/10.1038/s41419-017-0040-5 10.1038/s41419-017-0040-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29348610 2].
 +
#Phuyal S, <i>et al.</i> (2018) &quot;Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes.&quot; <i>Nanotoxicology</i> <b>12</b>(2):138&ndash;152; PMID: [https://pubmed.ncbi.nlm.nih.gov/29350075 29350075]; doi: [https://dx.doi.org/10.1080/17435390.2018.1425500 10.1080/17435390.2018.1425500]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29350075 24].
 +
#Mustafa DAM, <i>et al.</i> (2018) &quot;T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression.&quot; <i>Acta Neuropathol</i> <b>135</b>(4):581&ndash;599; PMID: [https://pubmed.ncbi.nlm.nih.gov/29350274 29350274]; doi: [https://dx.doi.org/10.1007/s00401-018-1806-2 10.1007/s00401-018-1806-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29350274 6].
 +
#Sch&ouml;nke M, <i>et al.</i> (2018) &quot;Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition.&quot; <i>Proteomics</i> <b>18</b>(5-6):e1700375; PMID: [https://pubmed.ncbi.nlm.nih.gov/29350465 29350465]; doi: [https://dx.doi.org/10.1002/pmic.201700375 10.1002/pmic.201700375]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29350465 22].
 +
#Ongay S, <i>et al.</i> (2018) &quot;Cleavable Crosslinkers as Tissue Fixation Reagents for Proteomic Analysis.&quot; <i>Chembiochem</i> <b>19</b>(7):736&ndash;743; PMID: [https://pubmed.ncbi.nlm.nih.gov/29356267 29356267]; doi: [https://dx.doi.org/10.1002/cbic.201700625 10.1002/cbic.201700625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29356267 15].
 +
#Topf U, <i>et al.</i> (2018) &quot;Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species.&quot; <i>Nat Commun</i> <b>9</b>(1):324; PMID: [https://pubmed.ncbi.nlm.nih.gov/29358734 29358734]; doi: [https://dx.doi.org/10.1038/s41467-017-02694-8 10.1038/s41467-017-02694-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29358734 96].
 +
#Kelly AC, <i>et al.</i> (2018) &quot;Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells.&quot; <i>Mol Cell Endocrinol</i> <b>473</b>:136&ndash;145; PMID: [https://pubmed.ncbi.nlm.nih.gov/29360563 29360563]; doi: [https://dx.doi.org/10.1016/j.mce.2018.01.012 10.1016/j.mce.2018.01.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29360563 9].
 +
#Walheim E, <i>et al.</i> (2018) &quot;Respiromics - An integrative analysis linking mitochondrial bioenergetics to molecular signatures.&quot; <i>Mol Metab</i> <b>9</b>:4&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/29361498 29361498]; doi: [https://dx.doi.org/10.1016/j.molmet.2018.01.002 10.1016/j.molmet.2018.01.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29361498 32].
 +
#Kosicek M, <i>et al.</i> (2018) &quot;N-glycome of the Lysosomal Glycocalyx is Altered in Niemann-Pick Type C Disease (NPC) Model Cells.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(4):631&ndash;642; PMID: [https://pubmed.ncbi.nlm.nih.gov/29367433 29367433]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000129 10.1074/mcp.RA117.000129]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29367433 6].
 +
#Johnston HE, <i>et al.</i> (2018) &quot;Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(4):776&ndash;791; PMID: [https://pubmed.ncbi.nlm.nih.gov/29367434 29367434]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000539 10.1074/mcp.RA117.000539]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29367434 2].
 +
#Kostas M, <i>et al.</i> (2018) &quot;Protein Tyrosine Phosphatase Receptor Type G (PTPRG) Controls Fibroblast Growth Factor Receptor (FGFR) 1 Activity and Influences Sensitivity to FGFR Kinase Inhibitors.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(5):850&ndash;870; PMID: [https://pubmed.ncbi.nlm.nih.gov/29371290 29371290]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000538 10.1074/mcp.RA117.000538]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29371290 54].
 +
#Adav SS, <i>et al.</i> (2018) &quot;Studies on the Proteome of Human Hair - Identification of Histones and Deamidated Keratins.&quot; <i>Sci Rep</i> <b>8</b>(1):1599; PMID: [https://pubmed.ncbi.nlm.nih.gov/29371649 29371649]; doi: [https://dx.doi.org/10.1038/s41598-018-20041-9 10.1038/s41598-018-20041-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29371649 18].
 +
#Zhou Y, <i>et al.</i> (2018) &quot;Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.&quot; <i>Anal Chem</i> <b>90</b>(4):2434&ndash;2439; PMID: [https://pubmed.ncbi.nlm.nih.gov/29376338 29376338]; doi: [https://dx.doi.org/10.1021/acs.analchem.7b03710 10.1021/acs.analchem.7b03710]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29376338 24].
 +
#Grossegesse M, <i>et al.</i> (2018) &quot;Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores.&quot; <i>Sci Rep</i> <b>8</b>(1):1807; PMID: [https://pubmed.ncbi.nlm.nih.gov/29379051 29379051]; doi: [https://dx.doi.org/10.1038/s41598-018-20130-9 10.1038/s41598-018-20130-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29379051 16].
 +
#Hawkins AG, <i>et al.</i> (2018) &quot;The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(5):901&ndash;912; PMID: [https://pubmed.ncbi.nlm.nih.gov/29386236 29386236]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000596 10.1074/mcp.RA118.000596]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29386236 12].
 +
#Yair-Sabag S, <i>et al.</i> (2018) &quot;The Peptide Repertoire of HLA-B27 may include Ligands with Lysine at P2 Anchor Position.&quot; <i>Proteomics</i> <b>18</b>(9):e1700249; PMID: [https://pubmed.ncbi.nlm.nih.gov/29393594 29393594]; doi: [https://dx.doi.org/10.1002/pmic.201700249 10.1002/pmic.201700249]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29393594 87].
 +
#La Favor JD, <i>et al.</i> (2018) &quot;Molecular Profile of Priapism Associated with Low Nitric Oxide Bioavailability.&quot; <i>J Proteome Res</i> <b>17</b>(3):1031&ndash;1040; PMID: [https://pubmed.ncbi.nlm.nih.gov/29394072 29394072]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00657 10.1021/acs.jproteome.7b00657]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29394072 12].
 +
#Karayel &Ouml;, <i>et al.</i> (2018) &quot;Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis.&quot; <i>Sci Rep</i> <b>8</b>(1):2269; PMID: [https://pubmed.ncbi.nlm.nih.gov/29396449 29396449]; doi: [https://dx.doi.org/10.1038/s41598-018-20231-5 10.1038/s41598-018-20231-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29396449 16].
 +
#Ikoma M, <i>et al.</i> (2018) &quot;KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite.&quot; <i>PLoS One</i> <b>13</b>(2):e0192659; PMID: [https://pubmed.ncbi.nlm.nih.gov/29425228 29425228]; doi: [https://dx.doi.org/10.1371/journal.pone.0192659 10.1371/journal.pone.0192659]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29425228 3].
 +
#Vornhagen J, <i>et al.</i> (2018) &quot;Human Cervical Mucus Plugs Exhibit Insufficiencies in Antimicrobial Activity Towards Group B Streptococcus.&quot; <i>J Infect Dis</i> <b>217</b>(10):1626&ndash;1636; PMID: [https://pubmed.ncbi.nlm.nih.gov/29425317 29425317]; doi: [https://dx.doi.org/10.1093/infdis/jiy076 10.1093/infdis/jiy076]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29425317 1].
 +
#Sandow JJ, <i>et al.</i> (2018) &quot;Discovery and Validation of Novel Protein Biomarkers in Ovarian Cancer Patient Urine.&quot; <i>Proteomics Clin Appl</i> <b>12</b>(3):e1700135; PMID: [https://pubmed.ncbi.nlm.nih.gov/29426060 29426060]; doi: [https://dx.doi.org/10.1002/prca.201700135 10.1002/prca.201700135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29426060 10].
 +
#De Muyt A, <i>et al.</i> (2018) &quot;A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation.&quot; <i>Genes Dev</i> <b>32</b>(3-4):283&ndash;296; PMID: [https://pubmed.ncbi.nlm.nih.gov/29440262 29440262]; doi: [https://dx.doi.org/10.1101/gad.308510.117 10.1101/gad.308510.117]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29440262 19].
 +
#Schanzenb&auml;cher CT, <i>et al.</i> (2018) &quot;Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/29447110 29447110]; doi: [https://dx.doi.org/10.7554/eLife.33322 10.7554/eLife.33322]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29447110 78].
 +
#Mathieson T, <i>et al.</i> (2018) &quot;Systematic analysis of protein turnover in primary cells.&quot; <i>Nat Commun</i> <b>9</b>(1):689; PMID: [https://pubmed.ncbi.nlm.nih.gov/29449567 29449567]; doi: [https://dx.doi.org/10.1038/s41467-018-03106-1 10.1038/s41467-018-03106-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29449567 883].
 +
#Lan J, <i>et al.</i> (2018) &quot;Systematic Evaluation of the Use of Human Plasma and Serum for Mass-Spectrometry-Based Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(4):1426&ndash;1435; PMID: [https://pubmed.ncbi.nlm.nih.gov/29451788 29451788]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00788 10.1021/acs.jproteome.7b00788]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29451788 36].
 +
#Bergmann TJ, <i>et al.</i> (2018) &quot;Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides.&quot; <i>J Biol Chem</i> <b>293</b>(15):5600&ndash;5612; PMID: [https://pubmed.ncbi.nlm.nih.gov/29453283 29453283]; doi: [https://dx.doi.org/10.1074/jbc.RA117.001484 10.1074/jbc.RA117.001484]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29453283 39].
 +
#Eckersley A, <i>et al.</i> (2018) &quot;Structural and compositional diversity of fibrillin microfibrils in human tissues.&quot; <i>J Biol Chem</i> <b>293</b>(14):5117&ndash;5133; PMID: [https://pubmed.ncbi.nlm.nih.gov/29453284 29453284]; doi: [https://dx.doi.org/10.1074/jbc.RA117.001483 10.1074/jbc.RA117.001483]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29453284 19].
 +
#Das CK, <i>et al.</i> (2018) &quot;BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.&quot; <i>Neoplasia</i> <b>20</b>(3):263&ndash;279; PMID: [https://pubmed.ncbi.nlm.nih.gov/29462756 29462756]; doi: [https://dx.doi.org/10.1016/j.neo.2018.01.001 10.1016/j.neo.2018.01.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29462756 12].
 +
#Gulati T, <i>et al.</i> (2018) &quot;Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(6):1170&ndash;1183; PMID: [https://pubmed.ncbi.nlm.nih.gov/29463595 29463595]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000504 10.1074/mcp.RA117.000504]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29463595 3].
 +
#Smestad J, <i>et al.</i> (2018) &quot;Characterization and metabolic synthetic lethal testing in a new model of SDH-loss familial pheochromocytoma and paraganglioma.&quot; <i>Oncotarget</i> <b>9</b>(5):6109&ndash;6127; PMID: [https://pubmed.ncbi.nlm.nih.gov/29464059 29464059]; doi: [https://dx.doi.org/10.18632/oncotarget.23639 10.18632/oncotarget.23639]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29464059 20].
 +
#Velez G, <i>et al.</i> (2018) &quot;Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases.&quot; <i>PLoS One</i> <b>13</b>(2):e0193250; PMID: [https://pubmed.ncbi.nlm.nih.gov/29466423 29466423]; doi: [https://dx.doi.org/10.1371/journal.pone.0193250 10.1371/journal.pone.0193250]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29466423 9].
 +
#Laria AE, <i>et al.</i> (2018) &quot;Secretome Analysis of Hypoxia-Induced 3T3-L1 Adipocytes Uncovers Novel Proteins Potentially Involved in Obesity.&quot; <i>Proteomics</i> <b>18</b>(7):e1700260; PMID: [https://pubmed.ncbi.nlm.nih.gov/29466620 29466620]; doi: [https://dx.doi.org/10.1002/pmic.201700260 10.1002/pmic.201700260]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29466620 8].
 +
#O&#39;Loughlin T, <i>et al.</i> (2018) &quot;The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.&quot; <i>EMBO Rep</i> <b>19</b>(4):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29467281 29467281]; doi: [https://dx.doi.org/10.15252/embr.201744884 10.15252/embr.201744884]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467281 34].
 +
#Di Costanzo A, <i>et al.</i> (2018) &quot;The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia.&quot; <i>Oncogene</i> <b>37</b>(19):2559&ndash;2572; PMID: [https://pubmed.ncbi.nlm.nih.gov/29467492 29467492]; doi: [https://dx.doi.org/10.1038/s41388-018-0143-1 10.1038/s41388-018-0143-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29467492 6].
 +
#Lee SE, <i>et al.</i> (2018) &quot;Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines.&quot; <i>Proteomics</i> <b>18</b>(8):e1700386; PMID: [https://pubmed.ncbi.nlm.nih.gov/29474001 29474001]; doi: [https://dx.doi.org/10.1002/pmic.201700386 10.1002/pmic.201700386]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29474001 200].
 +
#Chen D, <i>et al.</i> (2018) &quot;Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.&quot; <i>Anal Chim Acta</i> <b>1012</b>:1&ndash;9; PMID: [https://pubmed.ncbi.nlm.nih.gov/29475469 29475469]; doi: [https://dx.doi.org/10.1016/j.aca.2018.01.037 10.1016/j.aca.2018.01.037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29475469 2].
 +
#Hermanns T, <i>et al.</i> (2018) &quot;A family of unconventional deubiquitinases with modular chain specificity determinants.&quot; <i>Nat Commun</i> <b>9</b>(1):799; PMID: [https://pubmed.ncbi.nlm.nih.gov/29476094 29476094]; doi: [https://dx.doi.org/10.1038/s41467-018-03148-5 10.1038/s41467-018-03148-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29476094 18].
 +
#Zhan Y, <i>et al.</i> (2018) &quot;Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii.&quot; <i>PLoS One</i> <b>13</b>(2):e0185039; PMID: [https://pubmed.ncbi.nlm.nih.gov/29481573 29481573]; doi: [https://dx.doi.org/10.1371/journal.pone.0185039 10.1371/journal.pone.0185039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29481573 16].
 +
#Zeiner PS, <i>et al.</i> (2018) &quot;CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival.&quot; <i>Acta Neuropathol Commun</i> <b>6</b>(1):18; PMID: [https://pubmed.ncbi.nlm.nih.gov/29490700 29490700]; doi: [https://dx.doi.org/10.1186/s40478-018-0521-5 10.1186/s40478-018-0521-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29490700 20].
 +
#Marquez J, <i>et al.</i> (2018) &quot;Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver.&quot; <i>Int J Cancer</i> <b>143</b>(3):709&ndash;719; PMID: [https://pubmed.ncbi.nlm.nih.gov/29492958 29492958]; doi: [https://dx.doi.org/10.1002/ijc.31343 10.1002/ijc.31343]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29492958 39].
 +
#Olsson N, <i>et al.</i> (2018) &quot;T-Cell Immunopeptidomes Reveal Cell Subtype Surface Markers Derived From Intracellular Proteins.&quot; <i>Proteomics</i> <b>18</b>(12):e1700410; PMID: [https://pubmed.ncbi.nlm.nih.gov/29493099 29493099]; doi: [https://dx.doi.org/10.1002/pmic.201700410 10.1002/pmic.201700410]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29493099 30].
 +
#Goel RK, <i>et al.</i> (2018) &quot;Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, <i>S</i>rc-<i>r</i>elated Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal <i>M</i>yristoylation <i>S</i>ites (SRMS).&quot; <i>Mol Cell Proteomics</i> <b>17</b>(5):925&ndash;947; PMID: [https://pubmed.ncbi.nlm.nih.gov/29496907 29496907]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000643 10.1074/mcp.RA118.000643]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29496907 4].
 +
#Azimi A, <i>et al.</i> (2018) &quot;Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors.&quot; <i>Mol Syst Biol</i> <b>14</b>(3):e7858; PMID: [https://pubmed.ncbi.nlm.nih.gov/29507054 29507054]; doi: [https://dx.doi.org/10.15252/msb.20177858 10.15252/msb.20177858]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29507054 16].
 +
#Lanoix J, <i>et al.</i> (2018) &quot;Comparison of the MHC I Immunopeptidome Repertoire of B-Cell Lymphoblasts Using Two Isolation Methods.&quot; <i>Proteomics</i> <b>18</b>(12):e1700251; PMID: [https://pubmed.ncbi.nlm.nih.gov/29508533 29508533]; doi: [https://dx.doi.org/10.1002/pmic.201700251 10.1002/pmic.201700251]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29508533 48].
 +
#Carette X, <i>et al.</i> (2018) &quot;Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface.&quot; <i>mBio</i> <b>9</b>(2):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29511081 29511081]; doi: [https://dx.doi.org/10.1128/mBio.02333-17 10.1128/mBio.02333-17]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511081 48].
 +
#Iradi MCG, <i>et al.</i> (2018) &quot;Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy.&quot; <i>Sci Rep</i> <b>8</b>(1):4049; PMID: [https://pubmed.ncbi.nlm.nih.gov/29511296 29511296]; doi: [https://dx.doi.org/10.1038/s41598-018-21371-4 10.1038/s41598-018-21371-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29511296 23].
 +
#Evans PR, <i>et al.</i> (2018) &quot;Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca<sup>2+</sup>/CaM) and CaM Kinase II (CaMKII) Binding Partner.&quot; <i>J Proteome Res</i> <b>17</b>(4):1700&ndash;1711; PMID: [https://pubmed.ncbi.nlm.nih.gov/29518331 29518331]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00027 10.1021/acs.jproteome.8b00027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29518331 6].
 +
#Ge S, <i>et al.</i> (2018) &quot;A proteomic landscape of diffuse-type gastric cancer.&quot; <i>Nat Commun</i> <b>9</b>(1):1012; PMID: [https://pubmed.ncbi.nlm.nih.gov/29520031 29520031]; doi: [https://dx.doi.org/10.1038/s41467-018-03121-2 10.1038/s41467-018-03121-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520031 164].
 +
#Ojalill M, <i>et al.</i> (2018) &quot;The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis.&quot; <i>Prostate</i> <b>78</b>(8):583&ndash;594; PMID: [https://pubmed.ncbi.nlm.nih.gov/29520855 29520855]; doi: [https://dx.doi.org/10.1002/pros.23503 10.1002/pros.23503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29520855 62].
 +
#Chen JT, <i>et al.</i> (2018) &quot;Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells.&quot; <i>J Proteomics</i> <b>188</b>:139&ndash;151; PMID: [https://pubmed.ncbi.nlm.nih.gov/29524648 29524648]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.02.031 10.1016/j.jprot.2018.02.031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29524648 4].
 +
#Deeke SA, <i>et al.</i> (2018) &quot;Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis.&quot; <i>Am J Gastroenterol</i> <b>113</b>(5):713&ndash;724; PMID: [https://pubmed.ncbi.nlm.nih.gov/29531307 29531307]; doi: [https://dx.doi.org/10.1038/s41395-018-0024-9 10.1038/s41395-018-0024-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29531307 112].
 +
#Costanza B, <i>et al.</i> (2018) &quot;Innovative methodology for the identification of soluble biomarkers in fresh tissues.&quot; <i>Oncotarget</i> <b>9</b>(12):10665&ndash;10680; PMID: [https://pubmed.ncbi.nlm.nih.gov/29535834 29535834]; doi: [https://dx.doi.org/10.18632/oncotarget.24366 10.18632/oncotarget.24366]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29535834 15].
 +
#Zila N, <i>et al.</i> (2018) &quot;Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases.&quot; <i>Clin Proteomics</i> <b>15</b>:13; PMID: [https://pubmed.ncbi.nlm.nih.gov/29541007 29541007]; doi: [https://dx.doi.org/10.1186/s12014-018-9189-x 10.1186/s12014-018-9189-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29541007 36].
 +
#Huang X, <i>et al.</i> (2018) &quot;Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p.&quot; <i>J Biol Chem</i> <b>293</b>(18):6693&ndash;6706; PMID: [https://pubmed.ncbi.nlm.nih.gov/29549123 29549123]; doi: [https://dx.doi.org/10.1074/jbc.RA118.001689 10.1074/jbc.RA118.001689]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29549123 1].
 +
#Savitski MM, <i>et al.</i> (2018) &quot;Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis.&quot; <i>Cell</i> <b>173</b>(1):260&ndash;274.e25; PMID: [https://pubmed.ncbi.nlm.nih.gov/29551266 29551266]; doi: [https://dx.doi.org/10.1016/j.cell.2018.02.030 10.1016/j.cell.2018.02.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29551266 5].
 +
#Salunkhe V, <i>et al.</i> (2019) &quot;A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.&quot; <i>Platelets</i> <b>30</b>(3):368&ndash;379; PMID: [https://pubmed.ncbi.nlm.nih.gov/29553857 29553857]; doi: [https://dx.doi.org/10.1080/09537104.2018.1447658 10.1080/09537104.2018.1447658]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29553857 27].
 +
#Liang P, <i>et al.</i> (2018) &quot;Detection of salivary protein biomarkers of saliva secretion disorder in a primary Sj&ouml;gren syndrome murine model.&quot; <i>J Pharm Biomed Anal</i> <b>154</b>:252&ndash;262; PMID: [https://pubmed.ncbi.nlm.nih.gov/29558726 29558726]; doi: [https://dx.doi.org/10.1016/j.jpba.2018.03.023 10.1016/j.jpba.2018.03.023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29558726 2].
 +
#Saei AA, <i>et al.</i> (2018) &quot;Comparative Proteomics of Dying and Surviving Cancer Cells Improves the Identification of Drug Targets and Sheds Light on Cell Life/Death Decisions.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(6):1144&ndash;1155; PMID: [https://pubmed.ncbi.nlm.nih.gov/29572246 29572246]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000610 10.1074/mcp.RA118.000610]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29572246 90].
 +
#Cai Q, <i>et al.</i> (2018) &quot;Essential role of Rpd3-dependent lysine modification in the growth, development and virulence of Beauveria bassiana.&quot; <i>Environ Microbiol</i> <b>20</b>(4):1590&ndash;1606; PMID: [https://pubmed.ncbi.nlm.nih.gov/29575704 29575704]; doi: [https://dx.doi.org/10.1111/1462-2920.14100 10.1111/1462-2920.14100]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29575704 5].
 +
#Zhang C, <i>et al.</i> (2018) &quot;Urine Proteome Profiling Predicts Lung Cancer from Control Cases and Other Tumors.&quot; <i>EBioMedicine</i> <b>30</b>:120&ndash;128; PMID: [https://pubmed.ncbi.nlm.nih.gov/29576497 29576497]; doi: [https://dx.doi.org/10.1016/j.ebiom.2018.03.009 10.1016/j.ebiom.2018.03.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29576497 557].
 +
#Haller C, <i>et al.</i> (2018) &quot;Insights into Islet Differentiation and Maturation through Proteomic Characterization of a Human iPSC-Derived Pancreatic Endocrine Model.&quot; <i>Proteomics Clin Appl</i> <b>12</b>(5):e1600173; PMID: [https://pubmed.ncbi.nlm.nih.gov/29578310 29578310]; doi: [https://dx.doi.org/10.1002/prca.201600173 10.1002/prca.201600173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29578310 218].
 +
#Tucher C, <i>et al.</i> (2018) &quot;Extracellular Vesicle Subtypes Released From Activated or Apoptotic T-Lymphocytes Carry a Specific and Stimulus-Dependent Protein Cargo.&quot; <i>Front Immunol</i> <b>9</b>:534; PMID: [https://pubmed.ncbi.nlm.nih.gov/29599781 29599781]; doi: [https://dx.doi.org/10.3389/fimmu.2018.00534 10.3389/fimmu.2018.00534]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29599781 24].
 +
#Klont F, <i>et al.</i> (2018) &quot;Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics.&quot; <i>Anal Chem</i> <b>90</b>(8):5405&ndash;5413; PMID: [https://pubmed.ncbi.nlm.nih.gov/29608294 29608294]; doi: [https://dx.doi.org/10.1021/acs.analchem.8b00600 10.1021/acs.analchem.8b00600]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29608294 80].
 +
#Bostanci N, <i>et al.</i> (2018) &quot;Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(7):1392&ndash;1409; PMID: [https://pubmed.ncbi.nlm.nih.gov/29610270 29610270]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000718 10.1074/mcp.RA118.000718]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29610270 54].
 +
#Sipil&auml; KH, <i>et al.</i> (2018) &quot;Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms.&quot; <i>J Biol Chem</i> <b>293</b>(20):7645&ndash;7658; PMID: [https://pubmed.ncbi.nlm.nih.gov/29615493 29615493]; doi: [https://dx.doi.org/10.1074/jbc.RA118.002200 10.1074/jbc.RA118.002200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29615493 54].
 +
#Lobas AA, <i>et al.</i> (2018) &quot;Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics.&quot; <i>J Proteome Res</i> <b>17</b>(5):1801&ndash;1811; PMID: [https://pubmed.ncbi.nlm.nih.gov/29619825 29619825]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00841 10.1021/acs.jproteome.7b00841]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29619825 48].
 +
#Lim S, <i>et al.</i> (2018) &quot;Glioblastoma-secreted soluble CD44 activates tau pathology in the brain.&quot; <i>Exp Mol Med</i> <b>50</b>(4):1&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/29622771 29622771]; doi: [https://dx.doi.org/10.1038/s12276-017-0008-7 10.1038/s12276-017-0008-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29622771 2].
 +
#Sanz-Bravo A, <i>et al.</i> (2018) &quot;Ranking the Contribution of Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphisms to Shaping the HLA-B*27 Peptidome.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(7):1308&ndash;1323; PMID: [https://pubmed.ncbi.nlm.nih.gov/29632046 29632046]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000565 10.1074/mcp.RA117.000565]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29632046 15].
 +
#Azimi A, <i>et al.</i> (2018) &quot;Differential proteomic analysis of actinic keratosis, Bowen&#39;s disease and cutaneous squamous cell carcinoma by label-free LC-MS/MS.&quot; <i>J Dermatol Sci</i> <b>91</b>(1):69&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/29665991 29665991]; doi: [https://dx.doi.org/10.1016/j.jdermsci.2018.04.006 10.1016/j.jdermsci.2018.04.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29665991 31].
 +
#Wu W, <i>et al.</i> (2018) &quot;CTGF/VEGFA-activated Fibroblasts Promote Tumor Migration Through Micro-environmental Modulation.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(8):1502&ndash;1514; PMID: [https://pubmed.ncbi.nlm.nih.gov/29669735 29669735]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000708 10.1074/mcp.RA118.000708]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29669735 57].
 +
#Mao F, <i>et al.</i> (2018) &quot;Quantitative proteomics of Bombyx mori after BmNPV challenge.&quot; <i>J Proteomics</i> <b>181</b>:142&ndash;151; PMID: [https://pubmed.ncbi.nlm.nih.gov/29674014 29674014]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.04.010 10.1016/j.jprot.2018.04.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29674014 18].
 +
#Johnston D, <i>et al.</i> (2018) &quot;Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle.&quot; <i>Theriogenology</i> <b>114</b>:301&ndash;307; PMID: [https://pubmed.ncbi.nlm.nih.gov/29677633 29677633]; doi: [https://dx.doi.org/10.1016/j.theriogenology.2018.04.008 10.1016/j.theriogenology.2018.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29677633 63].
 +
#Zhang X, <i>et al.</i> (2018) &quot;Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage.&quot; <i>Proteomics</i> <b>18</b>(19):e1700389; PMID: [https://pubmed.ncbi.nlm.nih.gov/29687606 29687606]; doi: [https://dx.doi.org/10.1002/pmic.201700389 10.1002/pmic.201700389]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29687606 6].
 +
#Komov L, <i>et al.</i> (2018) &quot;Cell Surface MHC Class I Expression Is Limited by the Availability of Peptide-Receptive &quot;Empty&quot; Molecules Rather than by the Supply of Peptide Ligands.&quot; <i>Proteomics</i> <b>18</b>(12):e1700248; PMID: [https://pubmed.ncbi.nlm.nih.gov/29707912 29707912]; doi: [https://dx.doi.org/10.1002/pmic.201700248 10.1002/pmic.201700248]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707912 35].
 +
#Rosting C, <i>et al.</i> (2018) &quot;High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.&quot; <i>J Proteome Res</i> <b>17</b>(6):1997&ndash;2004; PMID: [https://pubmed.ncbi.nlm.nih.gov/29707944 29707944]; doi: [https://dx.doi.org/10.1021/acs.jproteome.7b00746 10.1021/acs.jproteome.7b00746]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29707944 42].
 +
#Chen X, <i>et al.</i> (2018) &quot;A novel USP9X substrate TTK contributes to tumorigenesis in non-small-cell lung cancer.&quot; <i>Theranostics</i> <b>8</b>(9):2348&ndash;2360; PMID: [https://pubmed.ncbi.nlm.nih.gov/29721084 29721084]; doi: [https://dx.doi.org/10.7150/thno.22901 10.7150/thno.22901]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29721084 1].
 +
#Zellner A, <i>et al.</i> (2018) &quot;CADASIL brain vessels show a HTRA1 loss-of-function profile.&quot; <i>Acta Neuropathol</i> <b>136</b>(1):111&ndash;125; PMID: [https://pubmed.ncbi.nlm.nih.gov/29725820 29725820]; doi: [https://dx.doi.org/10.1007/s00401-018-1853-8 10.1007/s00401-018-1853-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29725820 12].
 +
#Van Quickelberghe E, <i>et al.</i> (2018) &quot;Identification of Immune-Responsive Gene 1 (IRG1) as a Target of A20.&quot; <i>J Proteome Res</i> <b>17</b>(6):2182&ndash;2191; PMID: [https://pubmed.ncbi.nlm.nih.gov/29733654 29733654]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00139 10.1021/acs.jproteome.8b00139]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29733654 30].
 +
#Meier F, <i>et al.</i> (2018) &quot;BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes.&quot; <i>Nat Methods</i> <b>15</b>(6):440&ndash;448; PMID: [https://pubmed.ncbi.nlm.nih.gov/29735998 29735998]; doi: [https://dx.doi.org/10.1038/s41592-018-0003-5 10.1038/s41592-018-0003-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29735998 60].
 +
#Seltmann K, <i>et al.</i> (2018) &quot;Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress.&quot; <i>Sci Transl Med</i> <b>10</b>(440):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29743348 29743348]; doi: [https://dx.doi.org/10.1126/scitranslmed.aao4650 10.1126/scitranslmed.aao4650]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29743348 24].
 +
#Malet JK, <i>et al.</i> (2018) &quot;Rapid Remodeling of the Host Epithelial Cell Proteome by the Listeriolysin O (LLO) Pore-forming Toxin.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(8):1627&ndash;1636; PMID: [https://pubmed.ncbi.nlm.nih.gov/29752379 29752379]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000767 10.1074/mcp.RA118.000767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29752379 4].
 +
#Aslebagh R, <i>et al.</i> (2018) &quot;Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer.&quot; <i>Electrophoresis</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/29756217 29756217]; doi: [https://dx.doi.org/10.1002/elps.201800025 10.1002/elps.201800025]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29756217 62].
 +
#Gaviard C, <i>et al.</i> (2018) &quot;Lysine Succinylation and Acetylation in Pseudomonas aeruginosa.&quot; <i>J Proteome Res</i> <b>17</b>(7):2449&ndash;2459; PMID: [https://pubmed.ncbi.nlm.nih.gov/29770699 29770699]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00210 10.1021/acs.jproteome.8b00210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29770699 24].
 +
#Di Lorenzo G, <i>et al.</i> (2018) &quot;Lysosomal Proteome and Secretome Analysis Identifies Missorted Enzymes and Their Nondegraded Substrates in Mucolipidosis III Mouse Cells.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(8):1612&ndash;1626; PMID: [https://pubmed.ncbi.nlm.nih.gov/29773673 29773673]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000720 10.1074/mcp.RA118.000720]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29773673 30].
 +
#Wang H, <i>et al.</i> (2018) &quot;Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(7):1354&ndash;1364; PMID: [https://pubmed.ncbi.nlm.nih.gov/29776966 29776966]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000620 10.1074/mcp.RA118.000620]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29776966 9].
 +
#Guo J, <i>et al.</i> (2018) &quot;Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice.&quot; <i>Proc Natl Acad Sci U S A</i> <b>115</b>(23):E5326&ndash;E5333; PMID: [https://pubmed.ncbi.nlm.nih.gov/29784807 29784807]; doi: [https://dx.doi.org/10.1073/pnas.1800352115 10.1073/pnas.1800352115]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29784807 30].
 +
#Ternette N, <i>et al.</i> (2018) &quot;Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens.&quot; <i>Proteomics</i> <b>18</b>(12):e1700465; PMID: [https://pubmed.ncbi.nlm.nih.gov/29786170 29786170]; doi: [https://dx.doi.org/10.1002/pmic.201700465 10.1002/pmic.201700465]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29786170 66].
 +
#L&ouml;ffler MW, <i>et al.</i> (2018) &quot;Mapping the HLA Ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation.&quot; <i>Cancer Res</i> <b>78</b>(16):4627&ndash;4641; PMID: [https://pubmed.ncbi.nlm.nih.gov/29789417 29789417]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-17-1745 10.1158/0008-5472.CAN-17-1745]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29789417 530].
 +
#Souquet B, <i>et al.</i> (2018) &quot;Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells.&quot; <i>Cell Rep</i> <b>23</b>(8):2443&ndash;2454; PMID: [https://pubmed.ncbi.nlm.nih.gov/29791854 29791854]; doi: [https://dx.doi.org/10.1016/j.celrep.2018.04.070 10.1016/j.celrep.2018.04.070]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29791854 18].
 +
#Nieto R LM, <i>et al.</i> (2018) &quot;Biochemical Characterization of Isoniazid-resistant <i>Mycobacterium tuberculosis:</i> Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways?&quot; <i>Mol Cell Proteomics</i> <b>17</b>(9):1685&ndash;1701; PMID: [https://pubmed.ncbi.nlm.nih.gov/29844232 29844232]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000821 10.1074/mcp.RA118.000821]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29844232 88].
 +
#Muller L, <i>et al.</i> (2018) &quot;Extended investigation of tube-gel sample preparation: a versatile and simple choice for high throughput quantitative proteomics.&quot; <i>Sci Rep</i> <b>8</b>(1):8260; PMID: [https://pubmed.ncbi.nlm.nih.gov/29844437 29844437]; doi: [https://dx.doi.org/10.1038/s41598-018-26600-4 10.1038/s41598-018-26600-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29844437 40].
 +
#Mohammad I, <i>et al.</i> (2018) &quot;Quantitative proteomic characterization and comparison of T helper 17 and induced regulatory T cells.&quot; <i>PLoS Biol</i> <b>16</b>(5):e2004194; PMID: [https://pubmed.ncbi.nlm.nih.gov/29851958 29851958]; doi: [https://dx.doi.org/10.1371/journal.pbio.2004194 10.1371/journal.pbio.2004194]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29851958 45].
 +
#Mar&iacute;n E, <i>et al.</i> (2018) &quot;Unraveling <i>Gardnerella vaginalis</i> Surface Proteins Using Cell Shaving Proteomics.&quot; <i>Front Microbiol</i> <b>9</b>:975; PMID: [https://pubmed.ncbi.nlm.nih.gov/29867878 29867878]; doi: [https://dx.doi.org/10.3389/fmicb.2018.00975 10.3389/fmicb.2018.00975]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29867878 3].
 +
#Portela M, <i>et al.</i> (2018) &quot;Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex.&quot; <i>Sci Signal</i> <b>11</b>(533):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29871910 29871910]; doi: [https://dx.doi.org/10.1126/scisignal.aar1976 10.1126/scisignal.aar1976]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29871910 11].
 +
#Serandour AA, <i>et al.</i> (2018) &quot;TRPS1 regulates oestrogen receptor binding and histone acetylation at enhancers.&quot; <i>Oncogene</i> <b>37</b>(39):5281&ndash;5291; PMID: [https://pubmed.ncbi.nlm.nih.gov/29895970 29895970]; doi: [https://dx.doi.org/10.1038/s41388-018-0312-2 10.1038/s41388-018-0312-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29895970 7].
 +
#Madeira JP, <i>et al.</i> (2018) &quot;Time-course proteomics dataset to monitor protein-bound methionine oxidation <i>in Bacillus cereus</i> ATCC 14579.&quot; <i>Data Brief</i> <b>18</b>:394&ndash;398; PMID: [https://pubmed.ncbi.nlm.nih.gov/29896523 29896523]; doi: [https://dx.doi.org/10.1016/j.dib.2018.03.030 10.1016/j.dib.2018.03.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29896523 86].
 +
#He C, <i>et al.</i> (2018) &quot;Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae.&quot; <i>J Proteome Res</i> <b>17</b>(7):2335&ndash;2344; PMID: [https://pubmed.ncbi.nlm.nih.gov/29897761 29897761]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00032 10.1021/acs.jproteome.8b00032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29897761 20].
 +
#Adav SS, <i>et al.</i> (2018) &quot;Proteomic Analysis of Aqueous Humor from Primary Open Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade.&quot; <i>J Proteome Res</i> <b>17</b>(7):2499&ndash;2510; PMID: [https://pubmed.ncbi.nlm.nih.gov/29901396 29901396]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00244 10.1021/acs.jproteome.8b00244]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29901396 80].
 +
#Ly T, <i>et al.</i> (2018) &quot;Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells.&quot; <i>Wellcome Open Res</i> <b>3</b>:51; PMID: [https://pubmed.ncbi.nlm.nih.gov/29904729 29904729]; doi: [https://dx.doi.org/10.12688/wellcomeopenres.14392.1 10.12688/wellcomeopenres.14392.1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29904729 1953].
 +
#Steenbeek SC, <i>et al.</i> (2018) &quot;Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles.&quot; <i>EMBO J</i> <b>37</b>(15):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29907695 29907695]; doi: [https://dx.doi.org/10.15252/embj.201798357 10.15252/embj.201798357]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29907695 67].
 +
#Selvan LDN, <i>et al.</i> (2018) &quot;Phosphoproteomics of Retinoblastoma: A Pilot Study Identifies Aberrant Kinases.&quot; <i>Molecules</i> <b>23</b>(6):; PMID: [https://pubmed.ncbi.nlm.nih.gov/29914080 29914080]; doi: [https://dx.doi.org/10.3390/molecules23061454 10.3390/molecules23061454]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29914080 12].
 +
#Huang H, <i>et al.</i> (2018) &quot;Quantitative Proteomics and Phosphoproteomics Analysis Revealed Different Regulatory Mechanisms of Halothane and Rendement Napole Genes in Porcine Muscle Metabolism.&quot; <i>J Proteome Res</i> <b>17</b>(8):2834&ndash;2849; PMID: [https://pubmed.ncbi.nlm.nih.gov/29916714 29916714]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00294 10.1021/acs.jproteome.8b00294]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29916714 6].
 +
#Rapino F, <i>et al.</i> (2018) &quot;Codon-specific translation reprogramming promotes resistance to targeted therapy.&quot; <i>Nature</i> <b>558</b>(7711):605&ndash;609; PMID: [https://pubmed.ncbi.nlm.nih.gov/29925953 29925953]; doi: [https://dx.doi.org/10.1038/s41586-018-0243-7 10.1038/s41586-018-0243-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29925953 40].
 +
#Kim DS, <i>et al.</i> (2018) &quot;Broad spectrum proteomics analysis of the inferior colliculus following acute hydrogen sulfide exposure.&quot; <i>Toxicol Appl Pharmacol</i> <b>355</b>:28&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/29932956 29932956]; doi: [https://dx.doi.org/10.1016/j.taap.2018.06.001 10.1016/j.taap.2018.06.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29932956 6].
 +
#Zhu Y, <i>et al.</i> (2018) &quot;Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(9):1864&ndash;1874; PMID: [https://pubmed.ncbi.nlm.nih.gov/29941660 29941660]; doi: [https://dx.doi.org/10.1074/mcp.TIR118.000686 10.1074/mcp.TIR118.000686]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29941660 24].
 +
#Drulis-Fajdasz D, <i>et al.</i> (2018) &quot;Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue.&quot; <i>Adv Biol Regul</i> <b>69</b>:35&ndash;42; PMID: [https://pubmed.ncbi.nlm.nih.gov/29958836 29958836]; doi: [https://dx.doi.org/10.1016/j.jbior.2018.06.001 10.1016/j.jbior.2018.06.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29958836 72].
 +
#Pietras Z, <i>et al.</i> (2018) &quot;Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria.&quot; <i>Nat Commun</i> <b>9</b>(1):2558; PMID: [https://pubmed.ncbi.nlm.nih.gov/29967381 29967381]; doi: [https://dx.doi.org/10.1038/s41467-018-05007-9 10.1038/s41467-018-05007-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967381 18].
 +
#Akimov V, <i>et al.</i> (2018) &quot;UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites.&quot; <i>Nat Struct Mol Biol</i> <b>25</b>(7):631&ndash;640; PMID: [https://pubmed.ncbi.nlm.nih.gov/29967540 29967540]; doi: [https://dx.doi.org/10.1038/s41594-018-0084-y 10.1038/s41594-018-0084-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29967540 136].
 +
#T&ouml;lle RC, <i>et al.</i> (2018) &quot;Three-Dimensional Cell Culture Conditions Affect the Proteome of Cancer-Associated Fibroblasts.&quot; <i>J Proteome Res</i> <b>17</b>(8):2780&ndash;2789; PMID: [https://pubmed.ncbi.nlm.nih.gov/29989826 29989826]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00237 10.1021/acs.jproteome.8b00237]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29989826 318].
 +
#Sureka R, <i>et al.</i> (2018) &quot;Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold Proteins in <i>Drosophila</i> S2 Cells-Transmission of Hallmarks of Nuclear Organization Through Mitosis.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(10):1965&ndash;1978; PMID: [https://pubmed.ncbi.nlm.nih.gov/29991507 29991507]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000591 10.1074/mcp.RA118.000591]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/29991507 6].
 +
#Kim D, <i>et al.</i> (2018) &quot;ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells.&quot; <i>Nucleic Acids Res</i> <b>46</b>(16):8311&ndash;8325; PMID: [https://pubmed.ncbi.nlm.nih.gov/30010936 30010936]; doi: [https://dx.doi.org/10.1093/nar/gky625 10.1093/nar/gky625]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30010936 2].
 +
#Dragoi D, <i>et al.</i> (2018) &quot;Proteomics Analysis of Monocyte-Derived Hepatocyte-Like Cells Identifies Integrin Beta 3 as a Specific Biomarker for Drug-Induced Liver Injury by Diclofenac.&quot; <i>Front Pharmacol</i> <b>9</b>:699; PMID: [https://pubmed.ncbi.nlm.nih.gov/30022949 30022949]; doi: [https://dx.doi.org/10.3389/fphar.2018.00699 10.3389/fphar.2018.00699]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30022949 98].
 +
#Duda P, <i>et al.</i> (2018) &quot;Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging.&quot; <i>Aging (Albany NY)</i> <b>10</b>(7):1682&ndash;1697; PMID: [https://pubmed.ncbi.nlm.nih.gov/30026405 30026405]; doi: [https://dx.doi.org/10.18632/aging.101501 10.18632/aging.101501]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30026405 59].
 +
#Evans J, <i>et al.</i> (2019) &quot;Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair.&quot; <i>FASEB J</i> <b>33</b>(1):584&ndash;605; PMID: [https://pubmed.ncbi.nlm.nih.gov/30036086 30036086]; doi: [https://dx.doi.org/10.1096/fj.201800086R 10.1096/fj.201800086R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30036086 46].
 +
#Iglesias-Gato D, <i>et al.</i> (2018) &quot;The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications.&quot; <i>Clin Cancer Res</i> <b>24</b>(21):5433&ndash;5444; PMID: [https://pubmed.ncbi.nlm.nih.gov/30042207 30042207]; doi: [https://dx.doi.org/10.1158/1078-0432.CCR-18-1229 10.1158/1078-0432.CCR-18-1229]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30042207 21].
 +
#Ghezraoui H, <i>et al.</i> (2018) &quot;53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ.&quot; <i>Nature</i> <b>560</b>(7716):122&ndash;127; PMID: [https://pubmed.ncbi.nlm.nih.gov/30046110 30046110]; doi: [https://dx.doi.org/10.1038/s41586-018-0362-1 10.1038/s41586-018-0362-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30046110 8].
 +
#Nilsen BW, <i>et al.</i> (2018) &quot;Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes.&quot; <i>Eur J Oral Sci</i> <b>126</b>(5):345&ndash;358; PMID: [https://pubmed.ncbi.nlm.nih.gov/30051916 30051916]; doi: [https://dx.doi.org/10.1111/eos.12559 10.1111/eos.12559]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30051916 92].
 +
#Stokman MF, <i>et al.</i> (2019) &quot;Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies.&quot; <i>J Proteomics</i> <b>192</b>:27&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/30071318 30071318]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.07.008 10.1016/j.jprot.2018.07.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30071318 120].
 +
#Park S, <i>et al.</i> (2018) &quot;A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells.&quot; <i>Exp Mol Med</i> <b>50</b>(8):1&ndash;14; PMID: [https://pubmed.ncbi.nlm.nih.gov/30076294 30076294]; doi: [https://dx.doi.org/10.1038/s12276-018-0120-3 10.1038/s12276-018-0120-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30076294 24].
 +
#de la Parra C, <i>et al.</i> (2018) &quot;A widespread alternate form of cap-dependent mRNA translation initiation.&quot; <i>Nat Commun</i> <b>9</b>(1):3068; PMID: [https://pubmed.ncbi.nlm.nih.gov/30076308 30076308]; doi: [https://dx.doi.org/10.1038/s41467-018-05539-0 10.1038/s41467-018-05539-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30076308 21].
 +
#Kozono S, <i>et al.</i> (2018) &quot;Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells.&quot; <i>Nat Commun</i> <b>9</b>(1):3069; PMID: [https://pubmed.ncbi.nlm.nih.gov/30093655 30093655]; doi: [https://dx.doi.org/10.1038/s41467-018-05402-2 10.1038/s41467-018-05402-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30093655 12].
 +
#Kumar G, <i>et al.</i> (2018) &quot;Proteome Profiles of Head Kidney and Spleen of Rainbow Trout (Oncorhynchus Mykiss).&quot; <i>Proteomics</i> <b>18</b>(17):e1800101; PMID: [https://pubmed.ncbi.nlm.nih.gov/30094954 30094954]; doi: [https://dx.doi.org/10.1002/pmic.201800101 10.1002/pmic.201800101]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30094954 54].
 +
#Schiza C, <i>et al.</i> (2018) &quot;Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(12):2480&ndash;2495; PMID: [https://pubmed.ncbi.nlm.nih.gov/30097533 30097533]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000749 10.1074/mcp.RA118.000749]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30097533 44].
 +
#Hwang H, <i>et al.</i> (2018) &quot;Identification of Missing Proteins in Human Olfactory Epithelial Tissue by Liquid Chromatography-Tandem Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>17</b>(12):4320&ndash;4324; PMID: [https://pubmed.ncbi.nlm.nih.gov/30113170 30113170]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00408 10.1021/acs.jproteome.8b00408]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30113170 23].
 +
#Macron C, <i>et al.</i> (2018) &quot;Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification.&quot; <i>J Proteome Res</i> <b>17</b>(12):4113&ndash;4126; PMID: [https://pubmed.ncbi.nlm.nih.gov/30124047 30124047]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00300 10.1021/acs.jproteome.8b00300]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30124047 24].
 +
#Simunovic F, <i>et al.</i> (2019) &quot;Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: A quantitative proteomics approach.&quot; <i>J Cell Biochem</i> <b>120</b>(1):396&ndash;404; PMID: [https://pubmed.ncbi.nlm.nih.gov/30126049 30126049]; doi: [https://dx.doi.org/10.1002/jcb.27394 10.1002/jcb.27394]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30126049 20].
 +
#Shen ZQ, <i>et al.</i> (2019) &quot;Characterization of the Sperm Proteome and Reproductive Outcomes with <i>in Vitro</i>, Fertilization after a Reduction in Male Ejaculatory Abstinence Period.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(Suppl 1):S109&ndash;S117; PMID: [https://pubmed.ncbi.nlm.nih.gov/30126978 30126978]; doi: [https://dx.doi.org/10.1074/mcp.RA117.000541 10.1074/mcp.RA117.000541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30126978 18].
 +
#Locatelli G, <i>et al.</i> (2018) &quot;Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model.&quot; <i>Nat Neurosci</i> <b>21</b>(9):1196&ndash;1208; PMID: [https://pubmed.ncbi.nlm.nih.gov/30127427 30127427]; doi: [https://dx.doi.org/10.1038/s41593-018-0212-3 10.1038/s41593-018-0212-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30127427 78].
 +
#DeLeon-Pennell KY, <i>et al.</i> (2018) &quot;LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling.&quot; <i>Basic Res Cardiol</i> <b>113</b>(5):40; PMID: [https://pubmed.ncbi.nlm.nih.gov/30132266 30132266]; doi: [https://dx.doi.org/10.1007/s00395-018-0699-5 10.1007/s00395-018-0699-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30132266 120].
 +
#We&szlig;becher IM, <i>et al.</i> (2018) &quot;DNA mismatch repair activity of MutL&alpha; is regulated by CK2-dependent phosphorylation of MLH1 (S477).&quot; <i>Mol Carcinog</i> <b>57</b>(12):1723&ndash;1734; PMID: [https://pubmed.ncbi.nlm.nih.gov/30136313 30136313]; doi: [https://dx.doi.org/10.1002/mc.22892 10.1002/mc.22892]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30136313 2].
 +
#Bruning U, <i>et al.</i> (2018) &quot;Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation.&quot; <i>Cell Metab</i> <b>28</b>(6):866&ndash;880.e15; PMID: [https://pubmed.ncbi.nlm.nih.gov/30146486 30146486]; doi: [https://dx.doi.org/10.1016/j.cmet.2018.07.019 10.1016/j.cmet.2018.07.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30146486 2].
 +
#Varland S, <i>et al.</i> (2018) &quot;N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in <i>Saccharomyces cerevisiae</i>.&quot; <i>Mol Cell Proteomics</i> <b>17</b>(12):2309&ndash;2323; PMID: [https://pubmed.ncbi.nlm.nih.gov/30150368 30150368]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000982 10.1074/mcp.RA118.000982]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30150368 17].
 +
#B&eacute;guin EP, <i>et al.</i> (2019) &quot;Integrated proteomic analysis of tumor necrosis factor &alpha; and interleukin 1&beta;-induced endothelial inflammation.&quot; <i>J Proteomics</i> <b>192</b>:89&ndash;101; PMID: [https://pubmed.ncbi.nlm.nih.gov/30153514 30153514]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.08.011 10.1016/j.jprot.2018.08.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30153514 51].
 +
#Yanovich G, <i>et al.</i> (2018) &quot;Clinical Proteomics of Breast Cancer Reveals a Novel Layer of Breast Cancer Classification.&quot; <i>Cancer Res</i> <b>78</b>(20):6001&ndash;6010; PMID: [https://pubmed.ncbi.nlm.nih.gov/30154156 30154156]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-18-1079 10.1158/0008-5472.CAN-18-1079]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30154156 30].
 +
#Ten-Dom&eacute;nech I, <i>et al.</i> (2018) &quot;Improving Fractionation of Human Milk Proteins through Calcium Phosphate Coprecipitation and Their Rapid Characterization by Capillary Electrophoresis.&quot; <i>J Proteome Res</i> <b>17</b>(10):3557&ndash;3564; PMID: [https://pubmed.ncbi.nlm.nih.gov/30156851 30156851]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00526 10.1021/acs.jproteome.8b00526]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30156851 26].
 +
#Guneykaya D, <i>et al.</i> (2018) &quot;Transcriptional and Translational Differences of Microglia from Male and Female Brains.&quot; <i>Cell Rep</i> <b>24</b>(10):2773&ndash;2783.e6; PMID: [https://pubmed.ncbi.nlm.nih.gov/30184509 30184509]; doi: [https://dx.doi.org/10.1016/j.celrep.2018.08.001 10.1016/j.celrep.2018.08.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30184509 8].
 +
#Carnielli CM, <i>et al.</i> (2018) &quot;Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer.&quot; <i>Nat Commun</i> <b>9</b>(1):3598; PMID: [https://pubmed.ncbi.nlm.nih.gov/30185791 30185791]; doi: [https://dx.doi.org/10.1038/s41467-018-05696-2 10.1038/s41467-018-05696-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30185791 122].
 +
#Barkovits K, <i>et al.</i> (2018) &quot;Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.&quot; <i>J Proteome Res</i> <b>17</b>(10):3418&ndash;3430; PMID: [https://pubmed.ncbi.nlm.nih.gov/30207155 30207155]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00308 10.1021/acs.jproteome.8b00308]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30207155 44].
 +
#Abreha MH, <i>et al.</i> (2018) &quot;Quantitative Analysis of the Brain Ubiquitylome in Alzheimer&#39;s Disease.&quot; <i>Proteomics</i> <b>18</b>(20):e1800108; PMID: [https://pubmed.ncbi.nlm.nih.gov/30230243 30230243]; doi: [https://dx.doi.org/10.1002/pmic.201800108 10.1002/pmic.201800108]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30230243 29].
 +
#Finamore F, <i>et al.</i> (2019) &quot;A high glucose level is associated with decreased aspirin-mediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: A pilot study.&quot; <i>J Proteomics</i> <b>192</b>:258&ndash;266; PMID: [https://pubmed.ncbi.nlm.nih.gov/30240925 30240925]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.09.007 10.1016/j.jprot.2018.09.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30240925 18].
 +
#Ohta S, <i>et al.</i> (2019) &quot;Quantitative Proteomics of the Mitotic Chromosome Scaffold Reveals the Association of BAZ1B with Chromosomal Axes.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(2):169&ndash;181; PMID: [https://pubmed.ncbi.nlm.nih.gov/30266865 30266865]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000923 10.1074/mcp.RA118.000923]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30266865 3].
 +
#Sun J, <i>et al.</i> (2018) &quot;Multiproteases Combined with High-pH Reverse-Phase Separation Strategy Verified Fourteen Missing Proteins in Human Testis Tissue.&quot; <i>J Proteome Res</i> <b>17</b>(12):4171&ndash;4177; PMID: [https://pubmed.ncbi.nlm.nih.gov/30280576 30280576]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00397 10.1021/acs.jproteome.8b00397]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30280576 108].
 +
#Sepil I, <i>et al.</i> (2019) &quot;Quantitative Proteomics Identification of Seminal Fluid Proteins in Male <i>Drosophila melanogaster</i>.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(Suppl 1):S46&ndash;S58; PMID: [https://pubmed.ncbi.nlm.nih.gov/30287546 30287546]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000831 10.1074/mcp.RA118.000831]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30287546 87].
 +
#Szklanna PB, <i>et al.</i> (2019) &quot;The Platelet Releasate is Altered in Human Pregnancy.&quot; <i>Proteomics Clin Appl</i> <b>13</b>(3):e1800162; PMID: [https://pubmed.ncbi.nlm.nih.gov/30318839 30318839]; doi: [https://dx.doi.org/10.1002/prca.201800162 10.1002/prca.201800162]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30318839 31].
 +
#Erdmann J, <i>et al.</i> (2018) &quot;Environment-driven changes of mRNA and protein levels in Pseudomonas aeruginosa.&quot; <i>Environ Microbiol</i> <b>20</b>(11):3952&ndash;3963; PMID: [https://pubmed.ncbi.nlm.nih.gov/30346651 30346651]; doi: [https://dx.doi.org/10.1111/1462-2920.14419 10.1111/1462-2920.14419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30346651 253].
 +
#Krahmer N, <i>et al.</i> (2018) &quot;Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis.&quot; <i>Dev Cell</i> <b>47</b>(2):205&ndash;221.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/30352176 30352176]; doi: [https://dx.doi.org/10.1016/j.devcel.2018.09.017 10.1016/j.devcel.2018.09.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352176 134].
 +
#van Mierlo G, <i>et al.</i> (2018) &quot;Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state.&quot; <i>Stem Cell Res</i> <b>33</b>:135&ndash;145; PMID: [https://pubmed.ncbi.nlm.nih.gov/30352361 30352361]; doi: [https://dx.doi.org/10.1016/j.scr.2018.09.017 10.1016/j.scr.2018.09.017]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352361 6].
 +
#El-Rami FE, <i>et al.</i> (2019) &quot;Quantitative Proteomics of the 2016 WHO <i>Neisseria gonorrhoeae</i> Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(1):127&ndash;150; PMID: [https://pubmed.ncbi.nlm.nih.gov/30352803 30352803]; doi: [https://dx.doi.org/10.1074/mcp.RA118.001125 10.1074/mcp.RA118.001125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30352803 8].
 +
#Serra A, <i>et al.</i> (2018) &quot;Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo.&quot; <i>Arterioscler Thromb Vasc Biol</i> <b>38</b>(10):2396&ndash;2409; PMID: [https://pubmed.ncbi.nlm.nih.gov/30354219 30354219]; doi: [https://dx.doi.org/10.1161/ATVBAHA.118.311552 10.1161/ATVBAHA.118.311552]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30354219 16].
 +
#Zhao Y, <i>et al.</i> (2019) &quot;Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers.&quot; <i>Exp Eye Res</i> <b>179</b>:32&ndash;46; PMID: [https://pubmed.ncbi.nlm.nih.gov/30359574 30359574]; doi: [https://dx.doi.org/10.1016/j.exer.2018.10.011 10.1016/j.exer.2018.10.011]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30359574 3].
 +
#Magagnotti C, <i>et al.</i> (2019) &quot;Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes.&quot; <i>J Proteomics</i> <b>193</b>:205&ndash;216; PMID: [https://pubmed.ncbi.nlm.nih.gov/30366120 30366120]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.10.010 10.1016/j.jprot.2018.10.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30366120 51].
 +
#Del Gaudio F, <i>et al.</i> (2018) &quot;Chemoproteomic fishing identifies arzanol as a positive modulator of brain glycogen phosphorylase.&quot; <i>Chem Commun (Camb)</i> <b>54</b>(91):12863&ndash;12866; PMID: [https://pubmed.ncbi.nlm.nih.gov/30375590 30375590]; doi: [https://dx.doi.org/10.1039/c8cc07692h 10.1039/c8cc07692h]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30375590 82].
 +
#Tamminen M, <i>et al.</i> (2018) &quot;Proteome evolution under non-substitutable resource limitation.&quot; <i>Nat Commun</i> <b>9</b>(1):4650; PMID: [https://pubmed.ncbi.nlm.nih.gov/30405128 30405128]; doi: [https://dx.doi.org/10.1038/s41467-018-07106-z 10.1038/s41467-018-07106-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30405128 32].
 +
#Wang L, <i>et al.</i> (2018) &quot;Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant.&quot; <i>J Insect Sci</i> <b>18</b>(6):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30412263 30412263]; doi: [https://dx.doi.org/10.1093/jisesa/iey098 10.1093/jisesa/iey098]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30412263 6].
 +
#Bonnet J, <i>et al.</i> (2019) &quot;Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects.&quot; <i>J Proteomics</i> <b>196</b>:150&ndash;161; PMID: [https://pubmed.ncbi.nlm.nih.gov/30414516 30414516]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.11.005 10.1016/j.jprot.2018.11.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30414516 40].
 +
#Gontan C, <i>et al.</i> (2018) &quot;REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice.&quot; <i>Nat Commun</i> <b>9</b>(1):4752; PMID: [https://pubmed.ncbi.nlm.nih.gov/30420655 30420655]; doi: [https://dx.doi.org/10.1038/s41467-018-07060-w 10.1038/s41467-018-07060-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30420655 120].
 +
#Gfeller D, <i>et al.</i> (2018) &quot;The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands.&quot; <i>J Immunol</i> <b>201</b>(12):3705&ndash;3716; PMID: [https://pubmed.ncbi.nlm.nih.gov/30429286 30429286]; doi: [https://dx.doi.org/10.4049/jimmunol.1800914 10.4049/jimmunol.1800914]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30429286 11].
 +
#Bigenzahn JW, <i>et al.</i> (2018) &quot;LZTR1 is a regulator of RAS ubiquitination and signaling.&quot; <i>Science</i> <b>362</b>(6419):1171&ndash;1177; PMID: [https://pubmed.ncbi.nlm.nih.gov/30442766 30442766]; doi: [https://dx.doi.org/10.1126/science.aap8210 10.1126/science.aap8210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30442766 20].
 +
#Cominetti O, <i>et al.</i> (2018) &quot;Obesity shows preserved plasma proteome in large independent clinical cohorts.&quot; <i>Sci Rep</i> <b>8</b>(1):16981; PMID: [https://pubmed.ncbi.nlm.nih.gov/30451909 30451909]; doi: [https://dx.doi.org/10.1038/s41598-018-35321-7 10.1038/s41598-018-35321-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30451909 318].
 +
#Narzt MS, <i>et al.</i> (2019) &quot;A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids.&quot; <i>Redox Biol</i> <b>20</b>:467&ndash;482; PMID: [https://pubmed.ncbi.nlm.nih.gov/30466060 30466060]; doi: [https://dx.doi.org/10.1016/j.redox.2018.11.006 10.1016/j.redox.2018.11.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30466060 18].
 +
#Cavanagh JP, <i>et al.</i> (2019) &quot;Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate.&quot; <i>J Proteomics</i> <b>197</b>:106&ndash;114; PMID: [https://pubmed.ncbi.nlm.nih.gov/30472255 30472255]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.11.013 10.1016/j.jprot.2018.11.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30472255 12].
 +
#Zhu J, <i>et al.</i> (2019) &quot;Discovery and Quantification of Nonhuman Proteins in Human Milk.&quot; <i>J Proteome Res</i> <b>18</b>(1):225&ndash;238; PMID: [https://pubmed.ncbi.nlm.nih.gov/30489082 30489082]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00550 10.1021/acs.jproteome.8b00550]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30489082 74].
 +
#Back S, <i>et al.</i> (2019) &quot;Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress.&quot; <i>J Proteome Res</i> <b>18</b>(1):309&ndash;318; PMID: [https://pubmed.ncbi.nlm.nih.gov/30489083 30489083]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00623 10.1021/acs.jproteome.8b00623]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30489083 20].
 +
#Novo D, <i>et al.</i> (2018) &quot;Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels.&quot; <i>Nat Commun</i> <b>9</b>(1):5069; PMID: [https://pubmed.ncbi.nlm.nih.gov/30498210 30498210]; doi: [https://dx.doi.org/10.1038/s41467-018-07339-y 10.1038/s41467-018-07339-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30498210 2].
 +
#Giovani PA, <i>et al.</i> (2019) &quot;Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth.&quot; <i>J Periodontol</i> <b>90</b>(7):775&ndash;787; PMID: [https://pubmed.ncbi.nlm.nih.gov/30499115 30499115]; doi: [https://dx.doi.org/10.1002/JPER.18-0217 10.1002/JPER.18-0217]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30499115 6].
 +
#Gruhlke MCH, <i>et al.</i> (2019) &quot;The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects.&quot; <i>Free Radic Biol Med</i> <b>131</b>:144&ndash;153; PMID: [https://pubmed.ncbi.nlm.nih.gov/30500420 30500420]; doi: [https://dx.doi.org/10.1016/j.freeradbiomed.2018.11.022 10.1016/j.freeradbiomed.2018.11.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30500420 24].
 +
#Wolf A, <i>et al.</i> (2018) &quot;Olfactory cleft proteome does not reflect olfactory performance in patients with idiopathic and postinfectious olfactory disorder: A pilot study.&quot; <i>Sci Rep</i> <b>8</b>(1):17554; PMID: [https://pubmed.ncbi.nlm.nih.gov/30510230 30510230]; doi: [https://dx.doi.org/10.1038/s41598-018-35776-8 10.1038/s41598-018-35776-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30510230 21].
 +
#Tascher G, <i>et al.</i> (2019) &quot;Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth.&quot; <i>FASEB J</i> <b>33</b>(3):3772&ndash;3783; PMID: [https://pubmed.ncbi.nlm.nih.gov/30521760 30521760]; doi: [https://dx.doi.org/10.1096/fj.201801463R 10.1096/fj.201801463R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30521760 36].
 +
#Cann ML, <i>et al.</i> (2019) &quot;Dasatinib Is Preferentially Active in the Activated B-Cell Subtype of Diffuse Large B-Cell Lymphoma.&quot; <i>J Proteome Res</i> <b>18</b>(1):522&ndash;534; PMID: [https://pubmed.ncbi.nlm.nih.gov/30540191 30540191]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00841 10.1021/acs.jproteome.8b00841]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30540191 24].
 +
#Khodadoust MS, <i>et al.</i> (2019) &quot;B-cell lymphomas present immunoglobulin neoantigens.&quot; <i>Blood</i> <b>133</b>(8):878&ndash;881; PMID: [https://pubmed.ncbi.nlm.nih.gov/30545830 30545830]; doi: [https://dx.doi.org/10.1182/blood-2018-06-845156 10.1182/blood-2018-06-845156]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30545830 52].
 +
#Roustan V, <i>et al.</i> (2018) &quot;Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in <i>Chlamydomonas reinhardtii</i>.&quot; <i>Front Plant Sci</i> <b>9</b>:1590; PMID: [https://pubmed.ncbi.nlm.nih.gov/30546371 30546371]; doi: [https://dx.doi.org/10.3389/fpls.2018.01590 10.3389/fpls.2018.01590]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30546371 54].
 +
#Yao Z, <i>et al.</i> (2019) &quot;Label-Free Proteomic Analysis of Exosomes Secreted from THP-1-Derived Macrophages Treated with IFN-&alpha; Identifies Antiviral Proteins Enriched in Exosomes.&quot; <i>J Proteome Res</i> <b>18</b>(3):855&ndash;864; PMID: [https://pubmed.ncbi.nlm.nih.gov/30550287 30550287]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00514 10.1021/acs.jproteome.8b00514]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30550287 23].
 +
#Alves Feliciano C, <i>et al.</i> (2019) &quot;CotL, a new morphogenetic spore coat protein of Clostridium difficile.&quot; <i>Environ Microbiol</i> <b>21</b>(3):984&ndash;1003; PMID: [https://pubmed.ncbi.nlm.nih.gov/30556639 30556639]; doi: [https://dx.doi.org/10.1111/1462-2920.14505 10.1111/1462-2920.14505]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30556639 6].
 +
#Yelamanchi SD, <i>et al.</i> (2018) &quot;Proteomic Analysis of the Human Anterior Pituitary Gland.&quot; <i>OMICS</i> <b>22</b>(12):759&ndash;769; PMID: [https://pubmed.ncbi.nlm.nih.gov/30571610 30571610]; doi: [https://dx.doi.org/10.1089/omi.2018.0160 10.1089/omi.2018.0160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30571610 3].
 +
#Nanaware PP, <i>et al.</i> (2019) &quot;HLA-DO Modulates the Diversity of the MHC-II Self-peptidome.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(3):490&ndash;503; PMID: [https://pubmed.ncbi.nlm.nih.gov/30573663 30573663]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000956 10.1074/mcp.RA118.000956]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30573663 26].
 +
#Sathe G, <i>et al.</i> (2019) &quot;Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer&#39;s Disease.&quot; <i>Proteomics Clin Appl</i> <b>13</b>(4):e1800105; PMID: [https://pubmed.ncbi.nlm.nih.gov/30578620 30578620]; doi: [https://dx.doi.org/10.1002/prca.201800105 10.1002/prca.201800105]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30578620 48].
 +
#Aloui C, <i>et al.</i> (2019) &quot;Differential protein expression of blood platelet components associated with adverse transfusion reactions.&quot; <i>J Proteomics</i> <b>194</b>:25&ndash;36; PMID: [https://pubmed.ncbi.nlm.nih.gov/30590131 30590131]; doi: [https://dx.doi.org/10.1016/j.jprot.2018.12.019 10.1016/j.jprot.2018.12.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30590131 48].
 +
#Zhou Z, <i>et al.</i> (2019) &quot;Comprehensive Analysis of Lysine Acetylome Reveals a Site-Specific Pattern in Rapamycin-Induced Autophagy.&quot; <i>J Proteome Res</i> <b>18</b>(3):865&ndash;877; PMID: [https://pubmed.ncbi.nlm.nih.gov/30592415 30592415]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00533 10.1021/acs.jproteome.8b00533]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30592415 6].
 +
#Merlos Rodrigo MA, <i>et al.</i> (2019) &quot;Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin.&quot; <i>J Proteome Res</i> <b>18</b>(3):1255&ndash;1263; PMID: [https://pubmed.ncbi.nlm.nih.gov/30592607 30592607]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00867 10.1021/acs.jproteome.8b00867]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30592607 9].
 +
#Dunn J, <i>et al.</i> (2019) &quot;Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism.&quot; <i>EBioMedicine</i> <b>40</b>:77&ndash;91; PMID: [https://pubmed.ncbi.nlm.nih.gov/30594554 30594554]; doi: [https://dx.doi.org/10.1016/j.ebiom.2018.12.048 10.1016/j.ebiom.2018.12.048]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30594554 78].
 +
#&#x17B;ylicz JJ, <i>et al.</i> (2019) &quot;The Implication of Early Chromatin Changes in X Chromosome Inactivation.&quot; <i>Cell</i> <b>176</b>(1-2):182&ndash;197.e23; PMID: [https://pubmed.ncbi.nlm.nih.gov/30595450 30595450]; doi: [https://dx.doi.org/10.1016/j.cell.2018.11.041 10.1016/j.cell.2018.11.041]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30595450 10].
 +
#Liebelt F, <i>et al.</i> (2019) &quot;SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.&quot; <i>Cell Rep</i> <b>26</b>(1):236&ndash;249.e4; PMID: [https://pubmed.ncbi.nlm.nih.gov/30605679 30605679]; doi: [https://dx.doi.org/10.1016/j.celrep.2018.12.027 10.1016/j.celrep.2018.12.027]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30605679 57].
 +
#Queiroz RML, <i>et al.</i> (2019) &quot;Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS).&quot; <i>Nat Biotechnol</i> <b>37</b>(2):169&ndash;178; PMID: [https://pubmed.ncbi.nlm.nih.gov/30607034 30607034]; doi: [https://dx.doi.org/10.1038/s41587-018-0001-2 10.1038/s41587-018-0001-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30607034 106].
 +
#Orre LM, <i>et al.</i> (2019) &quot;SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.&quot; <i>Mol Cell</i> <b>73</b>(1):166&ndash;182.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/30609389 30609389]; doi: [https://dx.doi.org/10.1016/j.molcel.2018.11.035 10.1016/j.molcel.2018.11.035]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30609389 18].
 +
#Landsberg CD, <i>et al.</i> (2018) &quot;A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-&kappa;B Inhibitory Activity of the HIV-2-Encoded Vpx.&quot; <i>Front Immunol</i> <b>9</b>:2978; PMID: [https://pubmed.ncbi.nlm.nih.gov/30619335 30619335]; doi: [https://dx.doi.org/10.3389/fimmu.2018.02978 10.3389/fimmu.2018.02978]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30619335 48].
 +
#Yang H, <i>et al.</i> (2019) &quot;Precision <i>De Novo</i> Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(4):773&ndash;785; PMID: [https://pubmed.ncbi.nlm.nih.gov/30622160 30622160]; doi: [https://dx.doi.org/10.1074/mcp.TIR118.000918 10.1074/mcp.TIR118.000918]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30622160 2].
 +
#Chen D, <i>et al.</i> (2019) &quot;Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line.&quot; <i>Anal Chem</i> <b>91</b>(3):2201&ndash;2208; PMID: [https://pubmed.ncbi.nlm.nih.gov/30624053 30624053]; doi: [https://dx.doi.org/10.1021/acs.analchem.8b04770 10.1021/acs.analchem.8b04770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30624053 40].
 +
#Gallart-Palau X, <i>et al.</i> (2019) &quot;Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer&#39;s disease.&quot; <i>Brain Pathol</i> <b>29</b>(5):593&ndash;605; PMID: [https://pubmed.ncbi.nlm.nih.gov/30629763 30629763]; doi: [https://dx.doi.org/10.1111/bpa.12699 10.1111/bpa.12699]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30629763 20].
 +
#Chen Z, <i>et al.</i> (2019) &quot;Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics.&quot; <i>Nat Commun</i> <b>10</b>(1):104; PMID: [https://pubmed.ncbi.nlm.nih.gov/30631047 30631047]; doi: [https://dx.doi.org/10.1038/s41467-018-08004-0 10.1038/s41467-018-08004-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30631047 30].
 +
#Hansen M, <i>et al.</i> (2019) &quot;Macrophage Phosphoproteome Analysis Reveals MINCLE-dependent and -independent Mycobacterial Cord Factor Signaling.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(4):669&ndash;685; PMID: [https://pubmed.ncbi.nlm.nih.gov/30635358 30635358]; doi: [https://dx.doi.org/10.1074/mcp.RA118.000929 10.1074/mcp.RA118.000929]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30635358 72].
 +
#Tripathi SK, <i>et al.</i> (2019) &quot;Quantitative Proteomics Reveals the Dynamic Protein Landscape during Initiation of Human Th17 Cell Polarization.&quot; <i>iScience</i> <b>11</b>:334&ndash;355; PMID: [https://pubmed.ncbi.nlm.nih.gov/30641411 30641411]; doi: [https://dx.doi.org/10.1016/j.isci.2018.12.020 10.1016/j.isci.2018.12.020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30641411 75].
 +
#Pfaff F, <i>et al.</i> (2019) &quot;Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus.&quot; <i>Viruses</i> <b>11</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30642035 30642035]; doi: [https://dx.doi.org/10.3390/v11010053 10.3390/v11010053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30642035 110].
 +
#Kosack L, <i>et al.</i> (2019) &quot;The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease.&quot; <i>Cancer Cell</i> <b>35</b>(1):125&ndash;139.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/30645971 30645971]; doi: [https://dx.doi.org/10.1016/j.ccell.2018.11.018 10.1016/j.ccell.2018.11.018]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30645971 20].
 +
#Liu Z, <i>et al.</i> (2019) &quot;Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development.&quot; <i>J Proteome Res</i> <b>18</b>(3):982&ndash;994; PMID: [https://pubmed.ncbi.nlm.nih.gov/30650966 30650966]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00673 10.1021/acs.jproteome.8b00673]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30650966 24].
 +
#van Oorschot R, <i>et al.</i> (2019) &quot;Molecular mechanisms of bleeding disorderassociated GFI1B<sup>Q287*</sup> mutation and its affected pathways in megakaryocytes and platelets.&quot; <i>Haematologica</i> <b>104</b>(7):1460&ndash;1472; PMID: [https://pubmed.ncbi.nlm.nih.gov/30655368 30655368]; doi: [https://dx.doi.org/10.3324/haematol.2018.194555 10.3324/haematol.2018.194555]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30655368 63].
 +
#Tsukada T, <i>et al.</i> (2019) &quot;Identification of TGF&beta;-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry.&quot; <i>Cell Tissue Res</i> <b>376</b>(2):281&ndash;293; PMID: [https://pubmed.ncbi.nlm.nih.gov/30666536 30666536]; doi: [https://dx.doi.org/10.1007/s00441-018-02989-2 10.1007/s00441-018-02989-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30666536 11].
 +
#G&auml;rtner SMK, <i>et al.</i> (2019) &quot;Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility.&quot; <i>Eur J Cell Biol</i> <b>98</b>(2-4):103&ndash;115; PMID: [https://pubmed.ncbi.nlm.nih.gov/30679029 30679029]; doi: [https://dx.doi.org/10.1016/j.ejcb.2019.01.001 10.1016/j.ejcb.2019.01.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30679029 180].
 +
#Hurcombe JA, <i>et al.</i> (2019) &quot;Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function.&quot; <i>Nat Commun</i> <b>10</b>(1):403; PMID: [https://pubmed.ncbi.nlm.nih.gov/30679422 30679422]; doi: [https://dx.doi.org/10.1038/s41467-018-08235-1 10.1038/s41467-018-08235-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30679422 1].
 +
#Fornecker LM, <i>et al.</i> (2019) &quot;Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma.&quot; <i>Sci Rep</i> <b>9</b>(1):895; PMID: [https://pubmed.ncbi.nlm.nih.gov/30696890 30696890]; doi: [https://dx.doi.org/10.1038/s41598-018-37273-4 10.1038/s41598-018-37273-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30696890 20].
 +
#Dayon L, <i>et al.</i> (2019) &quot;Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood-Brain Barrier Permeability in Older Adults.&quot; <i>J Proteome Res</i> <b>18</b>(3):1162&ndash;1174; PMID: [https://pubmed.ncbi.nlm.nih.gov/30702894 30702894]; doi: [https://dx.doi.org/10.1021/acs.jproteome.8b00809 10.1021/acs.jproteome.8b00809]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30702894 128].
 +
#McKetney J, <i>et al.</i> (2019) &quot;Proteomic Atlas of the Human Brain in Alzheimer&#39;s Disease.&quot; <i>J Proteome Res</i> <b>18</b>(3):1380&ndash;1391; PMID: [https://pubmed.ncbi.nlm.nih.gov/30735395 30735395]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00004 10.1021/acs.jproteome.9b00004]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30735395 22].
 +
#West KL, <i>et al.</i> (2019) &quot;Proteomic characterization of the arsenic response locus in S. cerevisiae.&quot; <i>Epigenetics</i> <b>14</b>(2):130&ndash;145; PMID: [https://pubmed.ncbi.nlm.nih.gov/30739529 30739529]; doi: [https://dx.doi.org/10.1080/15592294.2019.1580110 10.1080/15592294.2019.1580110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30739529 9].
 +
#Dikicioglu D, <i>et al.</i> (2019) &quot;Transcriptional regulation of the genes involved in protein metabolism and processing in Saccharomyces cerevisiae.&quot; <i>FEMS Yeast Res</i> <b>19</b>(2):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30753445 30753445]; doi: [https://dx.doi.org/10.1093/femsyr/foz014 10.1093/femsyr/foz014]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30753445 48].
 +
#Ramello MC, <i>et al.</i> (2019) &quot;An immunoproteomic approach to characterize the CAR interactome and signalosome.&quot; <i>Sci Signal</i> <b>12</b>(568):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30755478 30755478]; doi: [https://dx.doi.org/10.1126/scisignal.aap9777 10.1126/scisignal.aap9777]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30755478 54].
 +
#Furuyama K, <i>et al.</i> (2019) &quot;Diabetes relief in mice by glucose-sensing insulin-secreting human &alpha;-cells.&quot; <i>Nature</i> <b>567</b>(7746):43&ndash;48; PMID: [https://pubmed.ncbi.nlm.nih.gov/30760930 30760930]; doi: [https://dx.doi.org/10.1038/s41586-019-0942-8 10.1038/s41586-019-0942-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30760930 1].
 +
#Mohanty V, <i>et al.</i> (2019) &quot;Proteomics and Visual Health Research: Proteome of the Human Sclera Using High-Resolution Mass Spectrometry.&quot; <i>OMICS</i> <b>23</b>(2):98&ndash;110; PMID: [https://pubmed.ncbi.nlm.nih.gov/30767726 30767726]; doi: [https://dx.doi.org/10.1089/omi.2018.0185 10.1089/omi.2018.0185]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30767726 2].
 +
#Patil S, <i>et al.</i> (2019) &quot;Proteomic Changes in Oral Keratinocytes Chronically Exposed to Shisha (Water Pipe).&quot; <i>OMICS</i> <b>23</b>(2):86&ndash;97; PMID: [https://pubmed.ncbi.nlm.nih.gov/30767727 30767727]; doi: [https://dx.doi.org/10.1089/omi.2018.0173 10.1089/omi.2018.0173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30767727 18].
 +
#Eraslan B, <i>et al.</i> (2019) &quot;Quantification and discovery of sequence determinants of protein-per-mRNA amount in&nbsp;29&nbsp;human tissues.&quot; <i>Mol Syst Biol</i> <b>15</b>(2):e8513; PMID: [https://pubmed.ncbi.nlm.nih.gov/30777893 30777893]; doi: [https://dx.doi.org/10.15252/msb.20188513 10.15252/msb.20188513]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30777893 28].
 +
#Pauwels AM, <i>et al.</i> (2019) &quot;Spatiotemporal Changes of the Phagosomal Proteome in Dendritic Cells in Response to LPS Stimulation.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(5):909&ndash;922; PMID: [https://pubmed.ncbi.nlm.nih.gov/30808727 30808727]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001316 10.1074/mcp.RA119.001316]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30808727 20].
 +
#Angelidis I, <i>et al.</i> (2019) &quot;An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics.&quot; <i>Nat Commun</i> <b>10</b>(1):963; PMID: [https://pubmed.ncbi.nlm.nih.gov/30814501 30814501]; doi: [https://dx.doi.org/10.1038/s41467-019-08831-9 10.1038/s41467-019-08831-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814501 32].
 +
#Yang W, <i>et al.</i> (2019) &quot;Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair.&quot; <i>Sci Rep</i> <b>9</b>(1):2953; PMID: [https://pubmed.ncbi.nlm.nih.gov/30814596 30814596]; doi: [https://dx.doi.org/10.1038/s41598-019-39007-6 10.1038/s41598-019-39007-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814596 40].
 +
#Parker BL, <i>et al.</i> (2019) &quot;An integrative systems genetic analysis of mammalian lipid metabolism.&quot; <i>Nature</i> <b>567</b>(7747):187&ndash;193; PMID: [https://pubmed.ncbi.nlm.nih.gov/30814737 30814737]; doi: [https://dx.doi.org/10.1038/s41586-019-0984-y 10.1038/s41586-019-0984-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814737 78].
 +
#Jiang Y, <i>et al.</i> (2019) &quot;Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.&quot; <i>Nature</i> <b>567</b>(7747):257&ndash;261; PMID: [https://pubmed.ncbi.nlm.nih.gov/30814741 30814741]; doi: [https://dx.doi.org/10.1038/s41586-019-0987-8 10.1038/s41586-019-0987-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30814741 688].
 +
#Brummer T, <i>et al.</i> (2019) &quot;NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer&#39;s disease.&quot; <i>EMBO Mol Med</i> <b>11</b>(4):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30833305 30833305]; doi: [https://dx.doi.org/10.15252/emmm.201809695 10.15252/emmm.201809695]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30833305 72].
 +
#Hansen BK, <i>et al.</i> (2019) &quot;Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation.&quot; <i>Nat Commun</i> <b>10</b>(1):1055; PMID: [https://pubmed.ncbi.nlm.nih.gov/30837475 30837475]; doi: [https://dx.doi.org/10.1038/s41467-019-09024-0 10.1038/s41467-019-09024-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30837475 123].
 +
#Marei WFA, <i>et al.</i> (2019) &quot;Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells.&quot; <i>Sci Rep</i> <b>9</b>(1):3673; PMID: [https://pubmed.ncbi.nlm.nih.gov/30842615 30842615]; doi: [https://dx.doi.org/10.1038/s41598-019-40122-7 10.1038/s41598-019-40122-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30842615 2].
 +
#Yi L, <i>et al.</i> (2019) &quot;Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells.&quot; <i>Anal Chem</i> <b>91</b>(9):5794&ndash;5801; PMID: [https://pubmed.ncbi.nlm.nih.gov/30843680 30843680]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b00024 10.1021/acs.analchem.9b00024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30843680 20].
 +
#Lin YH, <i>et al.</i> (2019) &quot;Self-Assembled STrap for Global Proteomics and Salivary Biomarker Discovery.&quot; <i>J Proteome Res</i> <b>18</b>(4):1907&ndash;1915; PMID: [https://pubmed.ncbi.nlm.nih.gov/30848925 30848925]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00037 10.1021/acs.jproteome.9b00037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30848925 51].
 +
#Herbst FA, <i>et al.</i> (2019) &quot;Proteogenomic Refinement of the Neomegalonema perideroedes<sup>T</sup> Genome Annotation.&quot; <i>Proteomics</i> <b>19</b>(9):e1800330; PMID: [https://pubmed.ncbi.nlm.nih.gov/30865376 30865376]; doi: [https://dx.doi.org/10.1002/pmic.201800330 10.1002/pmic.201800330]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30865376 9].
 +
#Liu F, <i>et al.</i> (2019) &quot;Integrated Analyses of Phenotype and Quantitative Proteome of CMTM4 Deficient Mice Reveal Its Association with Male Fertility.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(6):1070&ndash;1084; PMID: [https://pubmed.ncbi.nlm.nih.gov/30867229 30867229]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001416 10.1074/mcp.RA119.001416]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867229 1].
 +
#Gallud A, <i>et al.</i> (2019) &quot;Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study.&quot; <i>Sci Rep</i> <b>9</b>(1):4366; PMID: [https://pubmed.ncbi.nlm.nih.gov/30867451 30867451]; doi: [https://dx.doi.org/10.1038/s41598-019-40579-6 10.1038/s41598-019-40579-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867451 45].
 +
#Obradovi&#x107; MMS, <i>et al.</i> (2019) &quot;Glucocorticoids promote breast cancer metastasis.&quot; <i>Nature</i> <b>567</b>(7749):540&ndash;544; PMID: [https://pubmed.ncbi.nlm.nih.gov/30867597 30867597]; doi: [https://dx.doi.org/10.1038/s41586-019-1019-4 10.1038/s41586-019-1019-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30867597 23].
 +
#Berg P, <i>et al.</i> (2019) &quot;Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics.&quot; <i>BMC Bioinformatics</i> <b>20</b>(Suppl 2):102; PMID: [https://pubmed.ncbi.nlm.nih.gov/30871482 30871482]; doi: [https://dx.doi.org/10.1186/s12859-019-2619-6 10.1186/s12859-019-2619-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30871482 1].
 +
#Vandervore LV, <i>et al.</i> (2019) &quot;Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics.&quot; <i>Brain</i> <b>142</b>(4):867&ndash;884; PMID: [https://pubmed.ncbi.nlm.nih.gov/30879067 30879067]; doi: [https://dx.doi.org/10.1093/brain/awz045 10.1093/brain/awz045]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30879067 14].
 +
#Sacco F, <i>et al.</i> (2019) &quot;Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets.&quot; <i>Cell Metab</i> <b>29</b>(6):1422&ndash;1432.e3; PMID: [https://pubmed.ncbi.nlm.nih.gov/30879985 30879985]; doi: [https://dx.doi.org/10.1016/j.cmet.2019.02.012 10.1016/j.cmet.2019.02.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30879985 24].
 +
#Sinha A, <i>et al.</i> (2019) &quot;The Proteogenomic Landscape of Curable Prostate Cancer.&quot; <i>Cancer Cell</i> <b>35</b>(3):414&ndash;427.e6; PMID: [https://pubmed.ncbi.nlm.nih.gov/30889379 30889379]; doi: [https://dx.doi.org/10.1016/j.ccell.2019.02.005 10.1016/j.ccell.2019.02.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30889379 108].
 +
#Xu B, <i>et al.</i> (2019) &quot;Dysregulation of Myosin Complex and Striated Muscle Contraction Pathway in the Brains of ALS-SOD1 Model Mice.&quot; <i>ACS Chem Neurosci</i> <b>10</b>(5):2408&ndash;2417; PMID: [https://pubmed.ncbi.nlm.nih.gov/30889949 30889949]; doi: [https://dx.doi.org/10.1021/acschemneuro.8b00704 10.1021/acschemneuro.8b00704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30889949 1].
 +
#Schmitt M, <i>et al.</i> (2019) &quot;Quantitative Proteomics Links the Intermediate Filament Nestin to Resistance to Targeted BRAF Inhibition in Melanoma Cells.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(6):1096&ndash;1109; PMID: [https://pubmed.ncbi.nlm.nih.gov/30890564 30890564]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001302 10.1074/mcp.RA119.001302]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30890564 51].
 +
#Borgermann N, <i>et al.</i> (2019) &quot;SUMOylation promotes protective responses to DNA-protein crosslinks.&quot; <i>EMBO J</i> <b>38</b>(8):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30914427 30914427]; doi: [https://dx.doi.org/10.15252/embj.2019101496 10.15252/embj.2019101496]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30914427 52].
 +
#Betancourt LH, <i>et al.</i> (2019) &quot;Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data.&quot; <i>Sci Rep</i> <b>9</b>(1):5154; PMID: [https://pubmed.ncbi.nlm.nih.gov/30914758 30914758]; doi: [https://dx.doi.org/10.1038/s41598-019-41625-z 10.1038/s41598-019-41625-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30914758 111].
 +
#Sinclair LV, <i>et al.</i> (2019) &quot;Antigen receptor control of methionine metabolism in T cells.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/30916644 30916644]; doi: [https://dx.doi.org/10.7554/eLife.44210 10.7554/eLife.44210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30916644 7].
 +
#Lofthouse EM, <i>et al.</i> (2019) &quot;Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta.&quot; <i>FASEB J</i> <b>33</b>(7):8211&ndash;8220; PMID: [https://pubmed.ncbi.nlm.nih.gov/30922127 30922127]; doi: [https://dx.doi.org/10.1096/fj.201900015RR 10.1096/fj.201900015RR]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30922127 1].
 +
#Chachami G, <i>et al.</i> (2019) &quot;Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(6):1197&ndash;1209; PMID: [https://pubmed.ncbi.nlm.nih.gov/30926672 30926672]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001401 10.1074/mcp.RA119.001401]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30926672 69].
 +
#Musiani D, <i>et al.</i> (2019) &quot;Proteomics profiling of arginine methylation defines PRMT5 substrate specificity.&quot; <i>Sci Signal</i> <b>12</b>(575):; PMID: [https://pubmed.ncbi.nlm.nih.gov/30940768 30940768]; doi: [https://dx.doi.org/10.1126/scisignal.aat8388 10.1126/scisignal.aat8388]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30940768 76].
 +
#Yang M, <i>et al.</i> (2019) &quot;Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia.&quot; <i>Nat Commun</i> <b>10</b>(1):1519; PMID: [https://pubmed.ncbi.nlm.nih.gov/30944321 30944321]; doi: [https://dx.doi.org/10.1038/s41467-019-09469-3 10.1038/s41467-019-09469-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30944321 3].
 +
#Johansson HJ, <i>et al.</i> (2019) &quot;Breast cancer quantitative proteome and proteogenomic landscape.&quot; <i>Nat Commun</i> <b>10</b>(1):1600; PMID: [https://pubmed.ncbi.nlm.nih.gov/30962452 30962452]; doi: [https://dx.doi.org/10.1038/s41467-019-09018-y 10.1038/s41467-019-09018-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30962452 12].
 +
#Zecha J, <i>et al.</i> (2019) &quot;TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(7):1468&ndash;1478; PMID: [https://pubmed.ncbi.nlm.nih.gov/30967486 30967486]; doi: [https://dx.doi.org/10.1074/mcp.TIR119.001385 10.1074/mcp.TIR119.001385]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30967486 28].
 +
#Erhart F, <i>et al.</i> (2019) &quot;Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon &gamma; production.&quot; <i>Cytotherapy</i> <b>21</b>(6):643&ndash;658; PMID: [https://pubmed.ncbi.nlm.nih.gov/30975602 30975602]; doi: [https://dx.doi.org/10.1016/j.jcyt.2019.03.002 10.1016/j.jcyt.2019.03.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30975602 8].
 +
#Karim N, <i>et al.</i> (2019) &quot;Proteomic manifestations of genetic defects in autosomal recessive congenital ichthyosis.&quot; <i>J Proteomics</i> <b>201</b>:104&ndash;109; PMID: [https://pubmed.ncbi.nlm.nih.gov/30978464 30978464]; doi: [https://dx.doi.org/10.1016/j.jprot.2019.04.007 10.1016/j.jprot.2019.04.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30978464 96].
 +
#Na CH, <i>et al.</i> (2019) &quot;Integrated Transcriptomic and Proteomic Analysis of Human Eccrine Sweat Glands Identifies Missing and Novel Proteins.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(7):1382&ndash;1395; PMID: [https://pubmed.ncbi.nlm.nih.gov/30979791 30979791]; doi: [https://dx.doi.org/10.1074/mcp.RA118.001101 10.1074/mcp.RA118.001101]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30979791 3].
 +
#Guergues J, <i>et al.</i> (2019) &quot;Improved Methodology for Sensitive and Rapid Quantitative Proteomic Analysis of Adult-Derived Mouse Microglia: Application to a Novel In Vitro Mouse Microglial Cell Model.&quot; <i>Proteomics</i> <b>19</b>(11):e1800469; PMID: [https://pubmed.ncbi.nlm.nih.gov/30980500 30980500]; doi: [https://dx.doi.org/10.1002/pmic.201800469 10.1002/pmic.201800469]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30980500 6].
 +
#Madugundu AK, <i>et al.</i> (2019) &quot;Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells.&quot; <i>Proteomics</i> <b>19</b>(15):e1800315; PMID: [https://pubmed.ncbi.nlm.nih.gov/30983154 30983154]; doi: [https://dx.doi.org/10.1002/pmic.201800315 10.1002/pmic.201800315]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/30983154 2].
 +
#Zhou B, <i>et al.</i> (2019) &quot;Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer.&quot; <i>Clin Proteomics</i> <b>16</b>:15; PMID: [https://pubmed.ncbi.nlm.nih.gov/31011308 31011308]; doi: [https://dx.doi.org/10.1186/s12014-019-9236-2 10.1186/s12014-019-9236-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31011308 2].
 +
#Trzeciecka A, <i>et al.</i> (2019) &quot;Dataset of growth cone-enriched lipidome and proteome of embryonic to early postnatal mouse brain.&quot; <i>Data Brief</i> <b>24</b>:103865; PMID: [https://pubmed.ncbi.nlm.nih.gov/31016214 31016214]; doi: [https://dx.doi.org/10.1016/j.dib.2019.103865 10.1016/j.dib.2019.103865]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31016214 120].
 +
#Masoumi Z, <i>et al.</i> (2019) &quot;Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells.&quot; <i>Int J Mol Sci</i> <b>20</b>(8):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31027199 31027199]; doi: [https://dx.doi.org/10.3390/ijms20082038 10.3390/ijms20082038]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31027199 20].
 +
#Quintieri L, <i>et al.</i> (2019) &quot;Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin.&quot; <i>Food Microbiol</i> <b>82</b>:177&ndash;193; PMID: [https://pubmed.ncbi.nlm.nih.gov/31027772 31027772]; doi: [https://dx.doi.org/10.1016/j.fm.2019.02.003 10.1016/j.fm.2019.02.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31027772 110].
 +
#L&ouml;ffler MW, <i>et al.</i> (2019) &quot;Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma.&quot; <i>Genome Med</i> <b>11</b>(1):28; PMID: [https://pubmed.ncbi.nlm.nih.gov/31039795 31039795]; doi: [https://dx.doi.org/10.1186/s13073-019-0636-8 10.1186/s13073-019-0636-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31039795 178].
 +
#Eckert MA, <i>et al.</i> (2019) &quot;Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts.&quot; <i>Nature</i> <b>569</b>(7758):723&ndash;728; PMID: [https://pubmed.ncbi.nlm.nih.gov/31043742 31043742]; doi: [https://dx.doi.org/10.1038/s41586-019-1173-8 10.1038/s41586-019-1173-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31043742 107].
 +
#Chen F, <i>et al.</i> (2019) &quot;A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau.&quot; <i>Nature</i> <b>569</b>(7756):409&ndash;412; PMID: [https://pubmed.ncbi.nlm.nih.gov/31043746 31043746]; doi: [https://dx.doi.org/10.1038/s41586-019-1139-x 10.1038/s41586-019-1139-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31043746 8].
 +
#Dybas JM, <i>et al.</i> (2019) &quot;Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4<sup>+</sup> T cells.&quot; <i>Nat Immunol</i> <b>20</b>(6):747&ndash;755; PMID: [https://pubmed.ncbi.nlm.nih.gov/31061531 31061531]; doi: [https://dx.doi.org/10.1038/s41590-019-0381-6 10.1038/s41590-019-0381-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31061531 118].
 +
#Papaioannou MD, <i>et al.</i> (2019) &quot;Proteomic analysis of meningiomas reveals clinically distinct molecular patterns.&quot; <i>Neuro Oncol</i> <b>21</b>(8):1028&ndash;1038; PMID: [https://pubmed.ncbi.nlm.nih.gov/31077268 31077268]; doi: [https://dx.doi.org/10.1093/neuonc/noz084 10.1093/neuonc/noz084]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31077268 78].
 +
#Sp&ouml;rrer M, <i>et al.</i> (2019) &quot;Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: Lessons for therapies in keratin disorders.&quot; <i>EBioMedicine</i> <b>44</b>:502&ndash;515; PMID: [https://pubmed.ncbi.nlm.nih.gov/31078522 31078522]; doi: [https://dx.doi.org/10.1016/j.ebiom.2019.04.062 10.1016/j.ebiom.2019.04.062]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31078522 41].
 +
#Wang H, <i>et al.</i> (2019) &quot;Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.&quot; <i>Cell Syst</i> <b>8</b>(5):412&ndash;426.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/31078528 31078528]; doi: [https://dx.doi.org/10.1016/j.cels.2019.03.009 10.1016/j.cels.2019.03.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31078528 24].
 +
#Murphy JP, <i>et al.</i> (2019) &quot;Therapy-Induced MHC I Ligands Shape Neo-Antitumor CD8 T Cell Responses during Oncolytic Virus-Based Cancer Immunotherapy.&quot; <i>J Proteome Res</i> <b>18</b>(6):2666&ndash;2675; PMID: [https://pubmed.ncbi.nlm.nih.gov/31095916 31095916]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00173 10.1021/acs.jproteome.9b00173]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31095916 11].
 +
#Ott E, <i>et al.</i> (2019) &quot;Proteomic and Metabolomic Profiling of <i>Deinococcus radiodurans</i> Recovering After Exposure to Simulated Low Earth Orbit Vacuum Conditions.&quot; <i>Front Microbiol</i> <b>10</b>:909; PMID: [https://pubmed.ncbi.nlm.nih.gov/31110498 31110498]; doi: [https://dx.doi.org/10.3389/fmicb.2019.00909 10.3389/fmicb.2019.00909]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31110498 17].
 +
#Chu F, <i>et al.</i> (2019) &quot;Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification.&quot; <i>Sci Rep</i> <b>9</b>(1):7641; PMID: [https://pubmed.ncbi.nlm.nih.gov/31113963 31113963]; doi: [https://dx.doi.org/10.1038/s41598-019-44007-7 10.1038/s41598-019-44007-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31113963 36].
 +
#Charitou T, <i>et al.</i> (2019) &quot;Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRAS<sup>G13D</sup> mutation.&quot; <i>Br J Cancer</i> <b>121</b>(1):37&ndash;50; PMID: [https://pubmed.ncbi.nlm.nih.gov/31133691 31133691]; doi: [https://dx.doi.org/10.1038/s41416-019-0477-7 10.1038/s41416-019-0477-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31133691 523].
 +
#Chang TT, <i>et al.</i> (2019) &quot;Plasma proteome plus site-specific N-glycoprofiling for hepatobiliary carcinomas.&quot; <i>J Pathol Clin Res</i> <b>5</b>(3):199&ndash;212; PMID: [https://pubmed.ncbi.nlm.nih.gov/31136099 31136099]; doi: [https://dx.doi.org/10.1002/cjp2.136 10.1002/cjp2.136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31136099 315].
 +
#Sap KA, <i>et al.</i> (2019) &quot;Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(9):1705&ndash;1720; PMID: [https://pubmed.ncbi.nlm.nih.gov/31138642 31138642]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001486 10.1074/mcp.RA119.001486]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31138642 64].
 +
#Shraibman B, <i>et al.</i> (2019) &quot;Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(6):1255&ndash;1268; PMID: [https://pubmed.ncbi.nlm.nih.gov/31154438 31154438]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001524 10.1074/mcp.RA119.001524]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31154438 75].
 +
#Pladevall-Morera D, <i>et al.</i> (2019) &quot;Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability.&quot; <i>Nucleic Acids Res</i> <b>47</b>(15):8004&ndash;8018; PMID: [https://pubmed.ncbi.nlm.nih.gov/31180492 31180492]; doi: [https://dx.doi.org/10.1093/nar/gkz510 10.1093/nar/gkz510]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31180492 32].
 +
#Wang Y, <i>et al.</i> (2019) &quot;Multiomics Analyses of HNF4&alpha; Protein Domain Function during Human Pluripotent Stem Cell Differentiation.&quot; <i>iScience</i> <b>16</b>:206&ndash;217; PMID: [https://pubmed.ncbi.nlm.nih.gov/31185456 31185456]; doi: [https://dx.doi.org/10.1016/j.isci.2019.05.028 10.1016/j.isci.2019.05.028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31185456 96].
 +
#Brennan CM, <i>et al.</i> (2019) &quot;Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells.&quot; <i>Genes Dev</i> <b>33</b>(15-16):1031&ndash;1047; PMID: [https://pubmed.ncbi.nlm.nih.gov/31196865 31196865]; doi: [https://dx.doi.org/10.1101/gad.327494.119 10.1101/gad.327494.119]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31196865 147].
 +
#Ma F, <i>et al.</i> (2019) &quot;In Depth Quantification of Extracellular Matrix Proteins from Human Pancreas.&quot; <i>J Proteome Res</i> <b>18</b>(8):3156&ndash;3165; PMID: [https://pubmed.ncbi.nlm.nih.gov/31200599 31200599]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00241 10.1021/acs.jproteome.9b00241]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31200599 30].
 +
#Mendon&ccedil;a CF, <i>et al.</i> (2019) &quot;Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer&#39;s disease.&quot; <i>Neurobiol Dis</i> <b>130</b>:104509; PMID: [https://pubmed.ncbi.nlm.nih.gov/31207390 31207390]; doi: [https://dx.doi.org/10.1016/j.nbd.2019.104509 10.1016/j.nbd.2019.104509]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31207390 367].
 +
#Panhale A, <i>et al.</i> (2019) &quot;CAPRI enables comparison of evolutionarily conserved RNA interacting regions.&quot; <i>Nat Commun</i> <b>10</b>(1):2682; PMID: [https://pubmed.ncbi.nlm.nih.gov/31213602 31213602]; doi: [https://dx.doi.org/10.1038/s41467-019-10585-3 10.1038/s41467-019-10585-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31213602 175].
 +
#Schoor C, <i>et al.</i> (2019) &quot;Investigation of Oligodendrocyte Precursor Cell Differentiation by Quantitative Proteomics.&quot; <i>Proteomics</i> <b>19</b>(14):e1900057; PMID: [https://pubmed.ncbi.nlm.nih.gov/31216117 31216117]; doi: [https://dx.doi.org/10.1002/pmic.201900057 10.1002/pmic.201900057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31216117 5].
 +
#Alriquet M, <i>et al.</i> (2019) &quot;Assembly of Proteins by Free RNA during the Early Phase of Proteostasis Stress.&quot; <i>J Proteome Res</i> <b>18</b>(7):2835&ndash;2847; PMID: [https://pubmed.ncbi.nlm.nih.gov/31244213 31244213]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00143 10.1021/acs.jproteome.9b00143]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31244213 12].
 +
#Drabovich AP, <i>et al.</i> (2019) &quot;Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(9):1807&ndash;1823; PMID: [https://pubmed.ncbi.nlm.nih.gov/31249104 31249104]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001612 10.1074/mcp.RA119.001612]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31249104 10].
 +
#Lignitto L, <i>et al.</i> (2019) &quot;Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1.&quot; <i>Cell</i> <b>178</b>(2):316&ndash;329.e18; PMID: [https://pubmed.ncbi.nlm.nih.gov/31257023 31257023]; doi: [https://dx.doi.org/10.1016/j.cell.2019.06.003 10.1016/j.cell.2019.06.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31257023 1].
 +
#Holthenrich A, <i>et al.</i> (2019) &quot;Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion.&quot; <i>Blood</i> <b>134</b>(12):979&ndash;982; PMID: [https://pubmed.ncbi.nlm.nih.gov/31262780 31262780]; doi: [https://dx.doi.org/10.1182/blood.2019000786 10.1182/blood.2019000786]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31262780 12].
 +
#Pierre N, <i>et al.</i> (2020) &quot;Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn&#39;s Disease.&quot; <i>J Crohns Colitis</i> <b>14</b>(2):205&ndash;215; PMID: [https://pubmed.ncbi.nlm.nih.gov/31282946 31282946]; doi: [https://dx.doi.org/10.1093/ecco-jcc/jjz130 10.1093/ecco-jcc/jjz130]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31282946 96].
 +
#Narayan R, <i>et al.</i> (2019) &quot;Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin.&quot; <i>PLoS One</i> <b>14</b>(7):e0219547; PMID: [https://pubmed.ncbi.nlm.nih.gov/31291378 31291378]; doi: [https://dx.doi.org/10.1371/journal.pone.0219547 10.1371/journal.pone.0219547]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31291378 86].
 +
#Gomig THB, <i>et al.</i> (2019) &quot;High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data.&quot; <i>Data Brief</i> <b>25</b>:104125; PMID: [https://pubmed.ncbi.nlm.nih.gov/31294064 31294064]; doi: [https://dx.doi.org/10.1016/j.dib.2019.104125 10.1016/j.dib.2019.104125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31294064 69].
 +
#McDermott BT, <i>et al.</i> (2019) &quot;Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1&beta;.&quot; <i>J Biol Chem</i> <b>294</b>(35):13027&ndash;13039; PMID: [https://pubmed.ncbi.nlm.nih.gov/31300557 31300557]; doi: [https://dx.doi.org/10.1074/jbc.RA118.006865 10.1074/jbc.RA118.006865]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31300557 12].
 +
#Christakopoulos C, <i>et al.</i> (2019) &quot;Proteomics reveals a set of highly enriched proteins in epiretinal membrane compared with inner limiting membrane.&quot; <i>Exp Eye Res</i> <b>186</b>:107722; PMID: [https://pubmed.ncbi.nlm.nih.gov/31302158 31302158]; doi: [https://dx.doi.org/10.1016/j.exer.2019.107722 10.1016/j.exer.2019.107722]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31302158 142].
 +
#Hsu CW, <i>et al.</i> (2019) &quot;Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(10):1939&ndash;1949; PMID: [https://pubmed.ncbi.nlm.nih.gov/31315917 31315917]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001654 10.1074/mcp.RA119.001654]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31315917 975].
 +
#Kang T, <i>et al.</i> (2019) &quot;Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse Pancreatic Islets Following Euglycemia.&quot; <i>J Proteome Res</i> <b>18</b>(9):3245&ndash;3258; PMID: [https://pubmed.ncbi.nlm.nih.gov/31317746 31317746]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00160 10.1021/acs.jproteome.9b00160]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31317746 66].
 +
#Patil S, <i>et al.</i> (2019) &quot;Chronic shisha exposure alters phosphoproteome of oral keratinocytes.&quot; <i>J Cell Commun Signal</i> <b>13</b>(3):281&ndash;289; PMID: [https://pubmed.ncbi.nlm.nih.gov/31321732 31321732]; doi: [https://dx.doi.org/10.1007/s12079-019-00528-4 10.1007/s12079-019-00528-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31321732 6].
 +
#Buser DP, <i>et al.</i> (2019) &quot;Quantitative proteomics reveals reduction of endocytic machinery components in gliomas.&quot; <i>EBioMedicine</i> <b>46</b>:32&ndash;41; PMID: [https://pubmed.ncbi.nlm.nih.gov/31331834 31331834]; doi: [https://dx.doi.org/10.1016/j.ebiom.2019.07.039 10.1016/j.ebiom.2019.07.039]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31331834 51].
 +
#Billing AM, <i>et al.</i> (2019) &quot;A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(10):1950&ndash;1966; PMID: [https://pubmed.ncbi.nlm.nih.gov/31332097 31332097]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001356 10.1074/mcp.RA119.001356]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31332097 209].
 +
#Hollin T, <i>et al.</i> (2019) &quot;Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission.&quot; <i>PLoS Pathog</i> <b>15</b>(7):e1007973; PMID: [https://pubmed.ncbi.nlm.nih.gov/31348803 31348803]; doi: [https://dx.doi.org/10.1371/journal.ppat.1007973 10.1371/journal.ppat.1007973]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31348803 58].
 +
#Losada-Barrag&aacute;n M, <i>et al.</i> (2019) &quot;Thymic Microenvironment Is Modified by Malnutrition and <i>Leishmania infantum</i> Infection.&quot; <i>Front Cell Infect Microbiol</i> <b>9</b>:252; PMID: [https://pubmed.ncbi.nlm.nih.gov/31355153 31355153]; doi: [https://dx.doi.org/10.3389/fcimb.2019.00252 10.3389/fcimb.2019.00252]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31355153 11].
 +
#Hillier C, <i>et al.</i> (2019) &quot;Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality.&quot; <i>Cell Rep</i> <b>28</b>(6):1635&ndash;1647.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/31390575 31390575]; doi: [https://dx.doi.org/10.1016/j.celrep.2019.07.019 10.1016/j.celrep.2019.07.019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31390575 723].
 +
#Stewart PA, <i>et al.</i> (2019) &quot;Proteogenomic landscape of squamous cell lung cancer.&quot; <i>Nat Commun</i> <b>10</b>(1):3578; PMID: [https://pubmed.ncbi.nlm.nih.gov/31395880 31395880]; doi: [https://dx.doi.org/10.1038/s41467-019-11452-x 10.1038/s41467-019-11452-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31395880 58].
 +
#Olson MG, <i>et al.</i> (2019) &quot;Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.&quot; <i>Infect Immun</i> <b>87</b>(11):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31405957 31405957]; doi: [https://dx.doi.org/10.1128/IAI.00537-19 10.1128/IAI.00537-19]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31405957 314].
 +
#Fotouhi O, <i>et al.</i> (2019) &quot;Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors.&quot; <i>Oncogene</i> <b>38</b>(43):6881&ndash;6897; PMID: [https://pubmed.ncbi.nlm.nih.gov/31406256 31406256]; doi: [https://dx.doi.org/10.1038/s41388-019-0938-8 10.1038/s41388-019-0938-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31406256 1].
 +
#Brophy RH, <i>et al.</i> (2019) &quot;Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury.&quot; <i>Osteoarthritis Cartilage</i> <b>27</b>(12):1778&ndash;1789; PMID: [https://pubmed.ncbi.nlm.nih.gov/31430535 31430535]; doi: [https://dx.doi.org/10.1016/j.joca.2019.08.002 10.1016/j.joca.2019.08.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31430535 11].
 +
#Ong JWJ, <i>et al.</i> (2019) &quot;Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics.&quot; <i>Cells</i> <b>8</b>(9):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31455003 31455003]; doi: [https://dx.doi.org/10.3390/cells8090975 10.3390/cells8090975]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31455003 1].
 +
#Denes BJ, <i>et al.</i> (2019) &quot;Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A.&quot; <i>J Dent Res</i> <b>98</b>(12):1357&ndash;1366; PMID: [https://pubmed.ncbi.nlm.nih.gov/31461625 31461625]; doi: [https://dx.doi.org/10.1177/0022034519871448 10.1177/0022034519871448]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31461625 1].
 +
#Schulte F, <i>et al.</i> (2019) &quot;Mapping Relative Differences in Human Salivary Gland Secretions by Dried Saliva Spot Sampling and nanoLC-MS/MS.&quot; <i>Proteomics</i> <b>19</b>(20):e1900023; PMID: [https://pubmed.ncbi.nlm.nih.gov/31476108 31476108]; doi: [https://dx.doi.org/10.1002/pmic.201900023 10.1002/pmic.201900023]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31476108 36].
 +
#Defenouill&egrave;re Q, <i>et al.</i> (2019) &quot;The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose.&quot; <i>Sci Signal</i> <b>12</b>(597):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31481524 31481524]; doi: [https://dx.doi.org/10.1126/scisignal.aaw8000 10.1126/scisignal.aaw8000]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31481524 6].
 +
#Gao Y, <i>et al.</i> (2019) &quot;Global Proteomic Analysis of Lysine Succinylation in Zebrafish (<i>Danio rerio</i>).&quot; <i>J Proteome Res</i> <b>18</b>(10):3762&ndash;3769; PMID: [https://pubmed.ncbi.nlm.nih.gov/31483678 31483678]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00462 10.1021/acs.jproteome.9b00462]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31483678 4].
 +
#Al Ahmad A, <i>et al.</i> (2019) &quot;Papillary Renal Cell Carcinomas Rewire Glutathione Metabolism and Are Deficient in Both Anabolic Glucose Synthesis and Oxidative Phosphorylation.&quot; <i>Cancers (Basel)</i> <b>11</b>(9):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31484429 31484429]; doi: [https://dx.doi.org/10.3390/cancers11091298 10.3390/cancers11091298]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31484429 33].
 +
#Liebelt F, <i>et al.</i> (2019) &quot;The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation.&quot; <i>Nat Commun</i> <b>10</b>(1):3987; PMID: [https://pubmed.ncbi.nlm.nih.gov/31485003 31485003]; doi: [https://dx.doi.org/10.1038/s41467-019-11773-x 10.1038/s41467-019-11773-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31485003 46].
 +
#Harel M, <i>et al.</i> (2019) &quot;Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence.&quot; <i>Cell</i> <b>179</b>(1):236&ndash;250.e18; PMID: [https://pubmed.ncbi.nlm.nih.gov/31495571 31495571]; doi: [https://dx.doi.org/10.1016/j.cell.2019.08.012 10.1016/j.cell.2019.08.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31495571 27].
 +
#Sleat DE, <i>et al.</i> (2019) &quot;Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(11):2244&ndash;2261; PMID: [https://pubmed.ncbi.nlm.nih.gov/31501224 31501224]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001587 10.1074/mcp.RA119.001587]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31501224 132].
 +
#Wilson R, <i>et al.</i> (2020) &quot;Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis.&quot; <i>Inflamm Bowel Dis</i> <b>26</b>(1):80&ndash;92; PMID: [https://pubmed.ncbi.nlm.nih.gov/31504521 31504521]; doi: [https://dx.doi.org/10.1093/ibd/izz179 10.1093/ibd/izz179]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31504521 6].
 +
#Piano D, <i>et al.</i> (2019) &quot;Characterization under quasi-native conditions of the capsanthin/capsorubin synthase from Capsicum annuum L.&quot; <i>Plant Physiol Biochem</i> <b>143</b>:165&ndash;175; PMID: [https://pubmed.ncbi.nlm.nih.gov/31505449 31505449]; doi: [https://dx.doi.org/10.1016/j.plaphy.2019.09.007 10.1016/j.plaphy.2019.09.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31505449 4].
 +
#Dou M, <i>et al.</i> (2019) &quot;High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform.&quot; <i>Anal Chem</i> <b>91</b>(20):13119&ndash;13127; PMID: [https://pubmed.ncbi.nlm.nih.gov/31509397 31509397]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b03349 10.1021/acs.analchem.9b03349]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31509397 20].
 +
#Lugli F, <i>et al.</i> (2019) &quot;Enamel peptides reveal the sex of the Late Antique &#39;Lovers of Modena&#39;.&quot; <i>Sci Rep</i> <b>9</b>(1):13130; PMID: [https://pubmed.ncbi.nlm.nih.gov/31511583 31511583]; doi: [https://dx.doi.org/10.1038/s41598-019-49562-7 10.1038/s41598-019-49562-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31511583 16].
 +
#Gnanasundram SV, <i>et al.</i> (2019) &quot;At least two molecules of the RNA helicase Has1 are simultaneously present in pre-ribosomes during ribosome biogenesis.&quot; <i>Nucleic Acids Res</i> <b>47</b>(20):10852&ndash;10864; PMID: [https://pubmed.ncbi.nlm.nih.gov/31511893 31511893]; doi: [https://dx.doi.org/10.1093/nar/gkz767 10.1093/nar/gkz767]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31511893 17].
 +
#Kampstra ASB, <i>et al.</i> (2019) &quot;Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft.&quot; <i>Immunogenetics</i> <b>71</b>(8-9):519&ndash;530; PMID: [https://pubmed.ncbi.nlm.nih.gov/31520135 31520135]; doi: [https://dx.doi.org/10.1007/s00251-019-01129-6 10.1007/s00251-019-01129-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31520135 77].
 +
#Sj&ouml;din S, <i>et al.</i> (2019) &quot;Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer&#39;s and Parkinson&#39;s disease.&quot; <i>Alzheimers Res Ther</i> <b>11</b>(1):82; PMID: [https://pubmed.ncbi.nlm.nih.gov/31521194 31521194]; doi: [https://dx.doi.org/10.1186/s13195-019-0533-9 10.1186/s13195-019-0533-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31521194 27].
 +
#Israel S, <i>et al.</i> (2019) &quot;An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo.&quot; <i>Sci Rep</i> <b>9</b>(1):13356; PMID: [https://pubmed.ncbi.nlm.nih.gov/31527703 31527703]; doi: [https://dx.doi.org/10.1038/s41598-019-49817-3 10.1038/s41598-019-49817-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31527703 21].
 +
#Moutaoufik MT, <i>et al.</i> (2019) &quot;Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis.&quot; <i>iScience</i> <b>19</b>:1114&ndash;1132; PMID: [https://pubmed.ncbi.nlm.nih.gov/31536960 31536960]; doi: [https://dx.doi.org/10.1016/j.isci.2019.08.057 10.1016/j.isci.2019.08.057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31536960 708].
 +
#Lim MY, <i>et al.</i> (2019) &quot;Evaluating False Transfer Rates from the Match-between-Runs Algorithm with a Two-Proteome Model.&quot; <i>J Proteome Res</i> <b>18</b>(11):4020&ndash;4026; PMID: [https://pubmed.ncbi.nlm.nih.gov/31547658 31547658]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00492 10.1021/acs.jproteome.9b00492]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31547658 40].
 +
#Uckeley ZM, <i>et al.</i> (2019) &quot;Quantitative Proteomics of Uukuniemi Virus-host Cell Interactions Reveals GBF1 as Proviral Host Factor for Phleboviruses.&quot; <i>Mol Cell Proteomics</i> <b>18</b>(12):2401&ndash;2417; PMID: [https://pubmed.ncbi.nlm.nih.gov/31570497 31570497]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001631 10.1074/mcp.RA119.001631]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31570497 20].
 +
#Simonetti B, <i>et al.</i> (2019) &quot;Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins.&quot; <i>Nat Cell Biol</i> <b>21</b>(10):1219&ndash;1233; PMID: [https://pubmed.ncbi.nlm.nih.gov/31576058 31576058]; doi: [https://dx.doi.org/10.1038/s41556-019-0393-3 10.1038/s41556-019-0393-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31576058 2].
 +
#Kawahara R, <i>et al.</i> (2019) &quot;Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia.&quot; <i>Proteomics</i> <b>19</b>(21-22):e1900174; PMID: [https://pubmed.ncbi.nlm.nih.gov/31576646 31576646]; doi: [https://dx.doi.org/10.1002/pmic.201900174 10.1002/pmic.201900174]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31576646 5].
 +
#Baers LL, <i>et al.</i> (2019) &quot;Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism.&quot; <i>Plant Physiol</i> <b>181</b>(4):1721&ndash;1738; PMID: [https://pubmed.ncbi.nlm.nih.gov/31578229 31578229]; doi: [https://dx.doi.org/10.1104/pp.19.00897 10.1104/pp.19.00897]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31578229 39].
 +
#Vel&aacute;squez E, <i>et al.</i> (2019) &quot;Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients.&quot; <i>J Proteome Res</i> <b>18</b>(12):4240&ndash;4253; PMID: [https://pubmed.ncbi.nlm.nih.gov/31581776 31581776]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00398 10.1021/acs.jproteome.9b00398]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31581776 46].
 +
#Lundby A, <i>et al.</i> (2019) &quot;Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites.&quot; <i>Cell</i> <b>179</b>(2):543&ndash;560.e26; PMID: [https://pubmed.ncbi.nlm.nih.gov/31585087 31585087]; doi: [https://dx.doi.org/10.1016/j.cell.2019.09.008 10.1016/j.cell.2019.09.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31585087 255].
 +
#Bichmann L, <i>et al.</i> (2019) &quot;MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics.&quot; <i>J Proteome Res</i> <b>18</b>(11):3876&ndash;3884; PMID: [https://pubmed.ncbi.nlm.nih.gov/31589052 31589052]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00313 10.1021/acs.jproteome.9b00313]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31589052 38].
 +
#Lin Z, <i>et al.</i> (2019) &quot;Alternative Strategy To Explore Missing Proteins with Low Molecular Weight.&quot; <i>J Proteome Res</i> <b>18</b>(12):4180&ndash;4188; PMID: [https://pubmed.ncbi.nlm.nih.gov/31592669 31592669]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00353 10.1021/acs.jproteome.9b00353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31592669 3].
 +
#Noya SB, <i>et al.</i> (2019) &quot;The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep.&quot; <i>Science</i> <b>366</b>(6462):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31601739 31601739]; doi: [https://dx.doi.org/10.1126/science.aav2642 10.1126/science.aav2642]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31601739 96].
 +
#Radzisheuskaya A, <i>et al.</i> (2019) &quot;PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia.&quot; <i>Nat Struct Mol Biol</i> <b>26</b>(11):999&ndash;1012; PMID: [https://pubmed.ncbi.nlm.nih.gov/31611688 31611688]; doi: [https://dx.doi.org/10.1038/s41594-019-0313-z 10.1038/s41594-019-0313-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31611688 148].
 +
#Racle J, <i>et al.</i> (2019) &quot;Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes.&quot; <i>Nat Biotechnol</i> <b>37</b>(11):1283&ndash;1286; PMID: [https://pubmed.ncbi.nlm.nih.gov/31611696 31611696]; doi: [https://dx.doi.org/10.1038/s41587-019-0289-6 10.1038/s41587-019-0289-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31611696 131].
 +
#Stadlmann J, <i>et al.</i> (2019) &quot;Improved Sensitivity in Low-Input Proteomics Using Micropillar Array-Based Chromatography.&quot; <i>Anal Chem</i> <b>91</b>(22):14203&ndash;14207; PMID: [https://pubmed.ncbi.nlm.nih.gov/31612716 31612716]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b02899 10.1021/acs.analchem.9b02899]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31612716 68].
 +
#McRae EKS, <i>et al.</i> (2020) &quot;An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21.&quot; <i>RNA</i> <b>26</b>(1):44&ndash;57; PMID: [https://pubmed.ncbi.nlm.nih.gov/31653714 31653714]; doi: [https://dx.doi.org/10.1261/rna.072199.119 10.1261/rna.072199.119]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31653714 108].
 +
#Kenny A, <i>et al.</i> (2019) &quot;Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer&#39;s disease.&quot; <i>Sci Rep</i> <b>9</b>(1):15437; PMID: [https://pubmed.ncbi.nlm.nih.gov/31659197 31659197]; doi: [https://dx.doi.org/10.1038/s41598-019-51837-y 10.1038/s41598-019-51837-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31659197 32].
 +
#Arima N, <i>et al.</i> (2020) &quot;Multiorgan Systems Study Reveals Igfbp7 as a Suppressor of Gluconeogenesis after Gastric Bypass Surgery.&quot; <i>J Proteome Res</i> <b>19</b>(1):129&ndash;143; PMID: [https://pubmed.ncbi.nlm.nih.gov/31661273 31661273]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00441 10.1021/acs.jproteome.9b00441]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31661273 4].
 +
#Mallam AL, <i>et al.</i> (2019) &quot;Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes.&quot; <i>Cell Rep</i> <b>29</b>(5):1351&ndash;1368.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/31665645 31665645]; doi: [https://dx.doi.org/10.1016/j.celrep.2019.09.060 10.1016/j.celrep.2019.09.060]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31665645 122].
 +
#Deshmukh AS, <i>et al.</i> (2019) &quot;Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine.&quot; <i>Cell Metab</i> <b>30</b>(5):963&ndash;975.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/31668873 31668873]; doi: [https://dx.doi.org/10.1016/j.cmet.2019.10.001 10.1016/j.cmet.2019.10.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31668873 28].
 +
#Alvarez Hayes J, <i>et al.</i> (2020) &quot;Hfq modulates global protein pattern and stress response in Bordetella pertussis.&quot; <i>J Proteomics</i> <b>211</b>:103559; PMID: [https://pubmed.ncbi.nlm.nih.gov/31669358 31669358]; doi: [https://dx.doi.org/10.1016/j.jprot.2019.103559 10.1016/j.jprot.2019.103559]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31669358 16].
 +
#Walker C, <i>et al.</i> (2020) &quot;Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica.&quot; <i>Appl Environ Microbiol</i> <b>86</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31704686 31704686]; doi: [https://dx.doi.org/10.1128/AEM.02299-19 10.1128/AEM.02299-19]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31704686 16].
 +
#Sohier P, <i>et al.</i> (2020) &quot;Proteome analysis of formalin-fixed paraffin-embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas.&quot; <i>J Pathol</i> <b>250</b>(3):251&ndash;261; PMID: [https://pubmed.ncbi.nlm.nih.gov/31729028 31729028]; doi: [https://dx.doi.org/10.1002/path.5366 10.1002/path.5366]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31729028 61].
 +
#Newey A, <i>et al.</i> (2019) &quot;Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment.&quot; <i>J Immunother Cancer</i> <b>7</b>(1):309; PMID: [https://pubmed.ncbi.nlm.nih.gov/31735170 31735170]; doi: [https://dx.doi.org/10.1186/s40425-019-0769-8 10.1186/s40425-019-0769-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31735170 193].
 +
#Thompson A, <i>et al.</i> (2019) &quot;TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set.&quot; <i>Anal Chem</i> <b>91</b>(24):15941&ndash;15950; PMID: [https://pubmed.ncbi.nlm.nih.gov/31738517 31738517]; doi: [https://dx.doi.org/10.1021/acs.analchem.9b04474 10.1021/acs.analchem.9b04474]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31738517 20].
 +
#Aarts CEM, <i>et al.</i> (2019) &quot;Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair.&quot; <i>Blood Adv</i> <b>3</b>(22):3562&ndash;3574; PMID: [https://pubmed.ncbi.nlm.nih.gov/31738831 31738831]; doi: [https://dx.doi.org/10.1182/bloodadvances.2019031609 10.1182/bloodadvances.2019031609]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31738831 6].
 +
#Kim JJ, <i>et al.</i> (2019) &quot;Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity.&quot; <i>Genes Dev</i> <b>33</b>(23-24):1751&ndash;1774; PMID: [https://pubmed.ncbi.nlm.nih.gov/31753913 31753913]; doi: [https://dx.doi.org/10.1101/gad.331231.119 10.1101/gad.331231.119]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31753913 66].
 +
#Fang EF, <i>et al.</i> (2019) &quot;NAD<sup>+</sup> augmentation restores mitophagy and limits accelerated aging in Werner syndrome.&quot; <i>Nat Commun</i> <b>10</b>(1):5284; PMID: [https://pubmed.ncbi.nlm.nih.gov/31754102 31754102]; doi: [https://dx.doi.org/10.1038/s41467-019-13172-8 10.1038/s41467-019-13172-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31754102 32].
 +
#Zhang Y, <i>et al.</i> (2020) &quot;Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines.&quot; <i>J Proteome Res</i> <b>19</b>(1):401&ndash;408; PMID: [https://pubmed.ncbi.nlm.nih.gov/31773964 31773964]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00590 10.1021/acs.jproteome.9b00590]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31773964 16].
 +
#L&ouml;ffler MW, <i>et al.</i> (2019) &quot;A Non-interventional Clinical Trial Assessing Immune Responses After Radiofrequency Ablation of Liver Metastases From Colorectal Cancer.&quot; <i>Front Immunol</i> <b>10</b>:2526; PMID: [https://pubmed.ncbi.nlm.nih.gov/31803175 31803175]; doi: [https://dx.doi.org/10.3389/fimmu.2019.02526 10.3389/fimmu.2019.02526]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31803175 76].
 +
#Hartenbach FARR, <i>et al.</i> (2020) &quot;Proteomic analysis of whole saliva in chronic periodontitis.&quot; <i>J Proteomics</i> <b>213</b>:103602; PMID: [https://pubmed.ncbi.nlm.nih.gov/31809901 31809901]; doi: [https://dx.doi.org/10.1016/j.jprot.2019.103602 10.1016/j.jprot.2019.103602]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31809901 56].
 +
#Dozio V, <i>et al.</i> (2019) &quot;Cerebrospinal Fluid-Derived Microvesicles From Sleeping Sickness Patients Alter Protein Expression in Human Astrocytes.&quot; <i>Front Cell Infect Microbiol</i> <b>9</b>:391; PMID: [https://pubmed.ncbi.nlm.nih.gov/31824868 31824868]; doi: [https://dx.doi.org/10.3389/fcimb.2019.00391 10.3389/fcimb.2019.00391]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31824868 24].
 +
#Szibor M, <i>et al.</i> (2020) &quot;Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.&quot; <i>Biochim Biophys Acta Bioenerg</i> <b>1861</b>(2):148137; PMID: [https://pubmed.ncbi.nlm.nih.gov/31825809 31825809]; doi: [https://dx.doi.org/10.1016/j.bbabio.2019.148137 10.1016/j.bbabio.2019.148137]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31825809 96].
 +
#Loo LSW, <i>et al.</i> (2020) &quot;Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors.&quot; <i>Stem Cells</i> <b>38</b>(4):542&ndash;555; PMID: [https://pubmed.ncbi.nlm.nih.gov/31828876 31828876]; doi: [https://dx.doi.org/10.1002/stem.3135 10.1002/stem.3135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31828876 1].
 +
#Sarkizova S, <i>et al.</i> (2020) &quot;A large peptidome dataset improves HLA class I epitope prediction across most of the human population.&quot; <i>Nat Biotechnol</i> <b>38</b>(2):199&ndash;209; PMID: [https://pubmed.ncbi.nlm.nih.gov/31844290 31844290]; doi: [https://dx.doi.org/10.1038/s41587-019-0322-9 10.1038/s41587-019-0322-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31844290 392].
 +
#Solleder M, <i>et al.</i> (2020) &quot;Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(2):390&ndash;404; PMID: [https://pubmed.ncbi.nlm.nih.gov/31848261 31848261]; doi: [https://dx.doi.org/10.1074/mcp.TIR119.001641 10.1074/mcp.TIR119.001641]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31848261 208].
 +
#Tang F, <i>et al.</i> (2019) &quot;LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function.&quot; <i>Nat Commun</i> <b>10</b>(1):5755; PMID: [https://pubmed.ncbi.nlm.nih.gov/31848340 31848340]; doi: [https://dx.doi.org/10.1038/s41467-019-13591-7 10.1038/s41467-019-13591-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31848340 14].
 +
#Zhang Y, <i>et al.</i> (2020) &quot;Glyco-CPLL: An Integrated Method for In-Depth and Comprehensive N-Glycoproteome Profiling of Human Plasma.&quot; <i>J Proteome Res</i> <b>19</b>(2):655&ndash;666; PMID: [https://pubmed.ncbi.nlm.nih.gov/31860302 31860302]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00557 10.1021/acs.jproteome.9b00557]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31860302 12].
 +
#Nobre LV, <i>et al.</i> (2019) &quot;Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/31873071 31873071]; doi: [https://dx.doi.org/10.7554/eLife.49894 10.7554/eLife.49894]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31873071 354].
 +
#M&uuml;hlhofer M, <i>et al.</i> (2019) &quot;The Heat Shock Response in Yeast Maintains Protein Homeostasis by Chaperoning and Replenishing Proteins.&quot; <i>Cell Rep</i> <b>29</b>(13):4593&ndash;4607.e8; PMID: [https://pubmed.ncbi.nlm.nih.gov/31875563 31875563]; doi: [https://dx.doi.org/10.1016/j.celrep.2019.11.109 10.1016/j.celrep.2019.11.109]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31875563 15].
 +
#Matas-Nadal C, <i>et al.</i> (2020) &quot;Evaluation of Tumor Interstitial Fluid-Extraction Methods for Proteome Analysis: Comparison of Biopsy Elution versus Centrifugation.&quot; <i>J Proteome Res</i> <b>19</b>(7):2598&ndash;2605; PMID: [https://pubmed.ncbi.nlm.nih.gov/31877049 31877049]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00770 10.1021/acs.jproteome.9b00770]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31877049 10].
 +
#Van JAD, <i>et al.</i> (2020) &quot;Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides <i>In Vitro</i>.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(3):501&ndash;517; PMID: [https://pubmed.ncbi.nlm.nih.gov/31879271 31879271]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001858 10.1074/mcp.RA119.001858]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31879271 90].
 +
#Nguyen AM, <i>et al.</i> (2020) &quot;Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(2):375&ndash;389; PMID: [https://pubmed.ncbi.nlm.nih.gov/31879272 31879272]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001779 10.1074/mcp.RA119.001779]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31879272 20].
 +
#Mugahid DA, <i>et al.</i> (2019) &quot;Proteomic and Transcriptomic Changes in Hibernating Grizzly Bears Reveal Metabolic and Signaling Pathways that Protect against Muscle Atrophy.&quot; <i>Sci Rep</i> <b>9</b>(1):19976; PMID: [https://pubmed.ncbi.nlm.nih.gov/31882638 31882638]; doi: [https://dx.doi.org/10.1038/s41598-019-56007-8 10.1038/s41598-019-56007-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31882638 16].
 +
#Rispoli LA, <i>et al.</i> (2019) &quot;Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows.&quot; <i>PLoS One</i> <b>14</b>(12):e0227095; PMID: [https://pubmed.ncbi.nlm.nih.gov/31887207 31887207]; doi: [https://dx.doi.org/10.1371/journal.pone.0227095 10.1371/journal.pone.0227095]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31887207 5].
 +
#Bhuiyan F, <i>et al.</i> (2020) &quot;Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach.&quot; <i>J Proteomics</i> <b>214</b>:103632; PMID: [https://pubmed.ncbi.nlm.nih.gov/31891784 31891784]; doi: [https://dx.doi.org/10.1016/j.jprot.2019.103632 10.1016/j.jprot.2019.103632]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31891784 50].
 +
#R&oacute;ka B, <i>et al.</i> (2019) &quot;The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice.&quot; <i>Int J Mol Sci</i> <b>21</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31892161 31892161]; doi: [https://dx.doi.org/10.3390/ijms21010200 10.3390/ijms21010200]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31892161 120].
 +
#Isobe K, <i>et al.</i> (2020) &quot;CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase.&quot; <i>Am J Physiol Renal Physiol</i> <b>318</b>(3):F600&ndash;F616; PMID: [https://pubmed.ncbi.nlm.nih.gov/31904282 31904282]; doi: [https://dx.doi.org/10.1152/ajprenal.00431.2019 10.1152/ajprenal.00431.2019]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31904282 75].
 +
#Hose J, <i>et al.</i> (2020) &quot;The genetic basis of aneuploidy tolerance in wild yeast.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/31909711 31909711]; doi: [https://dx.doi.org/10.7554/eLife.52063 10.7554/eLife.52063]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31909711 24].
 +
#Bian Y, <i>et al.</i> (2020) &quot;Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS.&quot; <i>Nat Commun</i> <b>11</b>(1):157; PMID: [https://pubmed.ncbi.nlm.nih.gov/31919466 31919466]; doi: [https://dx.doi.org/10.1038/s41467-019-13973-x 10.1038/s41467-019-13973-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31919466 2175].
 +
#Bai B, <i>et al.</i> (2020) &quot;Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer&#39;s Disease Progression.&quot; <i>Neuron</i> <b>105</b>(6):975&ndash;991.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/31926610 31926610]; doi: [https://dx.doi.org/10.1016/j.neuron.2019.12.015 10.1016/j.neuron.2019.12.015]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31926610 308].
 +
#Hijazi M, <i>et al.</i> (2020) &quot;Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring.&quot; <i>Nat Biotechnol</i> <b>38</b>(4):493&ndash;502; PMID: [https://pubmed.ncbi.nlm.nih.gov/31959955 31959955]; doi: [https://dx.doi.org/10.1038/s41587-019-0391-9 10.1038/s41587-019-0391-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31959955 874].
 +
#Xu K, <i>et al.</i> (2020) &quot;Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility.&quot; <i>Development</i> <b>147</b>(2):; PMID: [https://pubmed.ncbi.nlm.nih.gov/31969357 31969357]; doi: [https://dx.doi.org/10.1242/dev.181057 10.1242/dev.181057]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31969357 3].
 +
#Meng K, <i>et al.</i> (2020) &quot;Quantitative Mitochondrial Proteomics Reveals ANXA7 as a Crucial Factor in Mitophagy.&quot; <i>J Proteome Res</i> <b>19</b>(3):1275&ndash;1284; PMID: [https://pubmed.ncbi.nlm.nih.gov/31975592 31975592]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00800 10.1021/acs.jproteome.9b00800]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31975592 3].
 +
#Gonnet J, <i>et al.</i> (2020) &quot;Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine.&quot; <i>J Proteomics</i> <b>216</b>:103670; PMID: [https://pubmed.ncbi.nlm.nih.gov/31991189 31991189]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103670 10.1016/j.jprot.2020.103670]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31991189 48].
 +
#Veyel D, <i>et al.</i> (2020) &quot;Biomarker discovery for chronic liver diseases by multi-omics - a preclinical case study.&quot; <i>Sci Rep</i> <b>10</b>(1):1314; PMID: [https://pubmed.ncbi.nlm.nih.gov/31992752 31992752]; doi: [https://dx.doi.org/10.1038/s41598-020-58030-6 10.1038/s41598-020-58030-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/31992752 4].
 +
#Th&eacute;z&eacute;nas ML, <i>et al.</i> (2020) &quot;Amine oxidase 3 is a novel pro-inflammatory marker of oxidative stress in peritoneal endometriosis lesions.&quot; <i>Sci Rep</i> <b>10</b>(1):1495; PMID: [https://pubmed.ncbi.nlm.nih.gov/32001775 32001775]; doi: [https://dx.doi.org/10.1038/s41598-020-58362-3 10.1038/s41598-020-58362-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32001775 18].
 +
#Lindberg T, <i>et al.</i> (2020) &quot;An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations.&quot; <i>J Proteomics</i> <b>217</b>:103647; PMID: [https://pubmed.ncbi.nlm.nih.gov/32006680 32006680]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103647 10.1016/j.jprot.2020.103647]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32006680 21].
 +
#Yasuda S, <i>et al.</i> (2020) &quot;Stress- and ubiquitylation-dependent phase separation of the proteasome.&quot; <i>Nature</i> <b>578</b>(7794):296&ndash;300; PMID: [https://pubmed.ncbi.nlm.nih.gov/32025036 32025036]; doi: [https://dx.doi.org/10.1038/s41586-020-1982-9 10.1038/s41586-020-1982-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32025036 6].
 +
#Nitschko V, <i>et al.</i> (2020) &quot;Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila.&quot; <i>Nucleic Acids Res</i> <b>48</b>(7):3906&ndash;3921; PMID: [https://pubmed.ncbi.nlm.nih.gov/32025726 32025726]; doi: [https://dx.doi.org/10.1093/nar/gkaa072 10.1093/nar/gkaa072]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32025726 12].
 +
#Pini T, <i>et al.</i> (2020) &quot;Obesity significantly alters the human sperm proteome, with potential implications for fertility.&quot; <i>J Assist Reprod Genet</i> <b>37</b>(4):777&ndash;787; PMID: [https://pubmed.ncbi.nlm.nih.gov/32026202 32026202]; doi: [https://dx.doi.org/10.1007/s10815-020-01707-8 10.1007/s10815-020-01707-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32026202 20].
 +
#Storey AJ, <i>et al.</i> (2020) &quot;Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags.&quot; <i>J Proteome Res</i> <b>19</b>(3):1183&ndash;1195; PMID: [https://pubmed.ncbi.nlm.nih.gov/32027144 32027144]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00704 10.1021/acs.jproteome.9b00704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32027144 2].
 +
#Eldridge MJG, <i>et al.</i> (2020) &quot;Active nuclear import of the deacetylase Sirtuin-2 is controlled by its C-terminus and importins.&quot; <i>Sci Rep</i> <b>10</b>(1):2034; PMID: [https://pubmed.ncbi.nlm.nih.gov/32042025 32042025]; doi: [https://dx.doi.org/10.1038/s41598-020-58397-6 10.1038/s41598-020-58397-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32042025 6].
 +
#Koehler S, <i>et al.</i> (2020) &quot;Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis.&quot; <i>J Am Soc Nephrol</i> <b>31</b>(3):544&ndash;559; PMID: [https://pubmed.ncbi.nlm.nih.gov/32047005 32047005]; doi: [https://dx.doi.org/10.1681/ASN.2019030312 10.1681/ASN.2019030312]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32047005 3].
 +
#Zhao Q, <i>et al.</i> (2020) &quot;Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific Antigens in Ovarian Cancer.&quot; <i>Cancer Immunol Res</i> <b>8</b>(4):544&ndash;555; PMID: [https://pubmed.ncbi.nlm.nih.gov/32047025 32047025]; doi: [https://dx.doi.org/10.1158/2326-6066.CIR-19-0541 10.1158/2326-6066.CIR-19-0541]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32047025 12].
 +
#Plum T, <i>et al.</i> (2020) &quot;Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation.&quot; <i>Immunity</i> <b>52</b>(2):404&ndash;416.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/32049054 32049054]; doi: [https://dx.doi.org/10.1016/j.immuni.2020.01.012 10.1016/j.immuni.2020.01.012]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32049054 12].
 +
#Ray S, <i>et al.</i> (2020) &quot;Circadian rhythms in the absence of the clock gene <i>Bmal1</i>.&quot; <i>Science</i> <b>367</b>(6479):800&ndash;806; PMID: [https://pubmed.ncbi.nlm.nih.gov/32054765 32054765]; doi: [https://dx.doi.org/10.1126/science.aaw7365 10.1126/science.aaw7365]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32054765 40].
 +
#Saddala MS, <i>et al.</i> (2020) &quot;Placental growth factor regulates the pentose phosphate pathway and antioxidant defense systems in human retinal endothelial cells.&quot; <i>J Proteomics</i> <b>217</b>:103682; PMID: [https://pubmed.ncbi.nlm.nih.gov/32058040 32058040]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103682 10.1016/j.jprot.2020.103682]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32058040 1].
 +
#Ge M, <i>et al.</i> (2020) &quot;Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia.&quot; <i>Cancer Sci</i> <b>111</b>(4):1279&ndash;1290; PMID: [https://pubmed.ncbi.nlm.nih.gov/32058648 32058648]; doi: [https://dx.doi.org/10.1111/cas.14351 10.1111/cas.14351]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32058648 6].
 +
#Kosok M, <i>et al.</i> (2020) &quot;Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer.&quot; <i>iScience</i> <b>23</b>(2):100868; PMID: [https://pubmed.ncbi.nlm.nih.gov/32058975 32058975]; doi: [https://dx.doi.org/10.1016/j.isci.2020.100868 10.1016/j.isci.2020.100868]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32058975 8].
 +
#Dou Y, <i>et al.</i> (2020) &quot;Proteogenomic Characterization of Endometrial Carcinoma.&quot; <i>Cell</i> <b>180</b>(4):729&ndash;748.e26; PMID: [https://pubmed.ncbi.nlm.nih.gov/32059776 32059776]; doi: [https://dx.doi.org/10.1016/j.cell.2020.01.026 10.1016/j.cell.2020.01.026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32059776 208].
 +
#Kalaora S, <i>et al.</i> (2020) &quot;Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma.&quot; <i>Nat Commun</i> <b>11</b>(1):896; PMID: [https://pubmed.ncbi.nlm.nih.gov/32060274 32060274]; doi: [https://dx.doi.org/10.1038/s41467-020-14639-9 10.1038/s41467-020-14639-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32060274 30].
 +
#Kurimchak AM, <i>et al.</i> (2020) &quot;Functional proteomics interrogation of the kinome identifies MRCKA as a therapeutic target in high-grade serous ovarian carcinoma.&quot; <i>Sci Signal</i> <b>13</b>(619):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32071169 32071169]; doi: [https://dx.doi.org/10.1126/scisignal.aax8238 10.1126/scisignal.aax8238]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32071169 51].
 +
#Touzelet O, <i>et al.</i> (2020) &quot;The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(5):793&ndash;807; PMID: [https://pubmed.ncbi.nlm.nih.gov/32075873 32075873]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001546 10.1074/mcp.RA119.001546]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32075873 15].
 +
#Agudelo Garcia PA, <i>et al.</i> (2020) &quot;Hat1-Dependent Lysine Acetylation Targets Diverse Cellular Functions.&quot; <i>J Proteome Res</i> <b>19</b>(4):1663&ndash;1673; PMID: [https://pubmed.ncbi.nlm.nih.gov/32081014 32081014]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00843 10.1021/acs.jproteome.9b00843]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32081014 8].
 +
#Peters F, <i>et al.</i> (2020) &quot;Murine Epidermal Ceramide Synthase 4 Is a Key Regulator of Skin Barrier Homeostasis.&quot; <i>J Invest Dermatol</i> <b>140</b>(10):1927&ndash;1937.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/32092351 32092351]; doi: [https://dx.doi.org/10.1016/j.jid.2020.02.006 10.1016/j.jid.2020.02.006]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32092351 40].
 +
#Fan Y, <i>et al.</i> (2020) &quot;Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway.&quot; <i>Circulation</i> <b>141</b>(19):1554&ndash;1569; PMID: [https://pubmed.ncbi.nlm.nih.gov/32098494 32098494]; doi: [https://dx.doi.org/10.1161/CIRCULATIONAHA.119.040747 10.1161/CIRCULATIONAHA.119.040747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32098494 31].
 +
#Zhang J, <i>et al.</i> (2020) &quot;Global Phosphoproteomic Analysis Reveals Significant Metabolic Reprogramming in the Termination of Liver Regeneration in Mice.&quot; <i>J Proteome Res</i> <b>19</b>(4):1788&ndash;1799; PMID: [https://pubmed.ncbi.nlm.nih.gov/32105074 32105074]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00028 10.1021/acs.jproteome.0c00028]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32105074 24].
 +
#Kwon OK, <i>et al.</i> (2020) &quot;Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics.&quot; <i>Cancer Genomics Proteomics</i> <b>17</b>(2):195&ndash;208; PMID: [https://pubmed.ncbi.nlm.nih.gov/32108042 32108042]; doi: [https://dx.doi.org/10.21873/cgp.20180 10.21873/cgp.20180]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32108042 5].
 +
#Villase&ntilde;or R, <i>et al.</i> (2020) &quot;ChromID identifies the protein interactome at chromatin marks.&quot; <i>Nat Biotechnol</i> <b>38</b>(6):728&ndash;736; PMID: [https://pubmed.ncbi.nlm.nih.gov/32123383 32123383]; doi: [https://dx.doi.org/10.1038/s41587-020-0434-2 10.1038/s41587-020-0434-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32123383 32].
 +
#Subbannayya Y, <i>et al.</i> (2020) &quot;What Makes Cornea Immunologically Unique and Privileged? Mechanistic Clues from a High-Resolution Proteomic Landscape of the Human Cornea.&quot; <i>OMICS</i> <b>24</b>(3):129&ndash;139; PMID: [https://pubmed.ncbi.nlm.nih.gov/32125911 32125911]; doi: [https://dx.doi.org/10.1089/omi.2019.0190 10.1089/omi.2019.0190]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32125911 2].
 +
#Crescitelli R, <i>et al.</i> (2020) &quot;Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation.&quot; <i>J Extracell Vesicles</i> <b>9</b>(1):1722433; PMID: [https://pubmed.ncbi.nlm.nih.gov/32128073 32128073]; doi: [https://dx.doi.org/10.1080/20013078.2020.1722433 10.1080/20013078.2020.1722433]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32128073 60].
 +
#Ding H, <i>et al.</i> (2020) &quot;Urine Proteomics: Evaluation of Different Sample Preparation Workflows for Quantitative, Reproducible, and Improved Depth of Analysis.&quot; <i>J Proteome Res</i> <b>19</b>(4):1857&ndash;1862; PMID: [https://pubmed.ncbi.nlm.nih.gov/32129078 32129078]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00772 10.1021/acs.jproteome.9b00772]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32129078 16].
 +
#Bernatik O, <i>et al.</i> (2020) &quot;Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2.&quot; <i>Mol Biol Cell</i> <b>31</b>(10):1032&ndash;1046; PMID: [https://pubmed.ncbi.nlm.nih.gov/32129703 32129703]; doi: [https://dx.doi.org/10.1091/mbc.E19-06-0334 10.1091/mbc.E19-06-0334]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32129703 165].
 +
#Montellese C, <i>et al.</i> (2020) &quot;USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32129764 32129764]; doi: [https://dx.doi.org/10.7554/eLife.54435 10.7554/eLife.54435]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32129764 18].
 +
#Ramat A, <i>et al.</i> (2020) &quot;The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm.&quot; <i>Cell Res</i> <b>30</b>(5):421&ndash;435; PMID: [https://pubmed.ncbi.nlm.nih.gov/32132673 32132673]; doi: [https://dx.doi.org/10.1038/s41422-020-0294-9 10.1038/s41422-020-0294-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32132673 12].
 +
#Tannous A, <i>et al.</i> (2020) &quot;Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics.&quot; <i>J Proteome Res</i> <b>19</b>(4):1718&ndash;1730; PMID: [https://pubmed.ncbi.nlm.nih.gov/32134668 32134668]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00862 10.1021/acs.jproteome.9b00862]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32134668 25].
 +
#Shayan R, <i>et al.</i> (2020) &quot;Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy.&quot; <i>Molecules</i> <b>25</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32138239 32138239]; doi: [https://dx.doi.org/10.3390/molecules25051125 10.3390/molecules25051125]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32138239 2].
 +
#Parker BL, <i>et al.</i> (2020) &quot;Quantification of exercise-regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation.&quot; <i>FASEB J</i> <b>34</b>(4):5906&ndash;5916; PMID: [https://pubmed.ncbi.nlm.nih.gov/32141134 32141134]; doi: [https://dx.doi.org/10.1096/fj.202000075R 10.1096/fj.202000075R]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32141134 45].
 +
#Wilson JP, <i>et al.</i> (2020) &quot;Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides.&quot; <i>J Proteome Res</i> <b>19</b>(4):1459&ndash;1469; PMID: [https://pubmed.ncbi.nlm.nih.gov/32141294 32141294]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00713 10.1021/acs.jproteome.9b00713]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32141294 3].
 +
#Dietachmayr M, <i>et al.</i> (2020) &quot;Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival.&quot; <i>Nat Commun</i> <b>11</b>(1):1268; PMID: [https://pubmed.ncbi.nlm.nih.gov/32152317 32152317]; doi: [https://dx.doi.org/10.1038/s41467-020-15059-5 10.1038/s41467-020-15059-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32152317 3].
 +
#Wan X, <i>et al.</i> (2020) &quot;The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides.&quot; <i>Nat Immunol</i> <b>21</b>(4):455&ndash;463; PMID: [https://pubmed.ncbi.nlm.nih.gov/32152506 32152506]; doi: [https://dx.doi.org/10.1038/s41590-020-0623-7 10.1038/s41590-020-0623-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32152506 9].
 +
#Kjell J, <i>et al.</i> (2020) &quot;Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts.&quot; <i>Front Cell Neurosci</i> <b>14</b>:32; PMID: [https://pubmed.ncbi.nlm.nih.gov/32153367 32153367]; doi: [https://dx.doi.org/10.3389/fncel.2020.00032 10.3389/fncel.2020.00032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32153367 75].
 +
#Coscia F, <i>et al.</i> (2020) &quot;A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis.&quot; <i>J Pathol</i> <b>251</b>(1):100&ndash;112; PMID: [https://pubmed.ncbi.nlm.nih.gov/32154592 32154592]; doi: [https://dx.doi.org/10.1002/path.5420 10.1002/path.5420]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32154592 52].
 +
#Yin CF, <i>et al.</i> (2020) &quot;Phosphoproteome Analysis Reveals Dynamic Heat Shock Protein 27 Phosphorylation in Tanshinone IIA-Induced Cell Death.&quot; <i>J Proteome Res</i> <b>19</b>(4):1620&ndash;1634; PMID: [https://pubmed.ncbi.nlm.nih.gov/32154729 32154729]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00836 10.1021/acs.jproteome.9b00836]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32154729 168].
 +
#Chong C, <i>et al.</i> (2020) &quot;Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes.&quot; <i>Nat Commun</i> <b>11</b>(1):1293; PMID: [https://pubmed.ncbi.nlm.nih.gov/32157095 32157095]; doi: [https://dx.doi.org/10.1038/s41467-020-14968-9 10.1038/s41467-020-14968-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32157095 85].
 +
#Wegrzyn AB, <i>et al.</i> (2020) &quot;Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease.&quot; <i>FEBS J</i> <b>287</b>(23):5096&ndash;5113; PMID: [https://pubmed.ncbi.nlm.nih.gov/32160399 32160399]; doi: [https://dx.doi.org/10.1111/febs.15292 10.1111/febs.15292]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32160399 71].
 +
#Chen L, <i>et al.</i> (2020) &quot;Identification of an Unconventional Subpeptidome Bound to the Beh&ccedil;et&#39;s Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1).&quot; <i>Mol Cell Proteomics</i> <b>19</b>(5):871&ndash;883; PMID: [https://pubmed.ncbi.nlm.nih.gov/32161166 32161166]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001617 10.1074/mcp.RA119.001617]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32161166 11].
 +
#Tanaka A, <i>et al.</i> (2020) &quot;Prolyl 4-hydroxylase alpha 1 protein expression risk-stratifies early stage colorectal cancer.&quot; <i>Oncotarget</i> <b>11</b>(8):813&ndash;824; PMID: [https://pubmed.ncbi.nlm.nih.gov/32166002 32166002]; doi: [https://dx.doi.org/10.18632/oncotarget.27491 10.18632/oncotarget.27491]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32166002 44].
 +
#Carnesecchi J, <i>et al.</i> (2020) &quot;Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity.&quot; <i>Nat Commun</i> <b>11</b>(1):1388; PMID: [https://pubmed.ncbi.nlm.nih.gov/32170121 32170121]; doi: [https://dx.doi.org/10.1038/s41467-020-15223-x 10.1038/s41467-020-15223-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32170121 36].
 +
#Aaseb&oslash; E, <i>et al.</i> (2020) &quot;Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia.&quot; <i>Cancers (Basel)</i> <b>12</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32192169 32192169]; doi: [https://dx.doi.org/10.3390/cancers12030709 10.3390/cancers12030709]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32192169 214].
 +
#Ooi CP, <i>et al.</i> (2020) &quot;Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance.&quot; <i>J Proteomics</i> <b>219</b>:103735; PMID: [https://pubmed.ncbi.nlm.nih.gov/32198071 32198071]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103735 10.1016/j.jprot.2020.103735]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32198071 6].
 +
#Guergues J, <i>et al.</i> (2020) &quot;Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes.&quot; <i>J Proteomics</i> <b>220</b>:103753; PMID: [https://pubmed.ncbi.nlm.nih.gov/32200115 32200115]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103753 10.1016/j.jprot.2020.103753]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32200115 30].
 +
#Li J, <i>et al.</i> (2020) &quot;TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples.&quot; <i>Nat Methods</i> <b>17</b>(4):399&ndash;404; PMID: [https://pubmed.ncbi.nlm.nih.gov/32203386 32203386]; doi: [https://dx.doi.org/10.1038/s41592-020-0781-4 10.1038/s41592-020-0781-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32203386 9].
 +
#Campbell K, <i>et al.</i> (2020) &quot;Building blocks are synthesized on demand during the yeast cell cycle.&quot; <i>Proc Natl Acad Sci U S A</i> <b>117</b>(14):7575&ndash;7583; PMID: [https://pubmed.ncbi.nlm.nih.gov/32213592 32213592]; doi: [https://dx.doi.org/10.1073/pnas.1919535117 10.1073/pnas.1919535117]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32213592 105].
 +
#Rinfret Robert C, <i>et al.</i> (2020) &quot;Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment.&quot; <i>J Proteome Res</i> <b>19</b>(5):1999&ndash;2010; PMID: [https://pubmed.ncbi.nlm.nih.gov/32223133 32223133]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00807 10.1021/acs.jproteome.9b00807]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32223133 18].
 +
#H&ouml;r J, <i>et al.</i> (2020) &quot;Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control.&quot; <i>EMBO J</i> <b>39</b>(9):e103852; PMID: [https://pubmed.ncbi.nlm.nih.gov/32227509 32227509]; doi: [https://dx.doi.org/10.15252/embj.2019103852 10.15252/embj.2019103852]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32227509 184].
 +
#Reustle A, <i>et al.</i> (2020) &quot;Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy.&quot; <i>Genome Med</i> <b>12</b>(1):32; PMID: [https://pubmed.ncbi.nlm.nih.gov/32228647 32228647]; doi: [https://dx.doi.org/10.1186/s13073-020-00731-8 10.1186/s13073-020-00731-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32228647 1017].
 +
#Atlasi Y, <i>et al.</i> (2020) &quot;The translational landscape of ground state pluripotency.&quot; <i>Nat Commun</i> <b>11</b>(1):1617; PMID: [https://pubmed.ncbi.nlm.nih.gov/32238817 32238817]; doi: [https://dx.doi.org/10.1038/s41467-020-15449-9 10.1038/s41467-020-15449-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32238817 48].
 +
#Huang C, <i>et al.</i> (2020) &quot;Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2.&quot; <i>J Biol Chem</i> <b>295</b>(19):6518&ndash;6531; PMID: [https://pubmed.ncbi.nlm.nih.gov/32241914 32241914]; doi: [https://dx.doi.org/10.1074/jbc.RA119.012026 10.1074/jbc.RA119.012026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32241914 72].
 +
#Morishita Y, <i>et al.</i> (2020) &quot;Thyrocyte cell survival and adaptation to chronic endoplasmic reticulum stress due to misfolded thyroglobulin.&quot; <i>J Biol Chem</i> <b>295</b>(20):6876&ndash;6887; PMID: [https://pubmed.ncbi.nlm.nih.gov/32241916 32241916]; doi: [https://dx.doi.org/10.1074/jbc.RA120.012656 10.1074/jbc.RA120.012656]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32241916 1].
 +
#Mizukami H, <i>et al.</i> (2020) &quot;Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach.&quot; <i>J Proteome Res</i> <b>19</b>(5):2122&ndash;2135; PMID: [https://pubmed.ncbi.nlm.nih.gov/32242669 32242669]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00060 10.1021/acs.jproteome.0c00060]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32242669 22].
 +
#&Ouml;lander M, <i>et al.</i> (2020) &quot;Cell-type-resolved proteomic analysis of the human liver.&quot; <i>Liver Int</i> <b>40</b>(7):1770&ndash;1780; PMID: [https://pubmed.ncbi.nlm.nih.gov/32243721 32243721]; doi: [https://dx.doi.org/10.1111/liv.14452 10.1111/liv.14452]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32243721 24].
 +
#Xu G, <i>et al.</i> (2020) &quot;Diversity in A&beta; deposit morphology and secondary proteome insolubility across models of Alzheimer-type&nbsp;amyloidosis.&quot; <i>Acta Neuropathol Commun</i> <b>8</b>(1):43; PMID: [https://pubmed.ncbi.nlm.nih.gov/32252825 32252825]; doi: [https://dx.doi.org/10.1186/s40478-020-00911-y 10.1186/s40478-020-00911-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32252825 57].
 +
#Carter SP, <i>et al.</i> (2020) &quot;Genetic Deletion of Zebrafish Rab28 Causes Defective Outer Segment Shedding, but Not Retinal Degeneration.&quot; <i>Front Cell Dev Biol</i> <b>8</b>:136; PMID: [https://pubmed.ncbi.nlm.nih.gov/32258030 32258030]; doi: [https://dx.doi.org/10.3389/fcell.2020.00136 10.3389/fcell.2020.00136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32258030 12].
 +
#Gu&eacute;rit D, <i>et al.</i> (2020) &quot;Primary myeloid cell proteomics and transcriptomics: importance of &beta;-tubulin isotypes for osteoclast function.&quot; <i>J Cell Sci</i> <b>133</b>(10):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32265273 32265273]; doi: [https://dx.doi.org/10.1242/jcs.239772 10.1242/jcs.239772]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32265273 9].
 +
#Djomehri SI, <i>et al.</i> (2020) &quot;Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors.&quot; <i>Nat Commun</i> <b>11</b>(1):1723; PMID: [https://pubmed.ncbi.nlm.nih.gov/32265444 32265444]; doi: [https://dx.doi.org/10.1038/s41467-020-15283-z 10.1038/s41467-020-15283-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32265444 4].
 +
#Busso CS, <i>et al.</i> (2020) &quot;A comprehensive analysis of sialolith proteins and the clinical implications.&quot; <i>Clin Proteomics</i> <b>17</b>:12; PMID: [https://pubmed.ncbi.nlm.nih.gov/32265614 32265614]; doi: [https://dx.doi.org/10.1186/s12014-020-09275-w 10.1186/s12014-020-09275-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32265614 1].
 +
#Rohlenova K, <i>et al.</i> (2020) &quot;Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis.&quot; <i>Cell Metab</i> <b>31</b>(4):862&ndash;877.e14; PMID: [https://pubmed.ncbi.nlm.nih.gov/32268117 32268117]; doi: [https://dx.doi.org/10.1016/j.cmet.2020.03.009 10.1016/j.cmet.2020.03.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32268117 15].
 +
#Hoesl C, <i>et al.</i> (2020) &quot;The secretome of skin cancer cells activates the mTOR/MYC pathway in healthy keratinocytes and induces tumorigenic properties.&quot; <i>Biochim Biophys Acta Mol Cell Res</i> <b>1867</b>(8):118717; PMID: [https://pubmed.ncbi.nlm.nih.gov/32283126 32283126]; doi: [https://dx.doi.org/10.1016/j.bbamcr.2020.118717 10.1016/j.bbamcr.2020.118717]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32283126 12].
 +
#Jarzab A, <i>et al.</i> (2020) &quot;Meltome atlas-thermal proteome stability across the tree of life.&quot; <i>Nat Methods</i> <b>17</b>(5):495&ndash;503; PMID: [https://pubmed.ncbi.nlm.nih.gov/32284610 32284610]; doi: [https://dx.doi.org/10.1038/s41592-020-0801-4 10.1038/s41592-020-0801-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32284610 31].
 +
#Lee S, <i>et al.</i> (2020) &quot;Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer.&quot; <i>Cell Rep</i> <b>31</b>(2):107502; PMID: [https://pubmed.ncbi.nlm.nih.gov/32294438 32294438]; doi: [https://dx.doi.org/10.1016/j.celrep.2020.03.066 10.1016/j.celrep.2020.03.066]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32294438 11].
 +
#Podvin S, <i>et al.</i> (2020) &quot;Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(6):1017&ndash;1034; PMID: [https://pubmed.ncbi.nlm.nih.gov/32295833 32295833]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002079 10.1074/mcp.RA120.002079]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32295833 13].
 +
#Goebel T, <i>et al.</i> (2020) &quot;Proteaphagy in Mammalian Cells Can Function Independent of ATG5/ATG7.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(7):1120&ndash;1131; PMID: [https://pubmed.ncbi.nlm.nih.gov/32299840 32299840]; doi: [https://dx.doi.org/10.1074/mcp.RA120.001983 10.1074/mcp.RA120.001983]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32299840 149].
 +
#Pancholi S, <i>et al.</i> (2020) &quot;Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities.&quot; <i>Oncogene</i> <b>39</b>(25):4781&ndash;4797; PMID: [https://pubmed.ncbi.nlm.nih.gov/32307447 32307447]; doi: [https://dx.doi.org/10.1038/s41388-020-1284-6 10.1038/s41388-020-1284-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32307447 36].
 +
#Chen Z, <i>et al.</i> (2020) &quot;Phosphoproteomics Analysis Reveals a Potential Role of CHK1 in Regulation of Innate Immunity through IRF3.&quot; <i>J Proteome Res</i> <b>19</b>(6):2264&ndash;2277; PMID: [https://pubmed.ncbi.nlm.nih.gov/32314919 32314919]; doi: [https://dx.doi.org/10.1021/acs.jproteome.9b00829 10.1021/acs.jproteome.9b00829]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32314919 48].
 +
#Pourhaghighi R, <i>et al.</i> (2020) &quot;BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain.&quot; <i>Cell Syst</i> <b>10</b>(4):333&ndash;350.e14; PMID: [https://pubmed.ncbi.nlm.nih.gov/32325033 32325033]; doi: [https://dx.doi.org/10.1016/j.cels.2020.03.003 10.1016/j.cels.2020.03.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32325033 578].
 +
#Bach-Pages M, <i>et al.</i> (2020) &quot;Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method.&quot; <i>Biomolecules</i> <b>10</b>(4):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32344669 32344669]; doi: [https://dx.doi.org/10.3390/biom10040661 10.3390/biom10040661]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32344669 8].
 +
#H&eacute;garat N, <i>et al.</i> (2020) &quot;Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B.&quot; <i>EMBO J</i> <b>39</b>(11):e104419; PMID: [https://pubmed.ncbi.nlm.nih.gov/32350921 32350921]; doi: [https://dx.doi.org/10.15252/embj.2020104419 10.15252/embj.2020104419]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32350921 2].
 +
#Ojalill M, <i>et al.</i> (2020) &quot;Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins.&quot; <i>Prostate</i> <b>80</b>(9):715&ndash;726; PMID: [https://pubmed.ncbi.nlm.nih.gov/32364250 32364250]; doi: [https://dx.doi.org/10.1002/pros.23985 10.1002/pros.23985]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32364250 18].
 +
#Bekes K, <i>et al.</i> (2020) &quot;Saliva proteomic patterns in patients with molar incisor hypomineralization.&quot; <i>Sci Rep</i> <b>10</b>(1):7560; PMID: [https://pubmed.ncbi.nlm.nih.gov/32371984 32371984]; doi: [https://dx.doi.org/10.1038/s41598-020-64614-z 10.1038/s41598-020-64614-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32371984 10].
 +
#Rayaprolu S, <i>et al.</i> (2020) &quot;Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer&#39;s disease.&quot; <i>Mol Neurodegener</i> <b>15</b>(1):28; PMID: [https://pubmed.ncbi.nlm.nih.gov/32381088 32381088]; doi: [https://dx.doi.org/10.1186/s13024-020-00377-5 10.1186/s13024-020-00377-5]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32381088 1].
 +
#Pandey K, <i>et al.</i> (2020) &quot;In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies.&quot; <i>Mol Immunol</i> <b>123</b>:7&ndash;17; PMID: [https://pubmed.ncbi.nlm.nih.gov/32387766 32387766]; doi: [https://dx.doi.org/10.1016/j.molimm.2020.04.008 10.1016/j.molimm.2020.04.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32387766 140].
 +
#Chu F, <i>et al.</i> (2020) &quot;Proteomic Characterization of Damaged Single Hairs Recovered after an Explosion for Protein-Based Human Identification.&quot; <i>J Proteome Res</i> <b>19</b>(8):3088&ndash;3099; PMID: [https://pubmed.ncbi.nlm.nih.gov/32394717 32394717]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00102 10.1021/acs.jproteome.0c00102]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32394717 8].
 +
#Iliuk A, <i>et al.</i> (2020) &quot;Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification.&quot; <i>J Proteome Res</i> <b>19</b>(7):2563&ndash;2574; PMID: [https://pubmed.ncbi.nlm.nih.gov/32396726 32396726]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00151 10.1021/acs.jproteome.0c00151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32396726 34].
 +
#Rolfes V, <i>et al.</i> (2020) &quot;Platelets Fuel the Inflammasome Activation of Innate Immune Cells.&quot; <i>Cell Rep</i> <b>31</b>(6):107615; PMID: [https://pubmed.ncbi.nlm.nih.gov/32402278 32402278]; doi: [https://dx.doi.org/10.1016/j.celrep.2020.107615 10.1016/j.celrep.2020.107615]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32402278 14].
 +
#Beumer J, <i>et al.</i> (2020) &quot;High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells.&quot; <i>Cell</i> <b>181</b>(6):1291&ndash;1306.e19; PMID: [https://pubmed.ncbi.nlm.nih.gov/32407674 32407674]; doi: [https://dx.doi.org/10.1016/j.cell.2020.04.036 10.1016/j.cell.2020.04.036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32407674 33].
 +
#Cunningham DL, <i>et al.</i> (2020) &quot;Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study.&quot; <i>Sci Rep</i> <b>10</b>(1):7950; PMID: [https://pubmed.ncbi.nlm.nih.gov/32409632 32409632]; doi: [https://dx.doi.org/10.1038/s41598-020-64534-y 10.1038/s41598-020-64534-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32409632 377].
 +
#van Geelen L, <i>et al.</i> (2020) &quot;Natural brominated phenoxyphenols kill persistent and biofilm-incorporated cells of MRSA and other pathogenic bacteria.&quot; <i>Appl Microbiol Biotechnol</i> <b>104</b>(13):5985&ndash;5998; PMID: [https://pubmed.ncbi.nlm.nih.gov/32418125 32418125]; doi: [https://dx.doi.org/10.1007/s00253-020-10654-4 10.1007/s00253-020-10654-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32418125 12].
 +
#de la Fuente AG, <i>et al.</i> (2020) &quot;Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(8):1281&ndash;1302; PMID: [https://pubmed.ncbi.nlm.nih.gov/32434922 32434922]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002102 10.1074/mcp.RA120.002102]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32434922 4].
 +
#Cervantes M, <i>et al.</i> (2020) &quot;BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing.&quot; <i>iScience</i> <b>23</b>(6):101151; PMID: [https://pubmed.ncbi.nlm.nih.gov/32450515 32450515]; doi: [https://dx.doi.org/10.1016/j.isci.2020.101151 10.1016/j.isci.2020.101151]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32450515 24].
 +
#Van JAD, <i>et al.</i> (2020) &quot;Urinary proteomics links keratan sulfate degradation and lysosomal enzymes to early type 1 diabetes.&quot; <i>PLoS One</i> <b>15</b>(5):e0233639; PMID: [https://pubmed.ncbi.nlm.nih.gov/32453760 32453760]; doi: [https://dx.doi.org/10.1371/journal.pone.0233639 10.1371/journal.pone.0233639]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32453760 90].
 +
#Wolf EJ, <i>et al.</i> (2020) &quot;MKRN2 Physically Interacts with GLE1 to Regulate mRNA Export and Zebrafish Retinal Development.&quot; <i>Cell Rep</i> <b>31</b>(8):107693; PMID: [https://pubmed.ncbi.nlm.nih.gov/32460013 32460013]; doi: [https://dx.doi.org/10.1016/j.celrep.2020.107693 10.1016/j.celrep.2020.107693]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32460013 42].
 +
#Gouveia D, <i>et al.</i> (2020) &quot;Shortlisting SARS-CoV-2 Peptides for Targeted Studies from Experimental Data-Dependent Acquisition Tandem Mass Spectrometry Data.&quot; <i>Proteomics</i> <b>20</b>(14):e2000107; PMID: [https://pubmed.ncbi.nlm.nih.gov/32462744 32462744]; doi: [https://dx.doi.org/10.1002/pmic.202000107 10.1002/pmic.202000107]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32462744 10].
 +
#Lim Y, <i>et al.</i> (2020) &quot;Proteome-wide identification of arginine methylation in colorectal cancer tissues from patients.&quot; <i>Proteome Sci</i> <b>18</b>:6; PMID: [https://pubmed.ncbi.nlm.nih.gov/32467672 32467672]; doi: [https://dx.doi.org/10.1186/s12953-020-00162-8 10.1186/s12953-020-00162-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32467672 4].
 +
#Wong PP, <i>et al.</i> (2020) &quot;Cancer Burden Is Controlled by Mural Cell-&beta;3-Integrin Regulated Crosstalk with Tumor Cells.&quot; <i>Cell</i> <b>181</b>(6):1346&ndash;1363.e21; PMID: [https://pubmed.ncbi.nlm.nih.gov/32473126 32473126]; doi: [https://dx.doi.org/10.1016/j.cell.2020.02.003 10.1016/j.cell.2020.02.003]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32473126 18].
 +
#Macron C, <i>et al.</i> (2020) &quot;Exploration of human cerebrospinal fluid: A large proteome dataset revealed by trapped ion mobility time-of-flight mass spectrometry.&quot; <i>Data Brief</i> <b>31</b>:105704; PMID: [https://pubmed.ncbi.nlm.nih.gov/32478154 32478154]; doi: [https://dx.doi.org/10.1016/j.dib.2020.105704 10.1016/j.dib.2020.105704]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32478154 1].
 +
#Plott TJ, <i>et al.</i> (2020) &quot;Age-Related Changes in Hair Shaft Protein Profiling and Genetically Variant Peptides.&quot; <i>Forensic Sci Int Genet</i> <b>47</b>:102309; PMID: [https://pubmed.ncbi.nlm.nih.gov/32485593 32485593]; doi: [https://dx.doi.org/10.1016/j.fsigen.2020.102309 10.1016/j.fsigen.2020.102309]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32485593 67].
 +
#Cout&eacute; Y, <i>et al.</i> (2020) &quot;Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus.&quot; <i>Microorganisms</i> <b>8</b>(6):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32486127 32486127]; doi: [https://dx.doi.org/10.3390/microorganisms8060820 10.3390/microorganisms8060820]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32486127 6].
 +
#Goecker ZC, <i>et al.</i> (2020) &quot;Optimal processing for proteomic genotyping of single human hairs.&quot; <i>Forensic Sci Int Genet</i> <b>47</b>:102314; PMID: [https://pubmed.ncbi.nlm.nih.gov/32505640 32505640]; doi: [https://dx.doi.org/10.1016/j.fsigen.2020.102314 10.1016/j.fsigen.2020.102314]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32505640 130].
 +
#Ramesha KP, <i>et al.</i> (2020) &quot;Deep Proteome Profiling of Semen of Indian Indigenous Malnad Gidda (<i>Bos indicus</i>) Cattle.&quot; <i>J Proteome Res</i> <b>19</b>(8):3364&ndash;3376; PMID: [https://pubmed.ncbi.nlm.nih.gov/32508098 32508098]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00237 10.1021/acs.jproteome.0c00237]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32508098 129].
 +
#Sebastian Monasor L, <i>et al.</i> (2020) &quot;Fibrillar A&beta; triggers microglial proteome alterations and dysfunction in Alzheimer mouse models.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32510331 32510331]; doi: [https://dx.doi.org/10.7554/eLife.54083 10.7554/eLife.54083]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32510331 24].
 +
#Sembler-M&oslash;ller ML, <i>et al.</i> (2020) &quot;Proteomics of saliva, plasma, and salivary gland tissue in Sj&ouml;gren&#39;s syndrome and non-Sj&ouml;gren patients identify novel biomarker candidates.&quot; <i>J Proteomics</i> <b>225</b>:103877; PMID: [https://pubmed.ncbi.nlm.nih.gov/32540407 32540407]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103877 10.1016/j.jprot.2020.103877]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32540407 158].
 +
#Bansal P, <i>et al.</i> (2020) &quot;An Interaction Network of RNA-Binding Proteins Involved in <i>Drosophila</i> Oogenesis.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(9):1485&ndash;1502; PMID: [https://pubmed.ncbi.nlm.nih.gov/32554711 32554711]; doi: [https://dx.doi.org/10.1074/mcp.RA119.001912 10.1074/mcp.RA119.001912]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32554711 24].
 +
#Thouvenel L, <i>et al.</i> (2020) &quot;The final assembly of trehalose polyphleates takes place within the outer layer of the mycobacterial cell envelope.&quot; <i>J Biol Chem</i> <b>295</b>(32):11184&ndash;11194; PMID: [https://pubmed.ncbi.nlm.nih.gov/32554804 32554804]; doi: [https://dx.doi.org/10.1074/jbc.RA120.013299 10.1074/jbc.RA120.013299]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32554804 64].
 +
#M&uuml;ller JB, <i>et al.</i> (2020) &quot;The proteome landscape of the kingdoms of life.&quot; <i>Nature</i> <b>582</b>(7813):592&ndash;596; PMID: [https://pubmed.ncbi.nlm.nih.gov/32555458 32555458]; doi: [https://dx.doi.org/10.1038/s41586-020-2402-x 10.1038/s41586-020-2402-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32555458 6].
 +
#Petereit J, <i>et al.</i> (2020) &quot;Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes.&quot; <i>Plant Physiol</i> <b>184</b>(1):148&ndash;164; PMID: [https://pubmed.ncbi.nlm.nih.gov/32571844 32571844]; doi: [https://dx.doi.org/10.1104/pp.20.00136 10.1104/pp.20.00136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32571844 29].
 +
#Martin NA, <i>et al.</i> (2020) &quot;Absence of miRNA-146a Differentially Alters Microglia Function and Proteome.&quot; <i>Front Immunol</i> <b>11</b>:1110; PMID: [https://pubmed.ncbi.nlm.nih.gov/32582192 32582192]; doi: [https://dx.doi.org/10.3389/fimmu.2020.01110 10.3389/fimmu.2020.01110]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32582192 44].
 +
#Silva JM, <i>et al.</i> (2020) &quot;Proteomics pinpoints alterations in grade I meningiomas of male versus female patients.&quot; <i>Sci Rep</i> <b>10</b>(1):10335; PMID: [https://pubmed.ncbi.nlm.nih.gov/32587372 32587372]; doi: [https://dx.doi.org/10.1038/s41598-020-67113-3 10.1038/s41598-020-67113-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32587372 24].
 +
#Zecha J, <i>et al.</i> (2020) &quot;Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(9):1503&ndash;1522; PMID: [https://pubmed.ncbi.nlm.nih.gov/32591346 32591346]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002164 10.1074/mcp.RA120.002164]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32591346 96].
 +
#Zhang Y, <i>et al.</i> (2020) &quot;Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue.&quot; <i>J Proteome Res</i> <b>19</b>(8):3130&ndash;3142; PMID: [https://pubmed.ncbi.nlm.nih.gov/32597661 32597661]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00131 10.1021/acs.jproteome.0c00131]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32597661 6].
 +
#Ma J, <i>et al.</i> (2020) &quot;Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins.&quot; <i>Aging (Albany NY)</i> <b>12</b>(13):13529&ndash;13554; PMID: [https://pubmed.ncbi.nlm.nih.gov/32602849 32602849]; doi: [https://dx.doi.org/10.18632/aging.103461 10.18632/aging.103461]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32602849 10].
 +
#Sudaryatma PE, <i>et al.</i> (2020) &quot;Bovine Respiratory Syncytial Virus Decreased Pasteurella multocida Adherence by Downregulating the Expression of Intercellular Adhesion Molecule-1 on the Surface of Upper Respiratory Epithelial Cells.&quot; <i>Vet Microbiol</i> <b>246</b>:108748; PMID: [https://pubmed.ncbi.nlm.nih.gov/32605748 32605748]; doi: [https://dx.doi.org/10.1016/j.vetmic.2020.108748 10.1016/j.vetmic.2020.108748]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32605748 18].
 +
#Kenny HC, <i>et al.</i> (2020) &quot;Effectiveness of Resistive Vibration Exercise and Whey Protein Supplementation Plus Alkaline Salt on the Skeletal Muscle Proteome Following 21 Days of Bed Rest in Healthy Males.&quot; <i>J Proteome Res</i> <b>19</b>(8):3438&ndash;3451; PMID: [https://pubmed.ncbi.nlm.nih.gov/32609523 32609523]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00256 10.1021/acs.jproteome.0c00256]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32609523 58].
 +
#Fenech EJ, <i>et al.</i> (2020) &quot;Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32614325 32614325]; doi: [https://dx.doi.org/10.7554/eLife.57306 10.7554/eLife.57306]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32614325 136].
 +
#Locard-Paulet M, <i>et al.</i> (2020) &quot;LymphoAtlas: a dynamic and integrated phosphoproteomic resource of TCR signaling in primary T cells reveals ITSN2 as a regulator of effector functions.&quot; <i>Mol Syst Biol</i> <b>16</b>(7):e9524; PMID: [https://pubmed.ncbi.nlm.nih.gov/32618424 32618424]; doi: [https://dx.doi.org/10.15252/msb.20209524 10.15252/msb.20209524]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32618424 108].
 +
#Oh S, <i>et al.</i> (2020) &quot;Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities.&quot; <i>Nat Commun</i> <b>11</b>(1):3288; PMID: [https://pubmed.ncbi.nlm.nih.gov/32620753 32620753]; doi: [https://dx.doi.org/10.1038/s41467-020-17139-y 10.1038/s41467-020-17139-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32620753 18].
 +
#Hanses U, <i>et al.</i> (2020) &quot;Intronic CRISPR Repair in a Preclinical Model of Noonan Syndrome-Associated Cardiomyopathy.&quot; <i>Circulation</i> <b>142</b>(11):1059&ndash;1076; PMID: [https://pubmed.ncbi.nlm.nih.gov/32623905 32623905]; doi: [https://dx.doi.org/10.1161/CIRCULATIONAHA.119.044794 10.1161/CIRCULATIONAHA.119.044794]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32623905 456].
 +
#Wood AJ, <i>et al.</i> (2020) &quot;C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodeling.&quot; <i>JCI Insight</i> <b>5</b>(15):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32634128 32634128]; doi: [https://dx.doi.org/10.1172/jci.insight.137029 10.1172/jci.insight.137029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32634128 30].
 +
#Zhang Y, <i>et al.</i> (2020) &quot;Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy.&quot; <i>Epilepsy Res</i> <b>166</b>:106412; PMID: [https://pubmed.ncbi.nlm.nih.gov/32668389 32668389]; doi: [https://dx.doi.org/10.1016/j.eplepsyres.2020.106412 10.1016/j.eplepsyres.2020.106412]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32668389 1].
 +
#Xiao Y, <i>et al.</i> (2020) &quot;Decreased Mitochondrial DNA Content Drives OXPHOS Dysregulation in Chromophobe Renal Cell Carcinoma.&quot; <i>Cancer Res</i> <b>80</b>(18):3830&ndash;3840; PMID: [https://pubmed.ncbi.nlm.nih.gov/32694149 32694149]; doi: [https://dx.doi.org/10.1158/0008-5472.CAN-20-0754 10.1158/0008-5472.CAN-20-0754]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32694149 72].
 +
#Gouveia D, <i>et al.</i> (2020) &quot;Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window.&quot; <i>J Proteome Res</i> <b>19</b>(11):4407&ndash;4416; PMID: [https://pubmed.ncbi.nlm.nih.gov/32697082 32697082]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00535 10.1021/acs.jproteome.0c00535]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32697082 14].
 +
#Chen Q, <i>et al.</i> (2020) &quot;Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts.&quot; <i>Biochim Biophys Acta Mol Basis Dis</i> <b>1866</b>(11):165899; PMID: [https://pubmed.ncbi.nlm.nih.gov/32698045 32698045]; doi: [https://dx.doi.org/10.1016/j.bbadis.2020.165899 10.1016/j.bbadis.2020.165899]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32698045 18].
 +
#Cao W, <i>et al.</i> (2020) &quot;Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma.&quot; <i>Nat Commun</i> <b>11</b>(1):3675; PMID: [https://pubmed.ncbi.nlm.nih.gov/32699215 32699215]; doi: [https://dx.doi.org/10.1038/s41467-020-17227-z 10.1038/s41467-020-17227-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32699215 3].
 +
#Blume JE, <i>et al.</i> (2020) &quot;Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona.&quot; <i>Nat Commun</i> <b>11</b>(1):3662; PMID: [https://pubmed.ncbi.nlm.nih.gov/32699280 32699280]; doi: [https://dx.doi.org/10.1038/s41467-020-17033-7 10.1038/s41467-020-17033-7]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32699280 114].
 +
#Buljan M, <i>et al.</i> (2020) &quot;Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases.&quot; <i>Mol Cell</i> <b>79</b>(3):504&ndash;520.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/32707033 32707033]; doi: [https://dx.doi.org/10.1016/j.molcel.2020.07.001 10.1016/j.molcel.2020.07.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32707033 730].
 +
#Osthues T, <i>et al.</i> (2020) &quot;The Lipid Receptor G2A (GPR132) Mediates Macrophage Migration in Nerve Injury-Induced Neuropathic Pain.&quot; <i>Cells</i> <b>9</b>(7):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32708184 32708184]; doi: [https://dx.doi.org/10.3390/cells9071740 10.3390/cells9071740]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32708184 1].
 +
#Pathak KV, <i>et al.</i> (2020) &quot;Molecular Profiling of Innate Immune Response Mechanisms in Ventilator-associated Pneumonia.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(10):1688&ndash;1705; PMID: [https://pubmed.ncbi.nlm.nih.gov/32709677 32709677]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002207 10.1074/mcp.RA120.002207]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32709677 85].
 +
#Cheng YC, <i>et al.</i> (2020) &quot;Anchorage independence altered vasculogenic phenotype of melanoma cells through downregulation in aminopeptidase N /syndecan-1/integrin &beta;4 axis.&quot; <i>Aging (Albany NY)</i> <b>12</b>(17):16803&ndash;16819; PMID: [https://pubmed.ncbi.nlm.nih.gov/32756007 32756007]; doi: [https://dx.doi.org/10.18632/aging.103425 10.18632/aging.103425]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32756007 80].
 +
#Perino M, <i>et al.</i> (2020) &quot;Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem&nbsp;Cells.&quot; <i>Stem Cell Reports</i> <b>15</b>(6):1287&ndash;1300; PMID: [https://pubmed.ncbi.nlm.nih.gov/32763159 32763159]; doi: [https://dx.doi.org/10.1016/j.stemcr.2020.07.007 10.1016/j.stemcr.2020.07.007]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32763159 11].
 +
#Tiwari A, <i>et al.</i> (2020) &quot;Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis.&quot; <i>Gastroenterology</i> <b>159</b>(5):1882&ndash;1897.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/32768595 32768595]; doi: [https://dx.doi.org/10.1053/j.gastro.2020.07.046 10.1053/j.gastro.2020.07.046]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32768595 6].
 +
#Mirauta BA, <i>et al.</i> (2020) &quot;Population-scale proteome variation in human induced pluripotent stem cells.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32773033 32773033]; doi: [https://dx.doi.org/10.7554/eLife.57390 10.7554/eLife.57390]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32773033 16].
 +
#Ripmeester EGJ, <i>et al.</i> (2020) &quot;Impaired chondrocyte U3 snoRNA expression in osteoarthritis impacts the chondrocyte protein translation apparatus.&quot; <i>Sci Rep</i> <b>10</b>(1):13426; PMID: [https://pubmed.ncbi.nlm.nih.gov/32778764 32778764]; doi: [https://dx.doi.org/10.1038/s41598-020-70453-9 10.1038/s41598-020-70453-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32778764 6].
 +
#Steiner G, <i>et al.</i> (2020) &quot;Enabling Routine MHC-II-Associated Peptide Proteomics for Risk Assessment of Drug-Induced Immunogenicity.&quot; <i>J Proteome Res</i> <b>19</b>(9):3792&ndash;3806; PMID: [https://pubmed.ncbi.nlm.nih.gov/32786679 32786679]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00309 10.1021/acs.jproteome.0c00309]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32786679 162].
 +
#D&#39;Alessandro A, <i>et al.</i> (2020) &quot;Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level.&quot; <i>J Proteome Res</i> <b>19</b>(11):4417&ndash;4427; PMID: [https://pubmed.ncbi.nlm.nih.gov/32786691 32786691]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00365 10.1021/acs.jproteome.0c00365]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32786691 49].
 +
#Wang Y, <i>et al.</i> (2020) &quot;A New Workflow for the Analysis of Phosphosite Occupancy in Paired Samples by Integration of Proteomics and Phosphoproteomics Data Sets.&quot; <i>J Proteome Res</i> <b>19</b>(9):3807&ndash;3816; PMID: [https://pubmed.ncbi.nlm.nih.gov/32786891 32786891]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00345 10.1021/acs.jproteome.0c00345]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32786891 42].
 +
#Hoshino A, <i>et al.</i> (2020) &quot;Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers.&quot; <i>Cell</i> <b>182</b>(4):1044&ndash;1061.e18; PMID: [https://pubmed.ncbi.nlm.nih.gov/32795414 32795414]; doi: [https://dx.doi.org/10.1016/j.cell.2020.07.009 10.1016/j.cell.2020.07.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32795414 562].
 +
#Kirak O, <i>et al.</i> (2020) &quot;Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts.&quot; <i>Int J Mol Sci</i> <b>21</b>(16):; PMID: [https://pubmed.ncbi.nlm.nih.gov/32796510 32796510]; doi: [https://dx.doi.org/10.3390/ijms21165743 10.3390/ijms21165743]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32796510 1].
 +
#Drummond E, <i>et al.</i> (2020) &quot;Phosphorylated tau interactome in the human Alzheimer&#39;s disease brain.&quot; <i>Brain</i> <b>143</b>(9):2803&ndash;2817; PMID: [https://pubmed.ncbi.nlm.nih.gov/32812023 32812023]; doi: [https://dx.doi.org/10.1093/brain/awaa223 10.1093/brain/awaa223]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32812023 27].
 +
#Pang CNI, <i>et al.</i> (2020) &quot;Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard <i>Saccharomyces cerevisiae</i> Protein Complexes.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(11):1876&ndash;1895; PMID: [https://pubmed.ncbi.nlm.nih.gov/32817346 32817346]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002154 10.1074/mcp.RA120.002154]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32817346 72].
 +
#Maffioli E, <i>et al.</i> (2020) &quot;Proteomic Analysis Reveals a Mitochondrial Remodeling of &beta;TC3 Cells in Response to Nanotopography.&quot; <i>Front Cell Dev Biol</i> <b>8</b>:508; PMID: [https://pubmed.ncbi.nlm.nih.gov/32850772 32850772]; doi: [https://dx.doi.org/10.3389/fcell.2020.00508 10.3389/fcell.2020.00508]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32850772 9].
 +
#Werner AC, <i>et al.</i> (2020) &quot;Coronin 1B Controls Endothelial Actin Dynamics at Cell-Cell Junctions and Is Required for Endothelial Network Assembly.&quot; <i>Front Cell Dev Biol</i> <b>8</b>:708; PMID: [https://pubmed.ncbi.nlm.nih.gov/32850828 32850828]; doi: [https://dx.doi.org/10.3389/fcell.2020.00708 10.3389/fcell.2020.00708]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32850828 8].
 +
#Mantini G, <i>et al.</i> (2020) &quot;Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers.&quot; <i>Cell Oncol (Dordr)</i> <b>43</b>(6):1147&ndash;1159; PMID: [https://pubmed.ncbi.nlm.nih.gov/32860207 32860207]; doi: [https://dx.doi.org/10.1007/s13402-020-00548-y 10.1007/s13402-020-00548-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32860207 100].
 +
#Chang YY, <i>et al.</i> (2020) &quot;Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape.&quot; <i>PLoS Pathog</i> <b>16</b>(8):e1008822; PMID: [https://pubmed.ncbi.nlm.nih.gov/32866204 32866204]; doi: [https://dx.doi.org/10.1371/journal.ppat.1008822 10.1371/journal.ppat.1008822]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32866204 18].
 +
#Simats A, <i>et al.</i> (2020) &quot;A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(12):1921&ndash;1936; PMID: [https://pubmed.ncbi.nlm.nih.gov/32868372 32868372]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002283 10.1074/mcp.RA120.002283]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32868372 120].
 +
#Holder J, <i>et al.</i> (2020) &quot;Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32869743 32869743]; doi: [https://dx.doi.org/10.7554/eLife.59885 10.7554/eLife.59885]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32869743 240].
 +
#Kooij R, <i>et al.</i> (2020) &quot;Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos.&quot; <i>J Am Chem Soc</i> <b>142</b>(39):16825&ndash;16841; PMID: [https://pubmed.ncbi.nlm.nih.gov/32886496 32886496]; doi: [https://dx.doi.org/10.1021/jacs.0c07726 10.1021/jacs.0c07726]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32886496 24].
 +
#Wang B, <i>et al.</i> (2021) &quot;Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell.&quot; <i>J Proteomics</i> <b>230</b>:103965; PMID: [https://pubmed.ncbi.nlm.nih.gov/32891891 32891891]; doi: [https://dx.doi.org/10.1016/j.jprot.2020.103965 10.1016/j.jprot.2020.103965]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32891891 164].
 +
#Starkl P, <i>et al.</i> (2020) &quot;IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcusaureus.&quot; <i>Immunity</i> <b>53</b>(4):793&ndash;804.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/32910906 32910906]; doi: [https://dx.doi.org/10.1016/j.immuni.2020.08.002 10.1016/j.immuni.2020.08.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32910906 12].
 +
#van Gelder CAGH, <i>et al.</i> (2020) &quot;Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons.&quot; <i>Mol Cell Proteomics</i> <b>19</b>(12):1952&ndash;1968; PMID: [https://pubmed.ncbi.nlm.nih.gov/32912969 32912969]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002199 10.1074/mcp.RA120.002199]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32912969 20].
 +
#Jiang L, <i>et al.</i> (2020) &quot;A Quantitative Proteome Map of the Human Body.&quot; <i>Cell</i> <b>183</b>(1):269&ndash;283.e19; PMID: [https://pubmed.ncbi.nlm.nih.gov/32916130 32916130]; doi: [https://dx.doi.org/10.1016/j.cell.2020.08.036 10.1016/j.cell.2020.08.036]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32916130 35].
 +
#Cao S, <i>et al.</i> (2020) &quot;Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes.&quot; <i>Reprod Domest Anim</i> <b>55</b>(11):1607&ndash;1618; PMID: [https://pubmed.ncbi.nlm.nih.gov/32920902 32920902]; doi: [https://dx.doi.org/10.1111/rda.13819 10.1111/rda.13819]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32920902 30].
 +
#Uyy E, <i>et al.</i> (2020) &quot;Diabetic nephropathy associates with deregulation of enzymes involved in kidney sulphur metabolism.&quot; <i>J Cell Mol Med</i> <b>24</b>(20):12131&ndash;12140; PMID: [https://pubmed.ncbi.nlm.nih.gov/32935914 32935914]; doi: [https://dx.doi.org/10.1111/jcmm.15855 10.1111/jcmm.15855]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32935914 95].
 +
#Faridi P, <i>et al.</i> (2020) &quot;Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma.&quot; <i>Cancer Immunol Res</i> <b>8</b>(10):1322&ndash;1334; PMID: [https://pubmed.ncbi.nlm.nih.gov/32938616 32938616]; doi: [https://dx.doi.org/10.1158/2326-6066.CIR-19-0894 10.1158/2326-6066.CIR-19-0894]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32938616 108].
 +
#Lindhout FW, <i>et al.</i> (2020) &quot;Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/32940601 32940601]; doi: [https://dx.doi.org/10.7554/eLife.58124 10.7554/eLife.58124]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32940601 1].
 +
#O&#39;Neill JS, <i>et al.</i> (2020) &quot;Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis.&quot; <i>Nat Commun</i> <b>11</b>(1):4706; PMID: [https://pubmed.ncbi.nlm.nih.gov/32943618 32943618]; doi: [https://dx.doi.org/10.1038/s41467-020-18330-x 10.1038/s41467-020-18330-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32943618 84].
 +
#Lee-Law PY, <i>et al.</i> (2021) &quot;Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models.&quot; <i>J Hepatol</i> <b>74</b>(2):394&ndash;406; PMID: [https://pubmed.ncbi.nlm.nih.gov/32950589 32950589]; doi: [https://dx.doi.org/10.1016/j.jhep.2020.09.010 10.1016/j.jhep.2020.09.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32950589 49].
 +
#Liu JJ, <i>et al.</i> (2020) &quot;Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice.&quot; <i>Neuropharmacology</i> <b>181</b>:108324; PMID: [https://pubmed.ncbi.nlm.nih.gov/32976891 32976891]; doi: [https://dx.doi.org/10.1016/j.neuropharm.2020.108324 10.1016/j.neuropharm.2020.108324]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32976891 67].
 +
#Schumacher N, <i>et al.</i> (2021) &quot;Cell-autonomous hepatocyte-specific GP130 signaling is sufficient to trigger a robust innate immune response in mice.&quot; <i>J Hepatol</i> <b>74</b>(2):407&ndash;418; PMID: [https://pubmed.ncbi.nlm.nih.gov/32987028 32987028]; doi: [https://dx.doi.org/10.1016/j.jhep.2020.09.021 10.1016/j.jhep.2020.09.021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32987028 1].
 +
#Adhikari B, <i>et al.</i> (2020) &quot;PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase.&quot; <i>Nat Chem Biol</i> <b>16</b>(11):1179&ndash;1188; PMID: [https://pubmed.ncbi.nlm.nih.gov/32989298 32989298]; doi: [https://dx.doi.org/10.1038/s41589-020-00652-y 10.1038/s41589-020-00652-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/32989298 93].
 +
#Bassal M, <i>et al.</i> (2020) &quot;Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity.&quot; <i>Mol Plant</i> <b>13</b>(12):1709&ndash;1732; PMID: [https://pubmed.ncbi.nlm.nih.gov/33007468 33007468]; doi: [https://dx.doi.org/10.1016/j.molp.2020.09.024 10.1016/j.molp.2020.09.024]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33007468 86].
 +
#Gabaev I, <i>et al.</i> (2020) &quot;Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation.&quot; <i>Cell Rep</i> <b>33</b>(2):108249; PMID: [https://pubmed.ncbi.nlm.nih.gov/33053346 33053346]; doi: [https://dx.doi.org/10.1016/j.celrep.2020.108249 10.1016/j.celrep.2020.108249]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33053346 1].
 +
#Gordon DE, <i>et al.</i> (2020) &quot;Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms.&quot; <i>Science</i> <b>370</b>(6521):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33060197 33060197]; doi: [https://dx.doi.org/10.1126/science.abe9403 10.1126/science.abe9403]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33060197 198].
 +
#Leng L, <i>et al.</i> (2020) &quot;Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples.&quot; <i>Signal Transduct Target Ther</i> <b>5</b>(1):240; PMID: [https://pubmed.ncbi.nlm.nih.gov/33060566 33060566]; doi: [https://dx.doi.org/10.1038/s41392-020-00355-9 10.1038/s41392-020-00355-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33060566 13].
 +
#Demmers LC, <i>et al.</i> (2020) &quot;Single-cell derived tumor organoids display diversity in HLA class I peptide presentation.&quot; <i>Nat Commun</i> <b>11</b>(1):5338; PMID: [https://pubmed.ncbi.nlm.nih.gov/33087703 33087703]; doi: [https://dx.doi.org/10.1038/s41467-020-19142-9 10.1038/s41467-020-19142-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33087703 24].
 +
#Wang J, <i>et al.</i> (2020) &quot;HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis.&quot; <i>Cell</i> <b>183</b>(5):1264&ndash;1281.e20; PMID: [https://pubmed.ncbi.nlm.nih.gov/33091337 33091337]; doi: [https://dx.doi.org/10.1016/j.cell.2020.09.054 10.1016/j.cell.2020.09.054]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33091337 54].
 +
#Faca VM, <i>et al.</i> (2020) &quot;Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network.&quot; <i>Sci Rep</i> <b>10</b>(1):18056; PMID: [https://pubmed.ncbi.nlm.nih.gov/33093574 33093574]; doi: [https://dx.doi.org/10.1038/s41598-020-74939-4 10.1038/s41598-020-74939-4]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33093574 153].
 +
#Zhao Q, <i>et al.</i> (2020) &quot;Lysine Acetylome Study of Human Hepatocellular Carcinoma Tissues for Biomarkers and Therapeutic Targets Discovery.&quot; <i>Front Genet</i> <b>11</b>:572663; PMID: [https://pubmed.ncbi.nlm.nih.gov/33093847 33093847]; doi: [https://dx.doi.org/10.3389/fgene.2020.572663 10.3389/fgene.2020.572663]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33093847 1].
 +
#Ilik &#x130;A, <i>et al.</i> (2020) &quot;SON and SRRM2 are essential for nuclear speckle formation.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/33095160 33095160]; doi: [https://dx.doi.org/10.7554/eLife.60579 10.7554/eLife.60579]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33095160 6].
 +
#Di Meo A, <i>et al.</i> (2021) &quot;Proteomic Profiling of the Human Tissue and Biological Fluid Proteome.&quot; <i>J Proteome Res</i> <b>20</b>(1):444&ndash;452; PMID: [https://pubmed.ncbi.nlm.nih.gov/33107741 33107741]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00502 10.1021/acs.jproteome.0c00502]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33107741 92].
 +
#Alayi TD, <i>et al.</i> (2020) &quot;Tandem Mass Tag-Based Serum Proteome Profiling for Biomarker Discovery in Young Duchenne Muscular Dystrophy Boys.&quot; <i>ACS Omega</i> <b>5</b>(41):26504&ndash;26517; PMID: [https://pubmed.ncbi.nlm.nih.gov/33110978 33110978]; doi: [https://dx.doi.org/10.1021/acsomega.0c03206 10.1021/acsomega.0c03206]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33110978 72].
 +
#Gibbard E, <i>et al.</i> (2021) &quot;Whole-proteome analysis of mesonephric-derived cancers describes new potential biomarkers.&quot; <i>Hum Pathol</i> <b>108</b>:1&ndash;11; PMID: [https://pubmed.ncbi.nlm.nih.gov/33121982 33121982]; doi: [https://dx.doi.org/10.1016/j.humpath.2020.10.005 10.1016/j.humpath.2020.10.005]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33121982 8].
 +
#Al-Majdoub ZM, <i>et al.</i> (2020) &quot;Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin.&quot; <i>FEBS Lett</i> <b>594</b>(23):4134&ndash;4150; PMID: [https://pubmed.ncbi.nlm.nih.gov/33128234 33128234]; doi: [https://dx.doi.org/10.1002/1873-3468.13982 10.1002/1873-3468.13982]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33128234 146].
 +
#Dyring-Andersen B, <i>et al.</i> (2020) &quot;Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin.&quot; <i>Nat Commun</i> <b>11</b>(1):5587; PMID: [https://pubmed.ncbi.nlm.nih.gov/33154365 33154365]; doi: [https://dx.doi.org/10.1038/s41467-020-19383-8 10.1038/s41467-020-19383-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33154365 157].
 +
#Asad S, <i>et al.</i> (2021) &quot;Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease.&quot; <i>J Pharm Sci</i> <b>110</b>(1):239&ndash;250; PMID: [https://pubmed.ncbi.nlm.nih.gov/33159915 33159915]; doi: [https://dx.doi.org/10.1016/j.xphs.2020.11.001 10.1016/j.xphs.2020.11.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33159915 132].
 +
#Chen X, <i>et al.</i> (2021) &quot;Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells.&quot; <i>J Proteome Res</i> <b>20</b>(1):222&ndash;235; PMID: [https://pubmed.ncbi.nlm.nih.gov/33216553 33216553]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00353 10.1021/acs.jproteome.0c00353]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33216553 51].
 +
#Hu Z, <i>et al.</i> (2021) &quot;UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2.&quot; <i>Oncogene</i> <b>40</b>(3):647&ndash;662; PMID: [https://pubmed.ncbi.nlm.nih.gov/33219317 33219317]; doi: [https://dx.doi.org/10.1038/s41388-020-01551-1 10.1038/s41388-020-01551-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33219317 3].
 +
#Zaro BW, <i>et al.</i> (2020) &quot;Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/33236985 33236985]; doi: [https://dx.doi.org/10.7554/eLife.62210 10.7554/eLife.62210]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33236985 64].
 +
#Ouni E, <i>et al.</i> (2020) &quot;Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization.&quot; <i>Int J Mol Sci</i> <b>21</b>(23):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33266304 33266304]; doi: [https://dx.doi.org/10.3390/ijms21239141 10.3390/ijms21239141]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33266304 90].
 +
#Braun F, <i>et al.</i> (2020) &quot;The proteomic landscape of small urinary extracellular vesicles during kidney transplantation.&quot; <i>J Extracell Vesicles</i> <b>10</b>(1):e12026; PMID: [https://pubmed.ncbi.nlm.nih.gov/33304478 33304478]; doi: [https://dx.doi.org/10.1002/jev2.12026 10.1002/jev2.12026]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33304478 89].
 +
#Bailey A, <i>et al.</i> (2021) &quot;Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells.&quot; <i>Toxicol Sci</i> <b>180</b>(1):136&ndash;147; PMID: [https://pubmed.ncbi.nlm.nih.gov/33372950 33372950]; doi: [https://dx.doi.org/10.1093/toxsci/kfaa184 10.1093/toxsci/kfaa184]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33372950 35].
 +
#Tam V, <i>et al.</i> (2020) &quot;DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/33382035 33382035]; doi: [https://dx.doi.org/10.7554/eLife.64940 10.7554/eLife.64940]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33382035 263].
 +
#Subbannayya Y, <i>et al.</i> (2020) &quot;The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function.&quot; <i>Int J Mol Sci</i> <b>22</b>(1):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33383959 33383959]; doi: [https://dx.doi.org/10.3390/ijms22010275 10.3390/ijms22010275]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33383959 3].
 +
#Dietze R, <i>et al.</i> (2021) &quot;Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer.&quot; <i>Theranostics</i> <b>11</b>(3):1377&ndash;1395; PMID: [https://pubmed.ncbi.nlm.nih.gov/33391540 33391540]; doi: [https://dx.doi.org/10.7150/thno.52442 10.7150/thno.52442]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33391540 63].
 +
#Khan MJ, <i>et al.</i> (2021) &quot;Why Inclusion Matters for Alzheimer&#39;s Disease Biomarker Discovery in Plasma.&quot; <i>J Alzheimers Dis</i> <b>79</b>(3):1327&ndash;1344; PMID: [https://pubmed.ncbi.nlm.nih.gov/33427747 33427747]; doi: [https://dx.doi.org/10.3233/JAD-201318 10.3233/JAD-201318]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33427747 25].
 +
#Fissolo N, <i>et al.</i> (2021) &quot;CSF SERPINA3 Levels Are Elevated in Patients With Progressive MS.&quot; <i>Neurol Neuroimmunol Neuroinflamm</i> <b>8</b>(2):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33436375 33436375]; doi: [https://dx.doi.org/10.1212/NXI.0000000000000941 10.1212/NXI.0000000000000941]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33436375 30].
 +
#Tijms BM, <i>et al.</i> (2020) &quot;Pathophysiological subtypes of Alzheimer&#39;s disease based on cerebrospinal fluid proteomics.&quot; <i>Brain</i> <b>143</b>(12):3776&ndash;3792; PMID: [https://pubmed.ncbi.nlm.nih.gov/33439986 33439986]; doi: [https://dx.doi.org/10.1093/brain/awaa325 10.1093/brain/awaa325]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33439986 50].
 +
#Prust N, <i>et al.</i> (2021) &quot;In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100034; PMID: [https://pubmed.ncbi.nlm.nih.gov/33444734 33444734]; doi: [https://dx.doi.org/10.1074/mcp.RA120.002232 10.1074/mcp.RA120.002232]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33444734 27].
 +
#&Ouml;lander M, <i>et al.</i> (2021) &quot;Hepatocyte size fractionation allows dissection of human liver zonation.&quot; <i>J Cell Physiol</i> <b>236</b>(8):5885&ndash;5894; PMID: [https://pubmed.ncbi.nlm.nih.gov/33452735 33452735]; doi: [https://dx.doi.org/10.1002/jcp.30273 10.1002/jcp.30273]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33452735 36].
 +
#Gastaldello A, <i>et al.</i> (2021) &quot;The immunopeptidomes of two transmissible cancers and their host have a common, dominant peptide motif.&quot; <i>Immunology</i> <b>163</b>(2):169&ndash;184; PMID: [https://pubmed.ncbi.nlm.nih.gov/33460454 33460454]; doi: [https://dx.doi.org/10.1111/imm.13307 10.1111/imm.13307]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33460454 9].
 +
#Lobato-Gil S, <i>et al.</i> (2021) &quot;Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation.&quot; <i>Cell Rep</i> <b>34</b>(3):108635; PMID: [https://pubmed.ncbi.nlm.nih.gov/33472076 33472076]; doi: [https://dx.doi.org/10.1016/j.celrep.2020.108635 10.1016/j.celrep.2020.108635]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33472076 24].
 +
#Huang KK, <i>et al.</i> (2021) &quot;Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer.&quot; <i>Genome Biol</i> <b>22</b>(1):44; PMID: [https://pubmed.ncbi.nlm.nih.gov/33482911 33482911]; doi: [https://dx.doi.org/10.1186/s13059-021-02261-x 10.1186/s13059-021-02261-x]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33482911 80].
 +
#Os&oacute;rio H, <i>et al.</i> (2021) &quot;Proteomics Analysis of Gastric Cancer Patients with Diabetes Mellitus.&quot; <i>J Clin Med</i> <b>10</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33494396 33494396]; doi: [https://dx.doi.org/10.3390/jcm10030407 10.3390/jcm10030407]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33494396 40].
 +
#Amer N, <i>et al.</i> (2021) &quot;Aggresomes predict poor outcomes and implicate proteostasis in the pathogenesis of pediatric choroid plexus tumors.&quot; <i>J Neurooncol</i> <b>152</b>(1):67&ndash;78; PMID: [https://pubmed.ncbi.nlm.nih.gov/33501605 33501605]; doi: [https://dx.doi.org/10.1007/s11060-020-03694-3 10.1007/s11060-020-03694-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33501605 84].
 +
#Gonz&aacute;lez-Prieto R, <i>et al.</i> (2021) &quot;Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex.&quot; <i>Cell Rep</i> <b>34</b>(4):108691; PMID: [https://pubmed.ncbi.nlm.nih.gov/33503430 33503430]; doi: [https://dx.doi.org/10.1016/j.celrep.2021.108691 10.1016/j.celrep.2021.108691]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33503430 12].
 +
#Yang F, <i>et al.</i> (2020) &quot;Integrative Proteomic and Phosphoproteomic Analyses of Granulosa Cells During Follicular Atresia in Porcine.&quot; <i>Front Cell Dev Biol</i> <b>8</b>:624985; PMID: [https://pubmed.ncbi.nlm.nih.gov/33520998 33520998]; doi: [https://dx.doi.org/10.3389/fcell.2020.624985 10.3389/fcell.2020.624985]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33520998 77].
 +
#Aravamudhan S, <i>et al.</i> (2021) &quot;Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein.&quot; <i>J Mol Cell Cardiol</i> <b>154</b>:41&ndash;59; PMID: [https://pubmed.ncbi.nlm.nih.gov/33549681 33549681]; doi: [https://dx.doi.org/10.1016/j.yjmcc.2021.01.010 10.1016/j.yjmcc.2021.01.010]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33549681 104].
 +
#Bankar R, <i>et al.</i> (2021) &quot;Proteomic investigation reveals dominant alterations of neutrophil degranulation and mRNA translation pathways in patients with COVID-19.&quot; <i>iScience</i> <b>24</b>(3):102135; PMID: [https://pubmed.ncbi.nlm.nih.gov/33558857 33558857]; doi: [https://dx.doi.org/10.1016/j.isci.2021.102135 10.1016/j.isci.2021.102135]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33558857 24].
 +
#Deng L, <i>et al.</i> (2021) &quot;Mouse model of Alzheimer&#39;s disease demonstrates differential effects of early disease pathology on various brain regions.&quot; <i>Proteomics</i> <b>21</b>(7-8):e2000213; PMID: [https://pubmed.ncbi.nlm.nih.gov/33559908 33559908]; doi: [https://dx.doi.org/10.1002/pmic.202000213 10.1002/pmic.202000213]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33559908 4].
 +
#van Alphen C, <i>et al.</i> (2021) &quot;The influence of delay in mononuclear cell isolation on acute myeloid leukemia phosphorylation profiles.&quot; <i>J Proteomics</i> <b>238</b>:104134; PMID: [https://pubmed.ncbi.nlm.nih.gov/33561558 33561558]; doi: [https://dx.doi.org/10.1016/j.jprot.2021.104134 10.1016/j.jprot.2021.104134]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33561558 69].
 +
#Sukumaran A, <i>et al.</i> (2021) &quot;Zinc limitation in Klebsiella pneumoniae profiled by quantitative proteomics influences transcriptional regulation and cation transporter-associated capsule production.&quot; <i>BMC Microbiol</i> <b>21</b>(1):43; PMID: [https://pubmed.ncbi.nlm.nih.gov/33568055 33568055]; doi: [https://dx.doi.org/10.1186/s12866-021-02091-8 10.1186/s12866-021-02091-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33568055 16].
 +
#Kong S, <i>et al.</i> (2021) &quot;Global analysis of lysine acetylome reveals the potential role of CCL18 in non-small cell lung cancer.&quot; <i>Proteomics</i> <b>21</b>(7-8):e2000144; PMID: [https://pubmed.ncbi.nlm.nih.gov/33570763 33570763]; doi: [https://dx.doi.org/10.1002/pmic.202000144 10.1002/pmic.202000144]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33570763 17].
 +
#Sivakova B, <i>et al.</i> (2021) &quot;Label-Free Quantitative Phosphoproteomics of the Fission Yeast <i>Schizosaccharomyces pombe</i> Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies.&quot; <i>Int J Mol Sci</i> <b>22</b>(4):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33572424 33572424]; doi: [https://dx.doi.org/10.3390/ijms22041747 10.3390/ijms22041747]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33572424 68].
 +
#Pluska L, <i>et al.</i> (2021) &quot;The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains.&quot; <i>EMBO J</i> <b>40</b>(6):e106094; PMID: [https://pubmed.ncbi.nlm.nih.gov/33576509 33576509]; doi: [https://dx.doi.org/10.15252/embj.2020106094 10.15252/embj.2020106094]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33576509 2].
 +
#Bala K, <i>et al.</i> (2021) &quot;Identification of differentially expressed proteins between fused and open sutures in sagittal nonsyndromic craniosynostosis during suture development by quantitative proteomic analysis.&quot; <i>Proteomics Clin Appl</i> <b>15</b>(2-3):e2000031; PMID: [https://pubmed.ncbi.nlm.nih.gov/33580899 33580899]; doi: [https://dx.doi.org/10.1002/prca.202000031 10.1002/prca.202000031]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33580899 3].
 +
#Silbern I, <i>et al.</i> (2021) &quot;Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100061; PMID: [https://pubmed.ncbi.nlm.nih.gov/33582301 33582301]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100061 10.1016/j.mcpro.2021.100061]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33582301 180].
 +
#Dudek M, <i>et al.</i> (2021) &quot;Circadian time series proteomics reveals daily dynamics in cartilage physiology.&quot; <i>Osteoarthritis Cartilage</i> <b>29</b>(5):739&ndash;749; PMID: [https://pubmed.ncbi.nlm.nih.gov/33610821 33610821]; doi: [https://dx.doi.org/10.1016/j.joca.2021.02.008 10.1016/j.joca.2021.02.008]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33610821 72].
 +
#Pietrowska M, <i>et al.</i> (2021) &quot;Proteomic profile of melanoma cell-derived small extracellular vesicles in patients&#39; plasma: a potential correlate of melanoma progression.&quot; <i>J Extracell Vesicles</i> <b>10</b>(4):e12063; PMID: [https://pubmed.ncbi.nlm.nih.gov/33613873 33613873]; doi: [https://dx.doi.org/10.1002/jev2.12063 10.1002/jev2.12063]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33613873 30].
 +
#Yuan S, <i>et al.</i> (2021) &quot;Translatomic profiling reveals novel self-restricting virus-host interactions during HBV infection.&quot; <i>J Hepatol</i> <b>75</b>(1):74&ndash;85; PMID: [https://pubmed.ncbi.nlm.nih.gov/33621634 33621634]; doi: [https://dx.doi.org/10.1016/j.jhep.2021.02.009 10.1016/j.jhep.2021.02.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33621634 3].
 +
#Gassaway BM, <i>et al.</i> (2021) &quot;Categorization of Phosphorylation Site Behavior during the Diauxic Shift in <i>Saccharomyces cerevisiae</i>.&quot; <i>J Proteome Res</i> <b>20</b>(5):2487&ndash;2496; PMID: [https://pubmed.ncbi.nlm.nih.gov/33630598 33630598]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00943 10.1021/acs.jproteome.0c00943]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33630598 42].
 +
#Kalaora S, <i>et al.</i> (2021) &quot;Identification of bacteria-derived HLA-bound peptides in melanoma.&quot; <i>Nature</i> <b>592</b>(7852):138&ndash;143; PMID: [https://pubmed.ncbi.nlm.nih.gov/33731925 33731925]; doi: [https://dx.doi.org/10.1038/s41586-021-03368-8 10.1038/s41586-021-03368-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33731925 153].
 +
#Schmid D, <i>et al.</i> (2021) &quot;Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies.&quot; <i>J Neurochem</i> <b>158</b>(2):522&ndash;538; PMID: [https://pubmed.ncbi.nlm.nih.gov/33735443 33735443]; doi: [https://dx.doi.org/10.1111/jnc.15350 10.1111/jnc.15350]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33735443 299].
 +
#Wegler C, <i>et al.</i> (2021) &quot;Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes.&quot; <i>Mol Pharm</i> <b>18</b>(4):1792&ndash;1805; PMID: [https://pubmed.ncbi.nlm.nih.gov/33739838 33739838]; doi: [https://dx.doi.org/10.1021/acs.molpharmaceut.1c00053 10.1021/acs.molpharmaceut.1c00053]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33739838 93].
 +
#Zhang X, <i>et al.</i> (2021) &quot;Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature.&quot; <i>Front Cell Dev Biol</i> <b>9</b>:649265; PMID: [https://pubmed.ncbi.nlm.nih.gov/33748143 33748143]; doi: [https://dx.doi.org/10.3389/fcell.2021.649265 10.3389/fcell.2021.649265]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33748143 4].
 +
#Cifani P, <i>et al.</i> (2021) &quot;Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics.&quot; <i>J Proteome Res</i> <b>20</b>(4):1835&ndash;1848; PMID: [https://pubmed.ncbi.nlm.nih.gov/33749263 33749263]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c00638 10.1021/acs.jproteome.0c00638]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33749263 1].
 +
#Dourthe C, <i>et al.</i> (2021) &quot;Proteomic Profiling of Hepatocellular Adenomas Paves the Way to Diagnostic and Prognostic Approaches.&quot; <i>Hepatology</i> <b>74</b>(3):1595&ndash;1610; PMID: [https://pubmed.ncbi.nlm.nih.gov/33754354 33754354]; doi: [https://dx.doi.org/10.1002/hep.31826 10.1002/hep.31826]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33754354 467].
 +
#Maier JI, <i>et al.</i> (2021) &quot;EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission.&quot; <i>Cell Rep</i> <b>34</b>(12):108883; PMID: [https://pubmed.ncbi.nlm.nih.gov/33761352 33761352]; doi: [https://dx.doi.org/10.1016/j.celrep.2021.108883 10.1016/j.celrep.2021.108883]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33761352 20].
 +
#Kim D, <i>et al.</i> (2021) &quot;Comparative Proteome Research in a Zebrafish Model for Vanishing White Matter Disease.&quot; <i>Int J Mol Sci</i> <b>22</b>(5):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33800130 33800130]; doi: [https://dx.doi.org/10.3390/ijms22052707 10.3390/ijms22052707]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33800130 2].
 +
#Li X, <i>et al.</i> (2021) &quot;Structural and Functional Characterization of Fibronectin in Extracellular Vesicles From Hepatocytes.&quot; <i>Front Cell Dev Biol</i> <b>9</b>:640667; PMID: [https://pubmed.ncbi.nlm.nih.gov/33816490 33816490]; doi: [https://dx.doi.org/10.3389/fcell.2021.640667 10.3389/fcell.2021.640667]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33816490 3].
 +
#Bakochi A, <i>et al.</i> (2021) &quot;Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis.&quot; <i>Elife</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/33821792 33821792]; doi: [https://dx.doi.org/10.7554/eLife.64159 10.7554/eLife.64159]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33821792 109].
 +
#Rodrigues JG, <i>et al.</i> (2021) &quot;Terminal &alpha;2,6-sialylation of epidermal growth factor receptor modulates antibody therapy response of colorectal cancer cells.&quot; <i>Cell Oncol (Dordr)</i> <b>44</b>(4):835&ndash;850; PMID: [https://pubmed.ncbi.nlm.nih.gov/33847896 33847896]; doi: [https://dx.doi.org/10.1007/s13402-021-00606-z 10.1007/s13402-021-00606-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33847896 12].
 +
#Marcu A, <i>et al.</i> (2021) &quot;HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy.&quot; <i>J Immunother Cancer</i> <b>9</b>(4):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33858848 33858848]; doi: [https://dx.doi.org/10.1136/jitc-2020-002071 10.1136/jitc-2020-002071]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33858848 1490].
 +
#Nystr&ouml;m EEL, <i>et al.</i> (2021) &quot;An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function.&quot; <i>Science</i> <b>372</b>(6539):; PMID: [https://pubmed.ncbi.nlm.nih.gov/33859001 33859001]; doi: [https://dx.doi.org/10.1126/science.abb1590 10.1126/science.abb1590]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33859001 16].
 +
#D&iacute;ez P, <i>et al.</i> (2021) &quot;Dynamic Intracellular Metabolic Cell Signaling Profiles During Ag-Dependent B-Cell Differentiation.&quot; <i>Front Immunol</i> <b>12</b>:637832; PMID: [https://pubmed.ncbi.nlm.nih.gov/33859640 33859640]; doi: [https://dx.doi.org/10.3389/fimmu.2021.637832 10.3389/fimmu.2021.637832]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33859640 105].
 +
#Wei P, <i>et al.</i> (2019) &quot;Urinary Metabolomic and Proteomic Analyses in a Mouse Model of Prostatic Inflammation.&quot; <i>Urine (Amst)</i> <b>1</b>:17&ndash;23; PMID: [https://pubmed.ncbi.nlm.nih.gov/33870183 33870183]; doi: [https://dx.doi.org/10.1016/j.urine.2020.05.002 10.1016/j.urine.2020.05.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33870183 24].
 +
#Iwan A, <i>et al.</i> (2021) &quot;Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation.&quot; <i>Biomed Rep</i> <b>14</b>(6):54; PMID: [https://pubmed.ncbi.nlm.nih.gov/33884197 33884197]; doi: [https://dx.doi.org/10.3892/br.2021.1430 10.3892/br.2021.1430]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33884197 4].
 +
#Del Favero G, <i>et al.</i> (2021) &quot;Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function.&quot; <i>Arch Toxicol</i> <b>95</b>(6):2201&ndash;2221; PMID: [https://pubmed.ncbi.nlm.nih.gov/33890134 33890134]; doi: [https://dx.doi.org/10.1007/s00204-021-03042-y 10.1007/s00204-021-03042-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33890134 58].
 +
#Lavalou J, <i>et al.</i> (2021) &quot;Formation of polarized contractile interfaces by self-organized Toll-8/Cirl GPCR asymmetry.&quot; <i>Dev Cell</i> <b>56</b>(11):1574&ndash;1588.e7; PMID: [https://pubmed.ncbi.nlm.nih.gov/33932333 33932333]; doi: [https://dx.doi.org/10.1016/j.devcel.2021.03.030 10.1016/j.devcel.2021.03.030]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33932333 17].
 +
#Demmers LC, <i>et al.</i> (2021) &quot;HLA Class II Presentation Is Specifically Altered at Elevated Temperatures in the B-Lymphoblastic Cell Line JY.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100089; PMID: [https://pubmed.ncbi.nlm.nih.gov/33933681 33933681]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100089 10.1016/j.mcpro.2021.100089]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33933681 36].
 +
#Maheshwari G, <i>et al.</i> (2021) &quot;Tandem mass tag-based proteomics for studying the effects of a biotechnologically produced oyster mushroom against hepatic steatosis in obese Zucker rats.&quot; <i>J Proteomics</i> <b>242</b>:104255; PMID: [https://pubmed.ncbi.nlm.nih.gov/33957313 33957313]; doi: [https://dx.doi.org/10.1016/j.jprot.2021.104255 10.1016/j.jprot.2021.104255]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/33957313 1].
 +
#Englert H, <i>et al.</i> (2021) &quot;Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation.&quot; <i>EBioMedicine</i> <b>67</b>:103382; PMID: [https://pubmed.ncbi.nlm.nih.gov/34000623 34000623]; doi: [https://dx.doi.org/10.1016/j.ebiom.2021.103382 10.1016/j.ebiom.2021.103382]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34000623 36].
 +
#Parker R, <i>et al.</i> (2021) &quot;Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells.&quot; <i>Cell Rep</i> <b>35</b>(8):109179; PMID: [https://pubmed.ncbi.nlm.nih.gov/34004174 34004174]; doi: [https://dx.doi.org/10.1016/j.celrep.2021.109179 10.1016/j.celrep.2021.109179]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34004174 30].
 +
#Chen X, <i>et al.</i> (2021) &quot;Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells.&quot; <i>Cell Death Discov</i> <b>7</b>(1):114; PMID: [https://pubmed.ncbi.nlm.nih.gov/34006825 34006825]; doi: [https://dx.doi.org/10.1038/s41420-021-00487-z 10.1038/s41420-021-00487-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34006825 2].
 +
#Gallais F, <i>et al.</i> (2021) &quot;Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing.&quot; <i>Anal Bioanal Chem</i> <b>413</b>(29):7265&ndash;7275; PMID: [https://pubmed.ncbi.nlm.nih.gov/34013402 34013402]; doi: [https://dx.doi.org/10.1007/s00216-021-03401-9 10.1007/s00216-021-03401-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34013402 3].
 +
#Pisani F, <i>et al.</i> (2021) &quot;Regulation of aquaporin-4 expression in the central nervous system investigated using M23-AQP4 null mouse.&quot; <i>Glia</i> <b>69</b>(9):2235&ndash;2251; PMID: [https://pubmed.ncbi.nlm.nih.gov/34038017 34038017]; doi: [https://dx.doi.org/10.1002/glia.24032 10.1002/glia.24032]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34038017 7].
 +
#Chen H, <i>et al.</i> (2021) &quot;Proteomics analysis reveals the effect of 1&alpha;,25(OH)<sub>2</sub>VD<sub>3</sub>-glycosides on development of early testes in piglets.&quot; <i>Sci Rep</i> <b>11</b>(1):11341; PMID: [https://pubmed.ncbi.nlm.nih.gov/34059707 34059707]; doi: [https://dx.doi.org/10.1038/s41598-021-90676-8 10.1038/s41598-021-90676-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34059707 3].
 +
#Shaba E, <i>et al.</i> (2021) &quot;Proteome Characterization of BALF Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Unveiling Undercover Molecular Pathways.&quot; <i>Int J Mol Sci</i> <b>22</b>(11):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34071777 34071777]; doi: [https://dx.doi.org/10.3390/ijms22115696 10.3390/ijms22115696]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34071777 4].
 +
#Hatje FA, <i>et al.</i> (2021) &quot;Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice.&quot; <i>J Am Soc Nephrol</i> <b>32</b>(9):2175&ndash;2193; PMID: [https://pubmed.ncbi.nlm.nih.gov/34074698 34074698]; doi: [https://dx.doi.org/10.1681/ASN.2020091346 10.1681/ASN.2020091346]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34074698 15].
 +
#Wu CT, <i>et al.</i> (2021) &quot;SARS-CoV-2 infects human pancreatic &beta; cells and elicits &beta; cell impairment.&quot; <i>Cell Metab</i> <b>33</b>(8):1565&ndash;1576.e5; PMID: [https://pubmed.ncbi.nlm.nih.gov/34081912 34081912]; doi: [https://dx.doi.org/10.1016/j.cmet.2021.05.013 10.1016/j.cmet.2021.05.013]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34081912 40].
 +
#Hu S, <i>et al.</i> (2021) &quot;Integrated metabolomics and proteomics analysis reveals energy metabolism disorders in the livers of sleep-deprived mice.&quot; <i>J Proteomics</i> <b>245</b>:104290; PMID: [https://pubmed.ncbi.nlm.nih.gov/34089895 34089895]; doi: [https://dx.doi.org/10.1016/j.jprot.2021.104290 10.1016/j.jprot.2021.104290]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34089895 1].
 +
#Lei T, <i>et al.</i> (2021) &quot;Proteomic profile of human stem cells from dental pulp and periodontal ligament.&quot; <i>J Proteomics</i> <b>245</b>:104280; PMID: [https://pubmed.ncbi.nlm.nih.gov/34089896 34089896]; doi: [https://dx.doi.org/10.1016/j.jprot.2021.104280 10.1016/j.jprot.2021.104280]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34089896 9].
 +
#Kugeratski FG, <i>et al.</i> (2021) &quot;Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker.&quot; <i>Nat Cell Biol</i> <b>23</b>(6):631&ndash;641; PMID: [https://pubmed.ncbi.nlm.nih.gov/34108659 34108659]; doi: [https://dx.doi.org/10.1038/s41556-021-00693-y 10.1038/s41556-021-00693-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34108659 10].
 +
#Burns AP, <i>et al.</i> (2021) &quot;A Universal and High-Throughput Proteomics Sample Preparation Platform.&quot; <i>Anal Chem</i> <b>93</b>(24):8423&ndash;8431; PMID: [https://pubmed.ncbi.nlm.nih.gov/34110797 34110797]; doi: [https://dx.doi.org/10.1021/acs.analchem.1c00265 10.1021/acs.analchem.1c00265]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34110797 36].
 +
#Friedrich C, <i>et al.</i> (2021) &quot;Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories.&quot; <i>Nat Commun</i> <b>12</b>(1):3576; PMID: [https://pubmed.ncbi.nlm.nih.gov/34117251 34117251]; doi: [https://dx.doi.org/10.1038/s41467-021-23855-w 10.1038/s41467-021-23855-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34117251 154].
 +
#Mercer TJ, <i>et al.</i> (2021) &quot;Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy.&quot; <i>EMBO J</i> <b>40</b>(14):e105985; PMID: [https://pubmed.ncbi.nlm.nih.gov/34121209 34121209]; doi: [https://dx.doi.org/10.15252/embj.2020105985 10.15252/embj.2020105985]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34121209 234].
 +
#de la Calle Arregui C, <i>et al.</i> (2021) &quot;Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling.&quot; <i>Nat Commun</i> <b>12</b>(1):3660; PMID: [https://pubmed.ncbi.nlm.nih.gov/34135321 34135321]; doi: [https://dx.doi.org/10.1038/s41467-021-23857-8 10.1038/s41467-021-23857-8]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34135321 3].
 +
#Zeng X, <i>et al.</i> (2021) &quot;MSTracer: A Machine Learning Software Tool for Peptide Feature Detection from Liquid Chromatography-Mass Spectrometry Data.&quot; <i>J Proteome Res</i> <b>20</b>(7):3455&ndash;3462; PMID: [https://pubmed.ncbi.nlm.nih.gov/34137255 34137255]; doi: [https://dx.doi.org/10.1021/acs.jproteome.0c01029 10.1021/acs.jproteome.0c01029]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34137255 3].
 +
#Griffante G, <i>et al.</i> (2021) &quot;Human cytomegalovirus-induced host protein citrullination is crucial for viral replication.&quot; <i>Nat Commun</i> <b>12</b>(1):3910; PMID: [https://pubmed.ncbi.nlm.nih.gov/34162877 34162877]; doi: [https://dx.doi.org/10.1038/s41467-021-24178-6 10.1038/s41467-021-24178-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34162877 15].
 +
#Nagler A, <i>et al.</i> (2021) &quot;Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics.&quot; <i>Cell Rep</i> <b>35</b>(13):109305; PMID: [https://pubmed.ncbi.nlm.nih.gov/34166618 34166618]; doi: [https://dx.doi.org/10.1016/j.celrep.2021.109305 10.1016/j.celrep.2021.109305]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34166618 144].
 +
#Brauer M, <i>et al.</i> (2021) &quot;What&#39;s a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of <i>Clostridioides difficile</i>.&quot; <i>Front Microbiol</i> <b>12</b>:682111; PMID: [https://pubmed.ncbi.nlm.nih.gov/34177868 34177868]; doi: [https://dx.doi.org/10.3389/fmicb.2021.682111 10.3389/fmicb.2021.682111]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34177868 240].
 +
#Hirama T, <i>et al.</i> (2021) &quot;Proteogenomic identification of an immunogenic HLA class I neoantigen in mismatch repair-deficient colorectal cancer tissue.&quot; <i>JCI Insight</i> <b>6</b>(14):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34185709 34185709]; doi: [https://dx.doi.org/10.1172/jci.insight.146356 10.1172/jci.insight.146356]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34185709 11].
 +
#Schaffert A, <i>et al.</i> (2021) &quot;Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation.&quot; <i>Environ Int</i> <b>156</b>:106730; PMID: [https://pubmed.ncbi.nlm.nih.gov/34186270 34186270]; doi: [https://dx.doi.org/10.1016/j.envint.2021.106730 10.1016/j.envint.2021.106730]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34186270 169].
 +
#Schlagowski AM, <i>et al.</i> (2021) &quot;Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol.&quot; <i>EMBO J</i> <b>40</b>(16):e107913; PMID: [https://pubmed.ncbi.nlm.nih.gov/34191328 34191328]; doi: [https://dx.doi.org/10.15252/embj.2021107913 10.15252/embj.2021107913]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34191328 3].
 +
#Vaz C, <i>et al.</i> (2021) &quot;Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the <i>Candida albicans</i> Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis.&quot; <i>J Fungi (Basel)</i> <b>7</b>(7):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34201883 34201883]; doi: [https://dx.doi.org/10.3390/jof7070501 10.3390/jof7070501]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34201883 2].
 +
#Rusanov AL, <i>et al.</i> (2021) &quot;Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages.&quot; <i>Int J Mol Sci</i> <b>22</b>(12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34204832 34204832]; doi: [https://dx.doi.org/10.3390/ijms22126323 10.3390/ijms22126323]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34204832 18].
 +
#Bauz&aacute;-Martinez J, <i>et al.</i> (2021) &quot;HLA-B and cysteinylated ligands distinguish the antigen presentation landscape of extracellular vesicles.&quot; <i>Commun Biol</i> <b>4</b>(1):825; PMID: [https://pubmed.ncbi.nlm.nih.gov/34211107 34211107]; doi: [https://dx.doi.org/10.1038/s42003-021-02364-y 10.1038/s42003-021-02364-y]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34211107 12].
 +
#Yang H, <i>et al.</i> (2021) &quot;Heat Adaptation Induced Cross Protection Against Ethanol Stress in <i>Tetragenococcus halophilu</i>s: Physiological Characteristics and Proteomic Analysis.&quot; <i>Front Microbiol</i> <b>12</b>:686672; PMID: [https://pubmed.ncbi.nlm.nih.gov/34220775 34220775]; doi: [https://dx.doi.org/10.3389/fmicb.2021.686672 10.3389/fmicb.2021.686672]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34220775 14].
 +
#Stingl C, <i>et al.</i> (2021) &quot;Alteration of protein expression and spliceosome pathway activity during Barrett&#39;s carcinogenesis.&quot; <i>J Gastroenterol</i> <b>56</b>(9):791&ndash;807; PMID: [https://pubmed.ncbi.nlm.nih.gov/34227026 34227026]; doi: [https://dx.doi.org/10.1007/s00535-021-01802-2 10.1007/s00535-021-01802-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34227026 91].
 +
#Wu Q, <i>et al.</i> (2021) &quot;Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney.&quot; <i>J Am Soc Nephrol</i> <b>32</b>(9):2195&ndash;2209; PMID: [https://pubmed.ncbi.nlm.nih.gov/34230103 34230103]; doi: [https://dx.doi.org/10.1681/ASN.2020071035 10.1681/ASN.2020071035]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34230103 34].
 +
#Chen DY, <i>et al.</i> (2021) &quot;SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway.&quot; <i>J Virol</i> <b>95</b>(19):e0086221; PMID: [https://pubmed.ncbi.nlm.nih.gov/34260266 34260266]; doi: [https://dx.doi.org/10.1128/JVI.00862-21 10.1128/JVI.00862-21]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34260266 6].
 +
#Adam RJ, <i>et al.</i> (2020) &quot;Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency.&quot; <i>Kidney360</i> <b>1</b>(10):1105&ndash;1115; PMID: [https://pubmed.ncbi.nlm.nih.gov/34263177 34263177]; doi: [https://dx.doi.org/10.34067/kid.0001212020 10.34067/kid.0001212020]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34263177 9].
 +
#Israel S, <i>et al.</i> (2021) &quot;The COP9 signalosome subunit 3 is necessary for early embryo survival by way of a stable protein deposit in mouse oocytes.&quot; <i>Mol Hum Reprod</i> <b>27</b>(8):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34264319 34264319]; doi: [https://dx.doi.org/10.1093/molehr/gaab048 10.1093/molehr/gaab048]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34264319 130].
 +
#Kesavan R, <i>et al.</i> (2021) &quot;The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer.&quot; <i>Int J Mol Sci</i> <b>22</b>(13):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34281173 34281173]; doi: [https://dx.doi.org/10.3390/ijms22137120 10.3390/ijms22137120]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34281173 13].
 +
#de Azambuja Rodrigues PM, <i>et al.</i> (2021) &quot;Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock.&quot; <i>Sci Rep</i> <b>11</b>(1):15149; PMID: [https://pubmed.ncbi.nlm.nih.gov/34312428 34312428]; doi: [https://dx.doi.org/10.1038/s41598-021-94474-0 10.1038/s41598-021-94474-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34312428 72].
 +
#Striednig B, <i>et al.</i> (2021) &quot;Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery.&quot; <i>EMBO Rep</i> <b>22</b>(9):e52972; PMID: [https://pubmed.ncbi.nlm.nih.gov/34314090 34314090]; doi: [https://dx.doi.org/10.15252/embr.202152972 10.15252/embr.202152972]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34314090 8].
 +
#Tabang DN, <i>et al.</i> (2021) &quot;Analysis of pancreatic extracellular matrix protein post-translational modifications <i>via</i> electrostatic repulsion-hydrophilic interaction chromatography coupled with mass spectrometry.&quot; <i>Mol Omics</i> <b>17</b>(5):652&ndash;664; PMID: [https://pubmed.ncbi.nlm.nih.gov/34318855 34318855]; doi: [https://dx.doi.org/10.1039/d1mo00104c 10.1039/d1mo00104c]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34318855 64].
 +
#Koyuncu S, <i>et al.</i> (2021) &quot;Rewiring of the ubiquitinated proteome determines ageing in C. elegans.&quot; <i>Nature</i> <b>596</b>(7871):285&ndash;290; PMID: [https://pubmed.ncbi.nlm.nih.gov/34321666 34321666]; doi: [https://dx.doi.org/10.1038/s41586-021-03781-z 10.1038/s41586-021-03781-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34321666 72].
 +
#Psakhye I, <i>et al.</i> (2021) &quot;SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover.&quot; <i>Cell Rep</i> <b>36</b>(5):109485; PMID: [https://pubmed.ncbi.nlm.nih.gov/34348159 34348159]; doi: [https://dx.doi.org/10.1016/j.celrep.2021.109485 10.1016/j.celrep.2021.109485]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34348159 2].
 +
#Vanderboom PM, <i>et al.</i> (2021) &quot;A size-exclusion-based approach for purifying extracellular vesicles from human plasma.&quot; <i>Cell Rep Methods</i> <b>1</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34355211 34355211]; doi: [https://dx.doi.org/10.1016/j.crmeth.2021.100055 10.1016/j.crmeth.2021.100055]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34355211 140].
 +
#Jang HN, <i>et al.</i> (2021) &quot;Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma.&quot; <i>Cancers (Basel)</i> <b>13</b>(15):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34359790 34359790]; doi: [https://dx.doi.org/10.3390/cancers13153890 10.3390/cancers13153890]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34359790 174].
 +
#Wang HZ, <i>et al.</i> (2021) &quot;Cerebrospinal fluid proteomics reveal potential protein targets of JiaWeiSiNiSan in preventing chronic psychological stress damage.&quot; <i>Pharm Biol</i> <b>59</b>(1):1065&ndash;1076; PMID: [https://pubmed.ncbi.nlm.nih.gov/34383630 34383630]; doi: [https://dx.doi.org/10.1080/13880209.2021.1954666 10.1080/13880209.2021.1954666]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34383630 3].
 +
#Qi YA, <i>et al.</i> (2021) &quot;Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100136; PMID: [https://pubmed.ncbi.nlm.nih.gov/34391887 34391887]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100136 10.1016/j.mcpro.2021.100136]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34391887 27].
 +
#Klaeger S, <i>et al.</i> (2021) &quot;Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100133; PMID: [https://pubmed.ncbi.nlm.nih.gov/34391888 34391888]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100133 10.1016/j.mcpro.2021.100133]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34391888 230].
 +
#ElAbd H, <i>et al.</i> (2021) &quot;Immunopeptidomics toolkit library (IPTK): a python-based modular toolbox for analyzing immunopeptidomics data.&quot; <i>BMC Bioinformatics</i> <b>22</b>(1):405; PMID: [https://pubmed.ncbi.nlm.nih.gov/34404349 34404349]; doi: [https://dx.doi.org/10.1186/s12859-021-04315-0 10.1186/s12859-021-04315-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34404349 4].
 +
#Aviner R, <i>et al.</i> (2021) &quot;Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis.&quot; <i>Nature</i> <b>596</b>(7873):558&ndash;564; PMID: [https://pubmed.ncbi.nlm.nih.gov/34408324 34408324]; doi: [https://dx.doi.org/10.1038/s41586-021-03851-2 10.1038/s41586-021-03851-2]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34408324 63].
 +
#Kikuchi Y, <i>et al.</i> (2021) &quot;CD8<sup>+</sup> T-cell Immune Surveillance against a Tumor Antigen Encoded by the Oncogenic Long Noncoding RNA <i>PVT1</i>.&quot; <i>Cancer Immunol Res</i> <b>9</b>(11):1342&ndash;1353; PMID: [https://pubmed.ncbi.nlm.nih.gov/34433589 34433589]; doi: [https://dx.doi.org/10.1158/2326-6066.CIR-20-0964 10.1158/2326-6066.CIR-20-0964]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34433589 11].
 +
#Gonzalez-Franquesa A, <i>et al.</i> (2021) &quot;Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome.&quot; <i>Proteomes</i> <b>9</b>(3):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34449730 34449730]; doi: [https://dx.doi.org/10.3390/proteomes9030037 10.3390/proteomes9030037]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34449730 34].
 +
#Sripathi SR, <i>et al.</i> (2021) &quot;Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100131; PMID: [https://pubmed.ncbi.nlm.nih.gov/34455105 34455105]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100131 10.1016/j.mcpro.2021.100131]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34455105 2].
 +
#Carruthers NJ, <i>et al.</i> (2021) &quot;The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity.&quot; <i>Sci Rep</i> <b>11</b>(1):17394; PMID: [https://pubmed.ncbi.nlm.nih.gov/34462518 34462518]; doi: [https://dx.doi.org/10.1038/s41598-021-96995-0 10.1038/s41598-021-96995-0]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34462518 20].
 +
#Wang H, <i>et al.</i> (2021) &quot;An Integrated Transcriptomics and Proteomics Analysis Implicates lncRNA MALAT1 in the Regulation of Lipid Metabolism.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100141; PMID: [https://pubmed.ncbi.nlm.nih.gov/34478876 34478876]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100141 10.1016/j.mcpro.2021.100141]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34478876 6].
 +
#Frankovsky J, <i>et al.</i> (2021) &quot;The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids.&quot; <i>J Biol Chem</i> <b>297</b>(4):101155; PMID: [https://pubmed.ncbi.nlm.nih.gov/34480900 34480900]; doi: [https://dx.doi.org/10.1016/j.jbc.2021.101155 10.1016/j.jbc.2021.101155]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34480900 36].
 +
#Mukherjee S, <i>et al.</i> (2021) &quot;Citrullination of Amyloid-&beta; Peptides in Alzheimer&#39;s Disease.&quot; <i>ACS Chem Neurosci</i> <b>12</b>(19):3719&ndash;3732; PMID: [https://pubmed.ncbi.nlm.nih.gov/34519476 34519476]; doi: [https://dx.doi.org/10.1021/acschemneuro.1c00474 10.1021/acschemneuro.1c00474]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34519476 10].
 +
#Zhang X, <i>et al.</i> (2021) &quot;The Insufficient Activation of RIG-I-Like Signaling Pathway Contributes to Highly Efficient Replication of Porcine Picornaviruses in IBRS-2 Cells.&quot; <i>Mol Cell Proteomics</i> <b>20</b>:100147; PMID: [https://pubmed.ncbi.nlm.nih.gov/34530158 34530158]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100147 10.1016/j.mcpro.2021.100147]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34530158 4].
 +
#Tognoli ML, <i>et al.</i> (2021) &quot;RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis.&quot; <i>EMBO J</i> <b>40</b>(20):e107680; PMID: [https://pubmed.ncbi.nlm.nih.gov/34532864 34532864]; doi: [https://dx.doi.org/10.15252/embj.2021107680 10.15252/embj.2021107680]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34532864 4].
 +
#Champagne J, <i>et al.</i> (2021) &quot;Oncogene-dependent sloppiness in mRNA translation.&quot; <i>Mol Cell</i> <b>81</b>(22):4709&ndash;4721.e9; PMID: [https://pubmed.ncbi.nlm.nih.gov/34562372 34562372]; doi: [https://dx.doi.org/10.1016/j.molcel.2021.09.002 10.1016/j.molcel.2021.09.002]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34562372 30].
 +
#Gao Z, <i>et al.</i> (2021) &quot;A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins.&quot; <i>J Proteome Res</i> <b>20</b>(11):4919&ndash;4924; PMID: [https://pubmed.ncbi.nlm.nih.gov/34570971 34570971]; doi: [https://dx.doi.org/10.1021/acs.jproteome.1c00603 10.1021/acs.jproteome.1c00603]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34570971 30].
 +
#Gomkale R, <i>et al.</i> (2021) &quot;Mapping protein interactions in the active TOM-TIM23 supercomplex.&quot; <i>Nat Commun</i> <b>12</b>(1):5715; PMID: [https://pubmed.ncbi.nlm.nih.gov/34588454 34588454]; doi: [https://dx.doi.org/10.1038/s41467-021-26016-1 10.1038/s41467-021-26016-1]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34588454 87].
 +
#Kim M, <i>et al.</i> (2021) &quot;A protein interaction landscape of breast cancer.&quot; <i>Science</i> <b>374</b>(6563):eabf3066; PMID: [https://pubmed.ncbi.nlm.nih.gov/34591612 34591612]; doi: [https://dx.doi.org/10.1126/science.abf3066 10.1126/science.abf3066]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34591612 702].
 +
#Swaney DL, <i>et al.</i> (2021) &quot;A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity.&quot; <i>Science</i> <b>374</b>(6563):eabf2911; PMID: [https://pubmed.ncbi.nlm.nih.gov/34591642 34591642]; doi: [https://dx.doi.org/10.1126/science.abf2911 10.1126/science.abf2911]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34591642 551].
 +
#Stieglitz F, <i>et al.</i> (2021) &quot;The Binary Toxin of <i>Clostridioides difficile</i> Alters the Proteome and Phosphoproteome of HEp-2 Cells.&quot; <i>Front Microbiol</i> <b>12</b>:725612; PMID: [https://pubmed.ncbi.nlm.nih.gov/34594315 34594315]; doi: [https://dx.doi.org/10.3389/fmicb.2021.725612 10.3389/fmicb.2021.725612]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34594315 57].
 +
#Ross SH, <i>et al.</i> (2021) &quot;Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes.&quot; <i>Front Immunol</i> <b>12</b>:712402; PMID: [https://pubmed.ncbi.nlm.nih.gov/34603285 34603285]; doi: [https://dx.doi.org/10.3389/fimmu.2021.712402 10.3389/fimmu.2021.712402]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34603285 6].
 +
#Yau B, <i>et al.</i> (2021) &quot;Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet.&quot; <i>iScience</i> <b>24</b>(10):103099; PMID: [https://pubmed.ncbi.nlm.nih.gov/34622154 34622154]; doi: [https://dx.doi.org/10.1016/j.isci.2021.103099 10.1016/j.isci.2021.103099]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34622154 38].
 +
#Di Persio S, <i>et al.</i> (2021) &quot;Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis.&quot; <i>Cell Rep Med</i> <b>2</b>(9):100395; PMID: [https://pubmed.ncbi.nlm.nih.gov/34622232 34622232]; doi: [https://dx.doi.org/10.1016/j.xcrm.2021.100395 10.1016/j.xcrm.2021.100395]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34622232 2].
 +
#Lorente E, <i>et al.</i> (2021) &quot;Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry.&quot; <i>Int J Mol Sci</i> <b>22</b>(19):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34638844 34638844]; doi: [https://dx.doi.org/10.3390/ijms221910503 10.3390/ijms221910503]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34638844 12].
 +
#Zhang YH, <i>et al.</i> (2021) &quot;Lung proteomic biomarkers associated with chronic obstructive pulmonary disease.&quot; <i>Am J Physiol Lung Cell Mol Physiol</i> <b>321</b>(6):L1119&ndash;L1130; PMID: [https://pubmed.ncbi.nlm.nih.gov/34668408 34668408]; doi: [https://dx.doi.org/10.1152/ajplung.00198.2021 10.1152/ajplung.00198.2021]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34668408 456].
 +
#Lu C, <i>et al.</i> (2021) &quot;Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms.&quot; <i>J Proteome Res</i> <b>20</b>(11):5203&ndash;5211; PMID: [https://pubmed.ncbi.nlm.nih.gov/34669412 34669412]; doi: [https://dx.doi.org/10.1021/acs.jproteome.1c00624 10.1021/acs.jproteome.1c00624]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34669412 192].
 +
#Saburina IN, <i>et al.</i> (2021) &quot;Proteomic and electron microscopy study of myogenic differentiation of alveolar mucosa multipotent mesenchymal stromal cells in three-dimensional culture.&quot; <i>Proteomics</i> <b></b>:e2000304; PMID: [https://pubmed.ncbi.nlm.nih.gov/34674377 34674377]; doi: [https://dx.doi.org/10.1002/pmic.202000304 10.1002/pmic.202000304]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34674377 20].
 +
#Wang Y, <i>et al.</i> (2021) &quot;SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells.&quot; <i>Nature</i> <b>599</b>(7883):136&ndash;140; PMID: [https://pubmed.ncbi.nlm.nih.gov/34707288 34707288]; doi: [https://dx.doi.org/10.1038/s41586-021-04025-w 10.1038/s41586-021-04025-w]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34707288 2].
 +
#Biswas D, <i>et al.</i> (2021) &quot;Deciphering the Interregional and Interhemisphere Proteome of the Human Brain in the Context of the Human Proteome Project.&quot; <i>J Proteome Res</i> <b>20</b>(12):5280&ndash;5293; PMID: [https://pubmed.ncbi.nlm.nih.gov/34714085 34714085]; doi: [https://dx.doi.org/10.1021/acs.jproteome.1c00511 10.1021/acs.jproteome.1c00511]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34714085 80].
 +
#Sirois I, <i>et al.</i> (2021) &quot;Immunopeptidomics: Isolation of Mouse and Human MHC Class I- and II-Associated Peptides for Mass Spectrometry Analysis.&quot; <i>J Vis Exp</i> <b></b>(176):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34723952 34723952]; doi: [https://dx.doi.org/10.3791/63052 10.3791/63052]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34723952 38].
 +
#Leung MR, <i>et al.</i> (2021) &quot;In-cell structures of conserved supramolecular protein arrays at the mitochondria-cytoskeleton interface in mammalian sperm.&quot; <i>Proc Natl Acad Sci U S A</i> <b>118</b>(45):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34737233 34737233]; doi: [https://dx.doi.org/10.1073/pnas.2110996118 10.1073/pnas.2110996118]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34737233 6].
 +
#Yap K, <i>et al.</i> (2021) &quot;Hybridization-proximity labeling reveals spatially ordered interactions of nuclear RNA compartments.&quot; <i>Mol Cell</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/34741808 34741808]; doi: [https://dx.doi.org/10.1016/j.molcel.2021.10.009 10.1016/j.molcel.2021.10.009]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34741808 18].
 +
#Shlomovitz I, <i>et al.</i> (2021) &quot;Proteomic analysis of necroptotic extracellular vesicles.&quot; <i>Cell Death Dis</i> <b>12</b>(11):1059; PMID: [https://pubmed.ncbi.nlm.nih.gov/34750357 34750357]; doi: [https://dx.doi.org/10.1038/s41419-021-04317-z 10.1038/s41419-021-04317-z]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34750357 12].
 +
#Froehlich JW, <i>et al.</i> (2021) &quot;The Urinary Proteomic Profile Implicates Key Regulators for Urologic Chronic Pelvic Pain Syndrome (UCPPS): A MAPP Research Network&nbsp;Study.&quot; <i>Mol Cell Proteomics</i> <b>21</b>(1):100176; PMID: [https://pubmed.ncbi.nlm.nih.gov/34774759 34774759]; doi: [https://dx.doi.org/10.1016/j.mcpro.2021.100176 10.1016/j.mcpro.2021.100176]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34774759 52].
 +
#Capizzi M, <i>et al.</i> (2021) &quot;Developmental defects in Huntington&#39;s disease show that axonal growth and microtubule reorganization require NUMA1.&quot; <i>Neuron</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/34793694 34793694]; doi: [https://dx.doi.org/10.1016/j.neuron.2021.10.033 10.1016/j.neuron.2021.10.033]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34793694 10].
 +
#Stirm M, <i>et al.</i> (2021) &quot;A scalable, clinically severe pig model for Duchenne muscular dystrophy.&quot; <i>Dis Model Mech</i> <b>14</b>(12):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34796900 34796900]; doi: [https://dx.doi.org/10.1242/dmm.049285 10.1242/dmm.049285]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34796900 42].
 +
#Morgenstern M, <i>et al.</i> (2021) &quot;Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context.&quot; <i>Cell Metab</i> <b>33</b>(12):2464&ndash;2483.e18; PMID: [https://pubmed.ncbi.nlm.nih.gov/34800366 34800366]; doi: [https://dx.doi.org/10.1016/j.cmet.2021.11.001 10.1016/j.cmet.2021.11.001]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34800366 1024].
 +
#de Sousa BM, <i>et al.</i> (2021) &quot;Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants.&quot; <i>NPJ Regen Med</i> <b>6</b>(1):80; PMID: [https://pubmed.ncbi.nlm.nih.gov/34815414 34815414]; doi: [https://dx.doi.org/10.1038/s41536-021-00184-6 10.1038/s41536-021-00184-6]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34815414 8].
 +
#Ding Y, <i>et al.</i> (2021) &quot;MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting <i>BCL2L11</i>.&quot; <i>Front Cell Dev Biol</i> <b>9</b>:736864; PMID: [https://pubmed.ncbi.nlm.nih.gov/34820370 34820370]; doi: [https://dx.doi.org/10.3389/fcell.2021.736864 10.3389/fcell.2021.736864]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34820370 8].
 +
#Rolfs Z, <i>et al.</i> (2021) &quot;An atlas of protein turnover rates in mouse tissues.&quot; <i>Nat Commun</i> <b>12</b>(1):6778; PMID: [https://pubmed.ncbi.nlm.nih.gov/34836951 34836951]; doi: [https://dx.doi.org/10.1038/s41467-021-26842-3 10.1038/s41467-021-26842-3]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34836951 173].
 +
#Needham EJ, <i>et al.</i> (2021) &quot;Personalized phosphoproteomics identifies functional signaling.&quot; <i>Nat Biotechnol</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/34857927 34857927]; doi: [https://dx.doi.org/10.1038/s41587-021-01099-9 10.1038/s41587-021-01099-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34857927 26].
 +
#Ziemli&#x144;ska E, <i>et al.</i> (2021) &quot;Palm Oil-Rich Diet Affects Murine Liver Proteome and <i>S</i>-Palmitoylome.&quot; <i>Int J Mol Sci</i> <b>22</b>(23):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34884899 34884899]; doi: [https://dx.doi.org/10.3390/ijms222313094 10.3390/ijms222313094]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34884899 24].
 +
#Taher L, <i>et al.</i> (2021) &quot;The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice.&quot; <i>Sci Rep</i> <b>11</b>(1):23731; PMID: [https://pubmed.ncbi.nlm.nih.gov/34887460 34887460]; doi: [https://dx.doi.org/10.1038/s41598-021-03054-9 10.1038/s41598-021-03054-9]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34887460 28].
 +
#Almeida N, <i>et al.</i> (2021) &quot;Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database.&quot; <i>Cancers (Basel)</i> <b>13</b>(24):; PMID: [https://pubmed.ncbi.nlm.nih.gov/34944842 34944842]; doi: [https://dx.doi.org/10.3390/cancers13246224 10.3390/cancers13246224]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34944842 24].
 +
#Halkoum R, <i>et al.</i> (2021) &quot;Glyoxal induces senescence in human keratinocytes through oxidative stress and activation of the AKT/FOXO3a/p27<sup>KIP1</sup> pathway.&quot; <i>J Invest Dermatol</i>; PMID: [https://pubmed.ncbi.nlm.nih.gov/34971698 34971698]; doi: [https://dx.doi.org/10.1016/j.jid.2021.12.022 10.1016/j.jid.2021.12.022]; GPMDB: [https://gpmdb.thegpm.org/data/keyword/34971698 4].

Revision as of 19:14, 6 January 2022

GPMDB was originally constructed to serve as a reference work for all publicly available proteomics generated using tandem mass spectrometry. Public data is downloaded and reanalyzed using the current version of X! Tandem. The result files generated by the reanalysis and the relevant metadata are imported into the database and made available through the associated web site, ftp site and REST interfaces.

Contents

Current Public Data Sources

The following public data repositories are checked daily for new suitable raw data for reanalysis:

  1. ProteomeXchange/PRIDE;
  2. JPOST;
  3. MASSIVE;
  4. PeptideAtlas/PASSEL;
  5. ProteomicsDB;
  6. The Chorus Project; and
  7. iProX.

Data made available from specific large projects, such as CPTAC or the Human Proteome Atlas, are also included when they are made available. Every effort is made so that reanalyzed results from all data sources are made available within 48 hours of their being released. In addition, data from lab web sites, ftp sites and direct contributions through the GPM sites made available to researchers are imported into GPMDB as part of a daily incremental update process.

Previous Data Sources

GPMDB has been in operation since Jan. 1, 2004. Several large data source repositories have come into existence and ceased activity in the period since that time. All of the data from those repositories (e.g., TRANCHE, Peptidome) were reanalyzed and stored in GPMDB and they are still available even though the source repository sites are no longer active.

Review process

Simply because data is made available does not mean that it will be included in GPMDB. The data must be approved our quality control AI for its initial acceptance and it may be rejected subsequently because of either quality or originality concerns.

CAUTION: Many papers contain serious errors in their Methods sections. When using data from the literature, it is important to be skeptical of any experimental parameter (cell line, tissue type, modification reagents, quantitation methoods, etc.) that may impact on your use of the data. We have tried to correct any obvious errors, but there is no way to guarantee that we found them all. When attempting to analyze or reproduce results, keep in mind the likelyhood that even key parts of the experiment methods may have been recorded incorrectly in the associated manuscript, as methods are rarely reviewed properly in the current journal publication process.

Data from publications

The following is a list of data sets with associated PubMed IDs that have supplied data to the GPMDB Project through the data sources mentioned above. The list was current, as of Jan 2, 2022.

  1. Lipton MS, et al. (2002) "Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags." Proc Natl Acad Sci U S A 99(17):11049–54; PMID: 12177431; doi: 10.1073/pnas.172170199; GPMDB: 498.
  2. Liu T, et al. (2004) "High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology." Anal Chem 76(18):5345–53; PMID: 15362891; doi: 10.1021/ac049485q; GPMDB: 6.
  3. Sauer G, et al. (2005) "Proteome analysis of the human mitotic spindle." Mol Cell Proteomics 4(1):35–43; PMID: 15561729; doi: 10.1074/mcp.M400158-MCP200; GPMDB: 1.
  4. Klein C, et al. (2005) "The membrane proteome of Halobacterium salinarum." Proteomics 5(1):180–97; PMID: 15619294; doi: 10.1002/pmic.200400943; GPMDB: 37.
  5. Searle BC, et al. (2005) "Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm." J Proteome Res 4(2):546–54; PMID: 15822933; doi: 10.1021/pr049781j; GPMDB: 4.
  6. Elias JE, et al. (2005) "Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations." Nat Methods 2(9):667–75; PMID: 16118637; doi: 10.1038/nmeth785; GPMDB: 30.
  7. Lee YJ, et al. (2006) "Proteome analysis of human hair shaft: from protein identification to posttranslational modification." Mol Cell Proteomics 5(5):789–800; PMID: 16446289; doi: 10.1074/mcp.M500278-MCP200; GPMDB: 75.
  8. Gatlin CL, et al. (2006) "Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus." Proteomics 6(5):1530–49; PMID: 16470658; doi: 10.1002/pmic.200500253; GPMDB: 1603.
  9. Keshamouni VG, et al. (2006) "Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype." J Proteome Res 5(5):1143–54; PMID: 16674103; doi: 10.1021/pr050455t; GPMDB: 3.
  10. Bisle B, et al. (2006) "Quantitative profiling of the membrane proteome in a halophilic archaeon." Mol Cell Proteomics 5(9):1543–58; PMID: 16804162; doi: 10.1074/mcp.M600106-MCP200; GPMDB: 32.
  11. Hamacher M, et al. (2006) "HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy." Proteomics 6(18):4890–8; PMID: 16927433; doi: 10.1002/pmic.200600295; GPMDB: 296.
  12. Beausoleil SA, et al. (2006) "A probability-based approach for high-throughput protein phosphorylation analysis and site localization." Nat Biotechnol 24(10):1285–92; PMID: 16964243; doi: 10.1038/nbt1240; GPMDB: 31.
  13. Whitehead K, et al. (2006) "An integrated systems approach for understanding cellular responses to gamma radiation." Mol Syst Biol 2:47; PMID: 16969339; doi: 10.1038/msb4100091; GPMDB: 27.
  14. Price TS, et al. (2007) "EBP, a program for protein identification using multiple tandem mass spectrometry datasets." Mol Cell Proteomics 6(3):527–36; PMID: 17164401; doi: 10.1074/mcp.T600049-MCP200; GPMDB: 314.
  15. Tanner S, et al. (2007) "Improving gene annotation using peptide mass spectrometry." Genome Res 17(2):231–9; PMID: 17189379; doi: 10.1101/gr.5646507; GPMDB: 1.
  16. Konstantinidis K, et al. (2007) "Genome-wide proteomics of Natronomonas pharaonis." J Proteome Res 6(1):185–93; PMID: 17203963; doi: 10.1021/pr060352q; GPMDB: 176.
  17. Villén J, et al. (2007) "Large-scale phosphorylation analysis of mouse liver." Proc Natl Acad Sci U S A 104(5):1488–93; PMID: 17242355; doi: 10.1073/pnas.0609836104; GPMDB: 1.
  18. Klein C, et al. (2007) "The low molecular weight proteome of Halobacterium salinarum." J Proteome Res 6(4):1510–8; PMID: 17326674; doi: 10.1021/pr060634q; GPMDB: 10.
  19. Asara JM, et al. (2007) "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry." Science 316(5822):280–5; PMID: 17431180; doi: 10.1126/science.1137614; GPMDB: 2.
  20. Lowery DM, et al. (2007) "Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate." EMBO J 26(9):2262–73; PMID: 17446864; doi: 10.1038/sj.emboj.7601683; GPMDB: 24.
  21. Brunner E, et al. (2007) "A high-quality catalog of the Drosophila melanogaster proteome." Nat Biotechnol 25(5):576–83; PMID: 17450130; doi: 10.1038/nbt1300; GPMDB: 1907.
  22. Wu L, et al. (2007) "Global survey of human T leukemic cells by integrating proteomics and transcriptomics profiling." Mol Cell Proteomics 6(8):1343–53; PMID: 17519225; doi: 10.1074/mcp.M700017-MCP200; GPMDB: 2299.
  23. Au CE, et al. (2007) "Organellar proteomics to create the cell map." Curr Opin Cell Biol 19(4):376–85; PMID: 17689063; doi: 10.1016/j.ceb.2007.05.004; GPMDB: 4090.
  24. Whiteaker JR, et al. (2007) "Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer." J Proteome Res 6(10):3962–75; PMID: 17711321; doi: 10.1021/pr070202v; GPMDB: 84.
  25. Bantscheff M, et al. (2007) "Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors." Nat Biotechnol 25(9):1035–44; PMID: 17721511; doi: 10.1038/nbt1328; GPMDB: 729.
  26. Padliya ND, et al. (2007) "Tandem mass spectrometry for the detection of plant pathogenic fungi and the effects of database composition on protein inferences." Proteomics 7(21):3932–42; PMID: 17922518; doi: 10.1002/pmic.200700419; GPMDB: 1.
  27. Rikova K, et al. (2007) "Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer." Cell 131(6):1190–203; PMID: 18083107; doi: 10.1016/j.cell.2007.11.025; GPMDB: 104.
  28. Ansong C, et al. (2008) "Proteomics analysis of the causative agent of typhoid fever." J Proteome Res 7(2):546–57; PMID: 18166006; doi: 10.1021/pr070434u; GPMDB: 313.
  29. Finney GL, et al. (2008) "Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution muLC-MS data." Anal Chem 80(4):961–71; PMID: 18189369; doi: 10.1021/ac701649e; GPMDB: 12.
  30. Stevens SM Jr, et al. (2008) "Proteomic analysis of mouse brain microsomes: identification and bioinformatic characterization of endoplasmic reticulum proteins in the mammalian central nervous system." J Proteome Res 7(3):1046–54; PMID: 18271522; doi: 10.1021/pr7006279; GPMDB: 4.
  31. Yocum AK, et al. (2008) "Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation." Mol Cell Proteomics 7(4):750–67; PMID: 18304949; doi: 10.1074/mcp.M700399-MCP200; GPMDB: 18.
  32. Lemeer S, et al. (2008) "Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo." J Proteome Res 7(4):1555–64; PMID: 18307296; doi: 10.1021/pr700667w; GPMDB: 148.
  33. Zhai B, et al. (2008) "Phosphoproteome analysis of Drosophila melanogaster embryos." J Proteome Res 7(4):1675–82; PMID: 18327897; doi: 10.1021/pr700696a; GPMDB: 24.
  34. Denny P, et al. (2008) "The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions." J Proteome Res 7(5):1994–2006; PMID: 18361515; doi: 10.1021/pr700764j; GPMDB: 102.
  35. Simó C, et al. (2008) "Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 1. Behavior of mono- to hexapeptides." Anal Chem 80(10):3547–56; PMID: 18399644; doi: 10.1021/ac702635v; GPMDB: 19.
  36. Bachi A, et al. (2008) "Performance of combinatorial peptide libraries in capturing the low-abundance proteome of red blood cells. 2. Behavior of resins containing individual amino acids." Anal Chem 80(10):3557–65; PMID: 18410134; doi: 10.1021/ac8001353; GPMDB: 2.
  37. Baerenfaller K, et al. (2008) "Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics." Science 320(5878):938–41; PMID: 18436743; doi: 10.1126/science.1157956; GPMDB: 28.
  38. Ji H, et al. (2008) "Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes." Electrophoresis 29(12):2660–71; PMID: 18494037; doi: 10.1002/elps.200800015; GPMDB: 26.
  39. Cao Z, et al. (2008) "Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis." Mol Cell Proteomics 7(9):1651–67; PMID: 18504258; doi: 10.1074/mcp.M700155-MCP200; GPMDB: 6.
  40. Lemeer S, et al. (2008) "Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos." Mol Cell Proteomics 7(11):2176–87; PMID: 18550893; doi: 10.1074/mcp.M800081-MCP200; GPMDB: 31.
  41. Sodek KL, et al. (2008) "Identification of pathways associated with invasive behavior by ovarian cancer cells using multidimensional protein identification technology (MudPIT)." Mol Biosyst 4(7):762–73; PMID: 18563251; doi: 10.1039/b717542f; GPMDB: 252.
  42. Schimmel J, et al. (2008) "The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle." Mol Cell Proteomics 7(11):2107–22; PMID: 18565875; doi: 10.1074/mcp.M800025-MCP200; GPMDB: 5.
  43. Yu MJ, et al. (2008) "Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct." Am J Physiol Cell Physiol 295(3):C661–78; PMID: 18596208; doi: 10.1152/ajpcell.90650.2007; GPMDB: 137.
  44. Pagliarini DJ, et al. (2008) "A mitochondrial protein compendium elucidates complex I disease biology." Cell 134(1):112–23; PMID: 18614015; doi: 10.1016/j.cell.2008.06.016; GPMDB: 274.
  45. Merrihew GE, et al. (2008) "Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations." Genome Res 18(10):1660–9; PMID: 18653799; doi: 10.1101/gr.077644.108; GPMDB: 369.
  46. Dix MM, et al. (2008) "Global mapping of the topography and magnitude of proteolytic events in apoptosis." Cell 134(4):679–91; PMID: 18724940; doi: 10.1016/j.cell.2008.06.038; GPMDB: 178.
  47. Kline KG, et al. (2008) "High quality catalog of proteotypic peptides from human heart." J Proteome Res 7(11):5055–61; PMID: 18803417; doi: 10.1021/pr800239e; GPMDB: 96.
  48. de Godoy LM, et al. (2008) "Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast." Nature 455(7217):1251–4; PMID: 18820680; doi: 10.1038/nature07341; GPMDB: 505.
  49. Liao L, et al. (2008) "Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice." Proc Natl Acad Sci U S A 105(40):15281–6; PMID: 18829439; doi: 10.1073/pnas.0804678105; GPMDB: 15.
  50. Lin MK, et al. (2009) "Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function." Mol Cell Proteomics 8(2):343–56; PMID: 18936055; doi: 10.1074/mcp.M800420-MCP200; GPMDB: 346.
  51. Slebos RJ, et al. (2008) "Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry." J Proteome Res 7(12):5286–94; PMID: 18939861; doi: 10.1021/pr8004666; GPMDB: 346.
  52. Mittler G, et al. (2009) "A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements." Genome Res 19(2):284–93; PMID: 19015324; doi: 10.1101/gr.081711.108; GPMDB: 7.
  53. Codreanu SG, et al. (2009) "Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal." Mol Cell Proteomics 8(4):670–80; PMID: 19054759; doi: 10.1074/mcp.M800070-MCP200; GPMDB: 168.
  54. Ulintz PJ, et al. (2009) "Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification." J Proteome Res 8(2):887–99; PMID: 19072539; doi: 10.1021/pr800535h; GPMDB: 18.
  55. Du J, et al. (2009) "Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy." Nat Biotechnol 27(1):77–83; PMID: 19098899; doi: 10.1038/nbt.1513; GPMDB: 36.
  56. Glatter T, et al. (2009) "An integrated workflow for charting the human interaction proteome: insights into the PP2A system." Mol Syst Biol 5:237; PMID: 19156129; doi: 10.1038/msb.2008.75; GPMDB: 62.
  57. Bivi N, et al. (2009) "Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates." J Proteome Res 8(3):1131–42; PMID: 19226166; doi: 10.1021/pr8005606; GPMDB: 10.
  58. Pieper R, et al. (2009) "Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes." Proteome Sci 7:5; PMID: 19228400; doi: 10.1186/1477-5956-7-5; GPMDB: 376.
  59. de Sousa Abreu R, et al. (2009) "Genomic analyses of musashi1 downstream targets show a strong association with cancer-related processes." J Biol Chem 284(18):12125–35; PMID: 19258308; doi: 10.1074/jbc.M809605200; GPMDB: 14.
  60. Mathias RA, et al. (2009) "Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition." J Proteome Res 8(6):2827–37; PMID: 19296674; doi: 10.1021/pr8010974; GPMDB: 98.
  61. Boersema PJ, et al. (2009) "Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics." Nat Protoc 4(4):484–94; PMID: 19300442; doi: 10.1038/nprot.2009.21; GPMDB: 3.
  62. Ramakrishnan SR, et al. (2009) "Integrating shotgun proteomics and mRNA expression data to improve protein identification." Bioinformatics 25(11):1397–403; PMID: 19318424; doi: 10.1093/bioinformatics/btp168; GPMDB: 8.
  63. Rudomin EL, et al. (2009) "Directed sample interrogation utilizing an accurate mass exclusion-based data-dependent acquisition strategy (AMEx)." J Proteome Res 8(6):3154–60; PMID: 19344186; doi: 10.1021/pr801017a; GPMDB: 11.
  64. Steiling K, et al. (2009) "Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers." PLoS One 4(4):e5043; PMID: 19357784; doi: 10.1371/journal.pone.0005043; GPMDB: 589.
  65. Hjelmervik TO, et al. (2009) "The minor salivary gland proteome in Sjögren's syndrome." Oral Dis 15(5):342–53; PMID: 19364392; doi: 10.1111/j.1601-0825.2009.01531.x; GPMDB: 2.
  66. Zanivan S, et al. (2008) "Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry." J Proteome Res 7(12):5314–26; PMID: 19367708; doi: 10.1021/pr800599n; GPMDB: 20.
  67. Reiland S, et al. (2009) "Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks." Plant Physiol 150(2):889–903; PMID: 19376835; doi: 10.1104/pp.109.138677; GPMDB: 13.
  68. Parker KC, et al. (2009) "Characterization of human skeletal muscle biopsy samples using shotgun proteomics." J Proteome Res 8(7):3265–77; PMID: 19382779; doi: 10.1021/pr800873q; GPMDB: 36.
  69. Bell AW, et al. (2009) "A HUPO test sample study reveals common problems in mass spectrometry-based proteomics." Nat Methods 6(6):423–30; PMID: 19448641; doi: 10.1038/nmeth.1333; GPMDB: 14.
  70. Fernández E, et al. (2009) "Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins." Mol Syst Biol 5:269; PMID: 19455133; doi: 10.1038/msb.2009.27; GPMDB: 70.
  71. Sprung RW Jr, et al. (2009) "Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis." Mol Cell Proteomics 8(8):1988–98; PMID: 19467989; doi: 10.1074/mcp.M800518-MCP200; GPMDB: 230.
  72. Burkard ME, et al. (2009) "Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells." PLoS Biol 7(5):e1000111; PMID: 19468302; doi: 10.1371/journal.pbio.1000111; GPMDB: 1.
  73. Samaee SM, et al. (2009) "Quantitative composition of vitellogenin-derived yolk proteins and their effects on viability of embryos and larvae of common dentex (Dentex dentex), a marine pelagophil teleost." J Exp Zool A Ecol Genet Physiol 311(7):504–20; PMID: 19492308; doi: 10.1002/jez.548; GPMDB: 4.
  74. Ma ZQ, et al. (2009) "IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering." J Proteome Res 8(8):3872–81; PMID: 19522537; doi: 10.1021/pr900360j; GPMDB: 18.
  75. Shi L, et al. (2009) "Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica." Infect Immun 77(8):3227–33; PMID: 19528222; doi: 10.1128/IAI.00063-09; GPMDB: 29.
  76. Cox B, et al. (2009) "Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology." Mol Syst Biol 5:279; PMID: 19536202; doi: 10.1038/msb.2009.37; GPMDB: 166.
  77. Kentsis A, et al. (2010) "Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry." Ann Emerg Med 55(1):62–70.e4; PMID: 19556024; doi: 10.1016/j.annemergmed.2009.04.020; GPMDB: 311.
  78. Lau NC, et al. (2009) "Human Ccr4-Not complexes contain variable deadenylase subunits." Biochem J 422(3):443–53; PMID: 19558367; doi: 10.1042/BJ20090500; GPMDB: 10.
  79. Zivanovic Y, et al. (2009) "Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea." Genome Biol 10(6):R70; PMID: 19558674; doi: 10.1186/gb-2009-10-6-r70; GPMDB: 7.
  80. Alev C, et al. (2009) "Genomic organization of zebra finch alpha and beta globin genes and their expression in primitive and definitive blood in comparison with globins in chicken." Dev Genes Evol 219(7):353–60; PMID: 19609557; doi: 10.1007/s00427-009-0294-8; GPMDB: 8.
  81. Izquierdo L, et al. (2009) "Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases." EMBO J 28(17):2650–61; PMID: 19629045; doi: 10.1038/emboj.2009.203; GPMDB: 1.
  82. Van Hoof D, et al. (2009) "Phosphorylation dynamics during early differentiation of human embryonic stem cells." Cell Stem Cell 5(2):214–26; PMID: 19664995; doi: 10.1016/j.stem.2009.05.021; GPMDB: 12.
  83. Tebbe A, et al. (2009) "Life-style changes of a halophilic archaeon analyzed by quantitative proteomics." Proteomics 9(15):3843–55; PMID: 19670246; doi: 10.1002/pmic.200800944; GPMDB: 43.
  84. Casado-Vela J, et al. (2009) "Comprehensive proteomic analysis of human endometrial fluid aspirate." J Proteome Res 8(10):4622–32; PMID: 19670903; doi: 10.1021/pr9004426; GPMDB: 4.
  85. Charles RC, et al. (2009) "Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium." PLoS One 4(9):e6994; PMID: 19746165; doi: 10.1371/journal.pone.0006994; GPMDB: 6.
  86. Pottiez G, et al. (2009) "Understanding the blood-brain barrier using gene and protein expression profiling technologies." Brain Res Rev 62(1):83–98; PMID: 19770003; doi: 10.1016/j.brainresrev.2009.09.004; GPMDB: 6.
  87. Boersema PJ, et al. (2010) "In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling." Mol Cell Proteomics 9(1):84–99; PMID: 19770167; doi: 10.1074/mcp.M900291-MCP200; GPMDB: 4.
  88. Ozlü N, et al. (2010) "Binding partner switching on microtubules and aurora-B in the mitosis to cytokinesis transition." Mol Cell Proteomics 9(2):336–50; PMID: 19786723; doi: 10.1074/mcp.M900308-MCP200; GPMDB: 13.
  89. Johansen E, et al. (2009) "A lectin HPLC method to enrich selectively-glycosylated peptides from complex biological samples." J Vis Exp (32):; PMID: 19798022; doi: 10.3791/1398; GPMDB: 83.
  90. Hahn CK, et al. (2009) "Proteomic and genetic approaches identify Syk as an AML target." Cancer Cell 16(4):281–94; PMID: 19800574; doi: 10.1016/j.ccr.2009.08.018; GPMDB: 8.
  91. Delmotte N, et al. (2009) "Community proteogenomics reveals insights into the physiology of phyllosphere bacteria." Proc Natl Acad Sci U S A 106(38):16428–33; PMID: 19805315; doi: 10.1073/pnas.0905240106; GPMDB: 11.
  92. Tunica DG, et al. (2009) "Proteomic analysis of the secretome of human umbilical vein endothelial cells using a combination of free-flow electrophoresis and nanoflow LC-MS/MS." Proteomics 9(21):4991–6; PMID: 19810032; doi: 10.1002/pmic.200900065; GPMDB: 1.
  93. Mathivanan S, et al. (2010) "Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature." Mol Cell Proteomics 9(2):197–208; PMID: 19837982; doi: 10.1074/mcp.M900152-MCP200; GPMDB: 84.
  94. Baudet M, et al. (2010) "Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons." Mol Cell Proteomics 9(2):415–26; PMID: 19875382; doi: 10.1074/mcp.M900359-MCP200; GPMDB: 19.
  95. Pitteri SJ, et al. (2009) "Integrated proteomic analysis of human cancer cells and plasma from tumor bearing mice for ovarian cancer biomarker discovery." PLoS One 4(11):e7916; PMID: 19936259; doi: 10.1371/journal.pone.0007916; GPMDB: 144.
  96. Bilodeau N, et al. (2010) "Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes." J Proteome Res 9(2):708–17; PMID: 19947650; doi: 10.1021/pr900481b; GPMDB: 17.
  97. Mathias RA, et al. (2010) "Extracellular remodelling during oncogenic Ras-induced epithelial-mesenchymal transition facilitates MDCK cell migration." J Proteome Res 9(2):1007–19; PMID: 19954229; doi: 10.1021/pr900907g; GPMDB: 66.
  98. Lau TY, et al. (2010) "Prioritization of candidate protein biomarkers from an in vitro model system of breast tumor progression toward clinical verification." J Proteome Res 9(3):1450–9; PMID: 20000743; doi: 10.1021/pr900989q; GPMDB: 5.
  99. Chalkley RJ, et al. (2010) "Statistical analysis of Peptide electron transfer dissociation fragmentation mass spectrometry." Anal Chem 82(2):579–84; PMID: 20028093; doi: 10.1021/ac9018582; GPMDB: 2.
  100. Yin X, et al. (2010) "Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution." Mol Cell Proteomics 9(3):497–509; PMID: 20037178; doi: 10.1074/mcp.M900275-MCP200; GPMDB: 156.
  101. Friso G, et al. (2010) "Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly." Plant Physiol 152(3):1219–50; PMID: 20089766; doi: 10.1104/pp.109.152694; GPMDB: 301.
  102. Gant-Branum RL, et al. (2010) "Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry." J Proteome Res 9(3):1541–8; PMID: 20095645; doi: 10.1021/pr901043e; GPMDB: 8.
  103. Paweletz CP, et al. (2010) "Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry." J Proteome Res 9(3):1392–401; PMID: 20095649; doi: 10.1021/pr900925d; GPMDB: 144.
  104. Guo X, et al. (2010) "Proteomic analysis of proteins involved in spermiogenesis in mouse." J Proteome Res 9(3):1246–56; PMID: 20099899; doi: 10.1021/pr900735k; GPMDB: 1.
  105. Chaerkady R, et al. (2010) "Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells." Proteomics 10(7):1359–73; PMID: 20104618; doi: 10.1002/pmic.200900483; GPMDB: 3.
  106. Burgess EF, et al. (2008) "Prostate cancer serum biomarker discovery through proteomic analysis of alpha-2 macroglobulin protein complexes." Proteomics Clin Appl 2(9):1223; PMID: 20107526; doi: 10.1002/prca.200780073; GPMDB: 115.
  107. Swaney DL, et al. (2010) "Value of using multiple proteases for large-scale mass spectrometry-based proteomics." J Proteome Res 9(3):1323–9; PMID: 20113005; doi: 10.1021/pr900863u; GPMDB: 15.
  108. Rinschen MM, et al. (2010) "Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells." Proc Natl Acad Sci U S A 107(8):3882–7; PMID: 20139300; doi: 10.1073/pnas.0910646107; GPMDB: 117.
  109. Looso M, et al. (2010) "Advanced identification of proteins in uncharacterized proteomes by pulsed in vivo stable isotope labeling-based mass spectrometry." Mol Cell Proteomics 9(6):1157–66; PMID: 20139370; doi: 10.1074/mcp.M900426-MCP200; GPMDB: 23.
  110. Tomazella GG, et al. (2010) "Analysis of detergent-insoluble and whole cell lysate fractions of resting neutrophils using high-resolution mass spectrometry." J Proteome Res 9(4):2030–6; PMID: 20158270; doi: 10.1021/pr1000253; GPMDB: 2.
  111. Sharma K, et al. (2010) "Quantitative analysis of kinase-proximal signaling in lipopolysaccharide-induced innate immune response." J Proteome Res 9(5):2539–49; PMID: 20222745; doi: 10.1021/pr901192p; GPMDB: 73.
  112. Baiges I, et al. (2010) "Lipogenesis is decreased by grape seed proanthocyanidins according to liver proteomics of rats fed a high fat diet." Mol Cell Proteomics 9(7):1499–513; PMID: 20332082; doi: 10.1074/mcp.M000055-MCP201; GPMDB: 2.
  113. Drake RR, et al. (2010) "In-depth proteomic analyses of direct expressed prostatic secretions." J Proteome Res 9(5):2109–16; PMID: 20334419; doi: 10.1021/pr1001498; GPMDB: 9.
  114. Ettwig KF, et al. (2010) "Nitrite-driven anaerobic methane oxidation by oxygenic bacteria." Nature 464(7288):543–8; PMID: 20336137; doi: 10.1038/nature08883; GPMDB: 2.
  115. Pardo M, et al. (2010) "An expanded Oct4 interaction network: implications for stem cell biology, development, and disease." Cell Stem Cell 6(4):382–95; PMID: 20362542; doi: 10.1016/j.stem.2010.03.004; GPMDB: 7.
  116. Geiger T, et al. (2010) "Super-SILAC mix for quantitative proteomics of human tumor tissue." Nat Methods 7(5):383–5; PMID: 20364148; doi: 10.1038/nmeth.1446; GPMDB: 116.
  117. Clair G, et al. (2010) "Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions." Mol Cell Proteomics 9(7):1486–98; PMID: 20368289; doi: 10.1074/mcp.M000027-MCP201; GPMDB: 27.
  118. Aguiar M, et al. (2010) "Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets." J Proteome Res 9(6):3103–7; PMID: 20377248; doi: 10.1021/pr1000225; GPMDB: 13.
  119. Vandenborre G, et al. (2010) "Glycosylation signatures in Drosophila: fishing with lectins." J Proteome Res 9(6):3235–42; PMID: 20387871; doi: 10.1021/pr1001753; GPMDB: 1.
  120. Bakthavatsalam D, et al. (2010) "The secreted proteome profile of developing Dictyostelium discoideum cells." Proteomics 10(13):2556–9; PMID: 20422638; doi: 10.1002/pmic.200900516; GPMDB: 1.
  121. Olinares PD, et al. (2010) "Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering." Mol Cell Proteomics 9(7):1594–615; PMID: 20423899; doi: 10.1074/mcp.M000038-MCP201; GPMDB: 110.
  122. McManus CA, et al. (2010) "Two-dimensional reference map for the basic proteome of the human dorsolateral prefrontal cortex (dlPFC) of the prefrontal lobe region of the brain." Proteomics 10(13):2551–5; PMID: 20432482; doi: 10.1002/pmic.200900705; GPMDB: 9.
  123. Renard BY, et al. (2010) "Estimating the confidence of peptide identifications without decoy databases." Anal Chem 82(11):4314–8; PMID: 20455556; doi: 10.1021/ac902892j; GPMDB: 58.
  124. Hah N, et al. (2010) "A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex." Cancer Res 70(11):4402–11; PMID: 20460533; doi: 10.1158/0008-5472.CAN-09-2767; GPMDB: 2.
  125. Choudhary C, et al. (2010) "Decoding signalling networks by mass spectrometry-based proteomics." Nat Rev Mol Cell Biol 11(6):427–39; PMID: 20461098; doi: 10.1038/nrm2900; GPMDB: 17.
  126. Casado-Vela J, et al. (2010) "Analysis of root plasma membrane aquaporins from Brassica oleracea: post-translational modifications, de novo sequencing and detection of isoforms by high resolution mass spectrometry." J Proteome Res 9(7):3479–94; PMID: 20462273; doi: 10.1021/pr901150g; GPMDB: 8.
  127. Hubner NC, et al. (2010) "Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions." J Cell Biol 189(4):739–54; PMID: 20479470; doi: 10.1083/jcb.200911091; GPMDB: 61.
  128. Peng L, et al. (2010) "The Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative. Preparation and characterisation of the carbonate-washed membrane standard." Proteomics 10(22):4142–8; PMID: 20486120; doi: 10.1002/pmic.201000126; GPMDB: 2.
  129. Breitkreutz A, et al. (2010) "A global protein kinase and phosphatase interaction network in yeast." Science 328(5981):1043–6; PMID: 20489023; doi: 10.1126/science.1176495; GPMDB: 571.
  130. Pelletier S, et al. (2010) "Quantifying cross-tissue diversity in proteasome complexes by mass spectrometry." Mol Biosyst 6(8):1450–3; PMID: 20498902; doi: 10.1039/c004989a; GPMDB: 24.
  131. Chen YS, et al. (2011) "Proteomics profiling of Madin-Darby canine kidney plasma membranes reveals Wnt-5a involvement during oncogenic H-Ras/TGF-beta-mediated epithelial-mesenchymal transition." Mol Cell Proteomics 10(2):M110.001131; PMID: 20511395; doi: 10.1074/mcp.M110.001131; GPMDB: 100.
  132. Gundry RL, et al. (2010) "Expanding the mouse embryonic stem cell proteome: combining three proteomic approaches." Proteomics 10(14):2728–32; PMID: 20512790; doi: 10.1002/pmic.201000039; GPMDB: 16.
  133. O'Brien RN, et al. (2010) "Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal." Mol Cell Proteomics 9(10):2238–51; PMID: 20513800; doi: 10.1074/mcp.M110.000281; GPMDB: 8.
  134. Sury MD, et al. (2010) "The SILAC fly allows for accurate protein quantification in vivo." Mol Cell Proteomics 9(10):2173–83; PMID: 20525996; doi: 10.1074/mcp.M110.000323; GPMDB: 120.
  135. Kallappagoudar S, et al. (2010) "Nuclear matrix proteome analysis of Drosophila melanogaster." Mol Cell Proteomics 9(9):2005–18; PMID: 20530634; doi: 10.1074/mcp.M110.001362; GPMDB: 19.
  136. Didangelos A, et al. (2010) "Proteomics characterization of extracellular space components in the human aorta." Mol Cell Proteomics 9(9):2048–62; PMID: 20551380; doi: 10.1074/mcp.M110.001693; GPMDB: 108.
  137. Kozielski F, et al. (2011) "Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain." Amino Acids 41(2):363–85; PMID: 20567863; doi: 10.1007/s00726-010-0649-5; GPMDB: 15.
  138. Andrews G, et al. (2010) "Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting." Anal Bioanal Chem 398(1):391–404; PMID: 20582400; doi: 10.1007/s00216-010-3929-8; GPMDB: 48.
  139. Li M, et al. (2010) "Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling." J Proteome Res 9(8):4295–305; PMID: 20586475; doi: 10.1021/pr100527g; GPMDB: 153.
  140. Wolschin F, et al. (2011) "Insulin receptor substrate influences female caste development in honeybees." Biol Lett 7(1):112–5; PMID: 20591854; doi: 10.1098/rsbl.2010.0463; GPMDB: 23.
  141. Bezstarosti K, et al. (2010) "Differential proteomics based on 18O labeling to determine the cyclin dependent kinase 9 interactome." J Proteome Res 9(9):4464–75; PMID: 20593818; doi: 10.1021/pr100217d; GPMDB: 1.
  142. Lee CP, et al. (2010) "Diurnal changes in mitochondrial function reveal daily optimization of light and dark respiratory metabolism in Arabidopsis." Mol Cell Proteomics 9(10):2125–39; PMID: 20601493; doi: 10.1074/mcp.M110.001214; GPMDB: 55.
  143. Azimzadeh O, et al. (2010) "Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics." J Proteome Res 9(9):4710–20; PMID: 20604508; doi: 10.1021/pr1004168; GPMDB: 11.
  144. DeMarco R, et al. (2010) "Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts." Genome Res 20(8):1112–21; PMID: 20606017; doi: 10.1101/gr.100099.109; GPMDB: 1.
  145. Magdeldin S, et al. (2010) "Comparison of two dimensional electrophoresis mouse colon proteomes before and after knocking out Aquaporin 8." J Proteomics 73(10):2031–40; PMID: 20619372; doi: 10.1016/j.jprot.2010.06.010; GPMDB: 5.
  146. Andrews G, et al. (2010) "Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2." Anal Bioanal Chem 398(1):377–89; PMID: 20623222; doi: 10.1007/s00216-010-3955-6; GPMDB: 58.
  147. Impens F, et al. (2010) "A quantitative proteomics design for systematic identification of protease cleavage events." Mol Cell Proteomics 9(10):2327–33; PMID: 20627866; doi: 10.1074/mcp.M110.001271; GPMDB: 3.
  148. Mäusbacher N, et al. (2010) "Glycoprotein capture and quantitative phosphoproteomics indicate coordinated regulation of cell migration upon lysophosphatidic acid stimulation." Mol Cell Proteomics 9(11):2337–53; PMID: 20639409; doi: 10.1074/mcp.M110.000737; GPMDB: 70.
  149. Xu G, et al. (2010) "Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling." Nat Biotechnol 28(8):868–73; PMID: 20639865; doi: 10.1038/nbt.1654; GPMDB: 2.
  150. Tu C, et al. (2010) "Depletion of abundant plasma proteins and limitations of plasma proteomics." J Proteome Res 9(10):4982–91; PMID: 20677825; doi: 10.1021/pr100646w; GPMDB: 207.
  151. Gnad F, et al. (2010) "Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria." Mol Cell Proteomics 9(12):2642–53; PMID: 20688971; doi: 10.1074/mcp.M110.001594; GPMDB: 18.
  152. Korfali N, et al. (2010) "The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture." Mol Cell Proteomics 9(12):2571–85; PMID: 20693407; doi: 10.1074/mcp.M110.002915; GPMDB: 8.
  153. Victor KJ, et al. (2010) "Proteomic analysis of shoot tissue during photoperiod induced growth cessation in V. riparia Michx. grapevines." Proteome Sci 8:44; PMID: 20704748; doi: 10.1186/1477-5956-8-44; GPMDB: 2.
  154. Gunaratne R, et al. (2010) "Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells." Proc Natl Acad Sci U S A 107(35):15653–8; PMID: 20713729; doi: 10.1073/pnas.1007424107; GPMDB: 4.
  155. Kline KG, et al. (2010) "In planta changes in protein phosphorylation induced by the plant hormone abscisic acid." Proc Natl Acad Sci U S A 107(36):15986–91; PMID: 20733066; doi: 10.1073/pnas.1007879107; GPMDB: 48.
  156. Franklin S, et al. (2011) "Specialized compartments of cardiac nuclei exhibit distinct proteomic anatomy." Mol Cell Proteomics 10(1):M110.000703; PMID: 20807835; doi: 10.1074/mcp.M110.000703; GPMDB: 136.
  157. Alvarado R, et al. (2010) "A comparative study of in-gel digestions using microwave and pressure-accelerated technologies." J Biomol Tech 21(3):148–55; PMID: 20808644; GPMDB: 85.
  158. Wei Y, et al. (2011) "Primary tumor xenografts of human lung adeno and squamous cell carcinoma express distinct proteomic signatures." J Proteome Res 10(1):161–74; PMID: 20815376; doi: 10.1021/pr100491e; GPMDB: 150.
  159. Patel VN, et al. (2010) "Prediction and testing of biological networks underlying intestinal cancer." PLoS One 5(9):; PMID: 20824133; doi: 10.1371/journal.pone.0012497; GPMDB: 1.
  160. Kim S, et al. (2010) "The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search." Mol Cell Proteomics 9(12):2840–52; PMID: 20829449; doi: 10.1074/mcp.M110.003731; GPMDB: 48.
  161. Collier TS, et al. (2010) "Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics." Anal Chem 82(20):8696–702; PMID: 20845935; doi: 10.1021/ac101978b; GPMDB: 39.
  162. Vermeulen M, et al. (2010) "Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers." Cell 142(6):967–80; PMID: 20850016; doi: 10.1016/j.cell.2010.08.020; GPMDB: 92.
  163. Wegener KM, et al. (2010) "Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations." Mol Cell Proteomics 9(12):2678–89; PMID: 20858728; doi: 10.1074/mcp.M110.000109; GPMDB: 278.
  164. Nagaraj N, et al. (2010) "Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation." J Proteome Res 9(12):6786–94; PMID: 20873877; doi: 10.1021/pr100637q; GPMDB: 25.
  165. Sun RX, et al. (2010) "Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra." J Proteome Res 9(12):6354–67; PMID: 20883037; doi: 10.1021/pr100648r; GPMDB: 69.
  166. Stone MD, et al. (2010) "Novel In Situ Collection of Tumor Interstitial Fluid from a Head and Neck Squamous Carcinoma Reveals a Unique Proteome with Diagnostic Potential." Clin Proteomics 6(3):75–82; PMID: 20930922; doi: 10.1007/s12014-010-9050-3; GPMDB: 1.
  167. Rice RH, et al. (2010) "Proteomic analysis of human nail plate." J Proteome Res 9(12):6752–8; PMID: 20939611; doi: 10.1021/pr1009349; GPMDB: 40.
  168. Khositseth S, et al. (2011) "Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells." Mol Cell Proteomics 10(1):M110.004036; PMID: 20940332; doi: 10.1074/mcp.M110.004036; GPMDB: 5.
  169. Bowyer PW, et al. (2011) "Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte." Mol Cell Proteomics 10(5):M110.001636; PMID: 20943600; doi: 10.1074/mcp.M110.001636; GPMDB: 760.
  170. Dedieu A, et al. (2011) "Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy." J Biol Chem 286(1):259–69; PMID: 20978121; doi: 10.1074/jbc.M110.159483; GPMDB: 14.
  171. Bartke T, et al. (2010) "Nucleosome-interacting proteins regulated by DNA and histone methylation." Cell 143(3):470–84; PMID: 21029866; doi: 10.1016/j.cell.2010.10.012; GPMDB: 160.
  172. de Souza GA, et al. (2011) "Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database." Mol Cell Proteomics 10(1):M110.002527; PMID: 21030493; doi: 10.1074/mcp.M110.002527; GPMDB: 6.
  173. Murray CI, et al. (2011) "Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection." Mol Cell Proteomics 10(3):M110.004721; PMID: 21036925; doi: 10.1074/mcp.M110.004721; GPMDB: 36.
  174. Walther DM, et al. (2011) "Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging." Mol Cell Proteomics 10(2):M110.004523; PMID: 21048193; doi: 10.1074/mcp.M110.004523; GPMDB: 119.
  175. Murphy JP, et al. (2011) "Targeted proteomic analysis of glycolysis in cancer cells." J Proteome Res 10(2):604–13; PMID: 21058741; doi: 10.1021/pr100774f; GPMDB: 1.
  176. Li YF, et al. (2010) "The importance of peptide detectability for protein identification, quantification, and experiment design in MS/MS proteomics." J Proteome Res 9(12):6288–97; PMID: 21067214; doi: 10.1021/pr1005586; GPMDB: 20.
  177. Vranakis I, et al. (2011) "Identification of potentially involved proteins in levofloxacin resistance mechanisms in Coxiella burnetii." J Proteome Res 10(2):756–62; PMID: 21070068; doi: 10.1021/pr100906v; GPMDB: 1.
  178. Angel TE, et al. (2010) "Proteome analysis of Borrelia burgdorferi response to environmental change." PLoS One 5(11):e13800; PMID: 21072190; doi: 10.1371/journal.pone.0013800; GPMDB: 70.
  179. Majeran W, et al. (2010) "Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize." Plant Cell 22(11):3509–42; PMID: 21081695; doi: 10.1105/tpc.110.079764; GPMDB: 453.
  180. Valgepea K, et al. (2010) "Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase." BMC Syst Biol 4:166; PMID: 21122111; doi: 10.1186/1752-0509-4-166; GPMDB: 22.
  181. Helbig AO, et al. (2010) "Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels." BMC Genomics 11:685; PMID: 21126336; doi: 10.1186/1471-2164-11-685; GPMDB: 10.
  182. Fan C, et al. (2011) "S100A11 mediates hypoxia-induced mitogenic factor (HIMF)-induced smooth muscle cell migration, vesicular exocytosis, and nuclear activation." Mol Cell Proteomics 10(3):M110.000901; PMID: 21139050; doi: 10.1074/mcp.M110.000901; GPMDB: 13.
  183. Skirycz A, et al. (2011) "A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions." J Proteome Res 10(3):1018–29; PMID: 21142212; doi: 10.1021/pr100785n; GPMDB: 476.
  184. Mestdagh P, et al. (2010) "The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma." Mol Cell 40(5):762–73; PMID: 21145484; doi: 10.1016/j.molcel.2010.11.038; GPMDB: 1.
  185. Li QR, et al. (2011) "Large scale phosphoproteome profiles comprehensive features of mouse embryonic stem cells." Mol Cell Proteomics 10(4):M110.001750; PMID: 21149613; doi: 10.1074/mcp.M110.001750; GPMDB: 12.
  186. Ito J, et al. (2011) "Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism." J Proteome Res 10(4):1571–82; PMID: 21166475; doi: 10.1021/pr1009433; GPMDB: 3.
  187. Lee JE, et al. (2011) "The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation." Mol Cell Proteomics 10(5):M110.006460; PMID: 21169563; doi: 10.1074/mcp.M110.006460; GPMDB: 41.
  188. Huttlin EL, et al. (2010) "A tissue-specific atlas of mouse protein phosphorylation and expression." Cell 143(7):1174–89; PMID: 21183079; doi: 10.1016/j.cell.2010.12.001; GPMDB: 562.
  189. Brockmeyer C, et al. (2011) "T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component." J Biol Chem 286(9):7535–47; PMID: 21189249; doi: 10.1074/jbc.M110.201236; GPMDB: 4.
  190. Manes NP, et al. (2011) "Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry." Mol Cell Proteomics 10(3):M110.000927; PMID: 21189417; doi: 10.1074/mcp.M110.000927; GPMDB: 133.
  191. Chornoguz O, et al. (2011) "Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis." Mol Cell Proteomics 10(3):M110.002980; PMID: 21191032; doi: 10.1074/mcp.M110.002980; GPMDB: 6.
  192. Hansson J, et al. (2011) "Time-resolved quantitative proteome analysis of in vivo intestinal development." Mol Cell Proteomics 10(3):M110.005231; PMID: 21191033; doi: 10.1074/mcp.M110.005231; GPMDB: 48.
  193. Singh SK, et al. (2011) "Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis." J Sep Sci 34(2):225–32; PMID: 21246729; doi: 10.1002/jssc.201000626; GPMDB: 17.
  194. Bantscheff M, et al. (2011) "Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes." Nat Biotechnol 29(3):255–65; PMID: 21258344; doi: 10.1038/nbt.1759; GPMDB: 128.
  195. Baerenfaller K, et al. (2011) "pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana." Integr Biol (Camb) 3(3):225–37; PMID: 21264403; doi: 10.1039/c0ib00078g; GPMDB: 64.
  196. Otto A, et al. (2010) "Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis." Nat Commun 1:137; PMID: 21266987; doi: 10.1038/ncomms1137; GPMDB: 76.
  197. Burkard TR, et al. (2011) "Initial characterization of the human central proteome." BMC Syst Biol 5:17; PMID: 21269460; doi: 10.1186/1752-0509-5-17; GPMDB: 99.
  198. Smith CR, et al. (2011) "Draft genome of the red harvester ant Pogonomyrmex barbatus." Proc Natl Acad Sci U S A 108(14):5667–72; PMID: 21282651; doi: 10.1073/pnas.1007901108; GPMDB: 2.
  199. Michalski A, et al. (2011) "More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS." J Proteome Res 10(4):1785–93; PMID: 21309581; doi: 10.1021/pr101060v; GPMDB: 3.
  200. Lahtvee PJ, et al. (2011) "Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates." Microb Cell Fact 10:12; PMID: 21349178; doi: 10.1186/1475-2859-10-12; GPMDB: 64.
  201. Paul D, et al. (2011) "Proteome and membrane fatty acid analyses on Oligotropha carboxidovorans OM5 grown under chemolithoautotrophic and heterotrophic conditions." PLoS One 6(2):e17111; PMID: 21386900; doi: 10.1371/journal.pone.0017111; GPMDB: 1.
  202. Li J, et al. (2011) "A bioinformatics workflow for variant peptide detection in shotgun proteomics." Mol Cell Proteomics 10(5):M110.006536; PMID: 21389108; doi: 10.1074/mcp.M110.006536; GPMDB: 59.
  203. Frese CK, et al. (2011) "Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos." J Proteome Res 10(5):2377–88; PMID: 21413819; doi: 10.1021/pr1011729; GPMDB: 73.
  204. Poliakov A, et al. (2011) "Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis." Mol Cell Proteomics 10(6):M110.007039; PMID: 21421797; doi: 10.1074/mcp.M110.007039; GPMDB: 148.
  205. Di Palma S, et al. (2011) "Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis." Anal Chem 83(9):3440–7; PMID: 21443167; doi: 10.1021/ac103312e; GPMDB: 4.
  206. Jagannadham MV, et al. (2011) "Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W." Mol Cell Proteomics 10(6):M110.004549; PMID: 21447709; doi: 10.1074/mcp.M110.004549; GPMDB: 14.
  207. Chik JK, et al. (2011) "Proteome of the Caenorhabditis elegans oocyte." J Proteome Res 10(5):2300–5; PMID: 21452892; doi: 10.1021/pr101124f; GPMDB: 125.
  208. Brosch M, et al. (2011) "Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected" pseudogenes in the mouse genome." Genome Res 21(5):756–67; PMID: 21460061; doi: 10.1101/gr.114272.110; GPMDB: 3.
  209. Elschenbroich S, et al. (2011) "In-depth proteomics of ovarian cancer ascites: combining shotgun proteomics and selected reaction monitoring mass spectrometry." J Proteome Res 10(5):2286–99; PMID: 21491939; doi: 10.1021/pr1011087; GPMDB: 210.
  210. Sixt BS, et al. (2011) "Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila." Proteomics 11(10):1868–92; PMID: 21500343; doi: 10.1002/pmic.201000510; GPMDB: 232.
  211. Farid SG, et al. (2011) "Shotgun proteomics of human bile in hilar cholangiocarcinoma." Proteomics 11(10):2134–8; PMID: 21500345; doi: 10.1002/pmic.201000653; GPMDB: 1.
  212. Vaudel M, et al. (2011) "Peptide identification quality control." Proteomics 11(10):2105–14; PMID: 21500347; doi: 10.1002/pmic.201000704; GPMDB: 8.
  213. Marimuthu A, et al. (2011) "A comprehensive map of the human urinary proteome." J Proteome Res 10(6):2734–43; PMID: 21500864; doi: 10.1021/pr2003038; GPMDB: 28.
  214. Ma ZQ, et al. (2011) "ScanRanker: Quality assessment of tandem mass spectra via sequence tagging." J Proteome Res 10(7):2896–904; PMID: 21520941; doi: 10.1021/pr200118r; GPMDB: 9.
  215. Adamidi C, et al. (2011) "De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics." Genome Res 21(7):1193–200; PMID: 21536722; doi: 10.1101/gr.113779.110; GPMDB: 19.
  216. Wu R, et al. (2011) "Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes." Mol Cell Proteomics 10(8):M111.009654; PMID: 21551504; doi: 10.1074/mcp.M111.009654; GPMDB: 15.
  217. de Poot SA, et al. (2011) "Human and mouse granzyme M display divergent and species-specific substrate specificities." Biochem J 437(3):431–42; PMID: 21564021; doi: 10.1042/BJ20110210; GPMDB: 1.
  218. Overton IM, et al. (2011) "Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus." BMC Syst Biol 5:68; PMID: 21569391; doi: 10.1186/1752-0509-5-68; GPMDB: 10.
  219. Thakur SS, et al. (2011) "Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation." Mol Cell Proteomics 10(8):M110.003699; PMID: 21586754; doi: 10.1074/mcp.M110.003699; GPMDB: 21.
  220. Didangelos A, et al. (2011) "Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach." Mol Cell Proteomics 10(8):M111.008128; PMID: 21593211; doi: 10.1074/mcp.M111.008128; GPMDB: 168.
  221. Schwanhäusser B, et al. (2011) "Global quantification of mammalian gene expression control." Nature 473(7347):337–42; PMID: 21593866; doi: 10.1038/nature10098; GPMDB: 61.
  222. Kim MS, et al. (2011) "Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides." Proteomics 11(12):2568–72; PMID: 21598390; doi: 10.1002/pmic.201000547; GPMDB: 28.
  223. Mühlhaus T, et al. (2011) "Quantitative shotgun proteomics using a uniform ¹⁵N-labeled standard to monitor proteome dynamics in time course experiments reveals new insights into the heat stress response of Chlamydomonas reinhardtii." Mol Cell Proteomics 10(9):M110.004739; PMID: 21610104; doi: 10.1074/mcp.M110.004739; GPMDB: 2.
  224. Shao H, et al. (2011) "Proteome profiling of wild type and lumican-deficient mouse corneas." J Proteomics 74(10):1895–905; PMID: 21616181; doi: 10.1016/j.jprot.2011.04.032; GPMDB: 96.
  225. Helsens K, et al. (2011) "Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation." J Proteome Res 10(8):3578–89; PMID: 21619078; doi: 10.1021/pr2002325; GPMDB: 1.
  226. Dunham WH, et al. (2011) "A cost-benefit analysis of multidimensional fractionation of affinity purification-mass spectrometry samples." Proteomics 11(13):2603–12; PMID: 21630450; doi: 10.1002/pmic.201000571; GPMDB: 105.
  227. Choi DS, et al. (2011) "Proteomic analysis of microvesicles derived from human colorectal cancer ascites." Proteomics 11(13):2745–51; PMID: 21630462; doi: 10.1002/pmic.201100022; GPMDB: 3.
  228. Le Bihan T, et al. (2011) "Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri." J Proteomics 74(10):2060–70; PMID: 21635980; doi: 10.1016/j.jprot.2011.05.028; GPMDB: 236.
  229. Chan QW, et al. (2011) "A honey bee (Apis mellifera L.) PeptideAtlas crossing castes and tissues." BMC Genomics 12:290; PMID: 21639908; doi: 10.1186/1471-2164-12-290; GPMDB: 1032.
  230. Olsson N, et al. (2011) "Proteomic analysis and discovery using affinity proteomics and mass spectrometry." Mol Cell Proteomics 10(10):M110.003962; PMID: 21673276; doi: 10.1074/mcp.M110.003962; GPMDB: 109.
  231. Addona TA, et al. (2011) "A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease." Nat Biotechnol 29(7):635–43; PMID: 21685905; doi: 10.1038/nbt.1899; GPMDB: 269.
  232. Gfeller A, et al. (2011) "Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves." Plant Physiol 156(4):1797–807; PMID: 21693672; doi: 10.1104/pp.111.181008; GPMDB: 8.
  233. Karn RC, et al. (2011) "Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes." PLoS One 6(6):e20979; PMID: 21695125; doi: 10.1371/journal.pone.0020979; GPMDB: 102.
  234. de Oliveira JM, et al. (2011) "Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose." PLoS One 6(6):e20865; PMID: 21698107; doi: 10.1371/journal.pone.0020865; GPMDB: 2.
  235. Kuntumalla S, et al. (2011) "In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism." BMC Microbiol 11:147; PMID: 21702961; doi: 10.1186/1471-2180-11-147; GPMDB: 19.
  236. Bisson N, et al. (2011) "Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor." Nat Biotechnol 29(7):653–8; PMID: 21706016; doi: 10.1038/nbt.1905; GPMDB: 5.
  237. Kettenbach AN, et al. (2011) "Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells." Sci Signal 4(179):rs5; PMID: 21712546; doi: 10.1126/scisignal.2001497; GPMDB: 100.
  238. Bradel-Tretheway BG, et al. (2011) "Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors." J Virol 85(17):8569–81; PMID: 21715506; doi: 10.1128/JVI.00496-11; GPMDB: 22.
  239. Freschi L, et al. (2011) "Phosphorylation network rewiring by gene duplication." Mol Syst Biol 7:504; PMID: 21734643; doi: 10.1038/msb.2011.43; GPMDB: 2.
  240. Bright LA, et al. (2011) "Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences." Anim Genet 42(4):395–405; PMID: 21749422; doi: 10.1111/j.1365-2052.2010.02158.x; GPMDB: 6.
  241. Chi BK, et al. (2011) "S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics." Mol Cell Proteomics 10(11):M111.009506; PMID: 21749987; doi: 10.1074/mcp.M111.009506; GPMDB: 144.
  242. Choi DS, et al. (2011) "Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa." Proteomics 11(16):3424–9; PMID: 21751344; doi: 10.1002/pmic.201000212; GPMDB: 4.
  243. Vermachova M, et al. (2011) "New protein isoforms identified within Arabidopsis thaliana seed oil bodies combining chymotrypsin/trypsin digestion and peptide fragmentation analysis." Proteomics 11(16):3430–4; PMID: 21751352; doi: 10.1002/pmic.201000603; GPMDB: 19.
  244. Capriotti AL, et al. (2011) "DNA affects the composition of lipoplex protein corona: a proteomics approach." Proteomics 11(16):3349–58; PMID: 21751361; doi: 10.1002/pmic.201000803; GPMDB: 2.
  245. Raj L, et al. (2011) "Selective killing of cancer cells by a small molecule targeting the stress response to ROS." Nature 475(7355):231–4; PMID: 21753854; doi: 10.1038/nature10167; GPMDB: 81.
  246. Reiland S, et al. (2011) "Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF)." Proc Natl Acad Sci U S A 108(31):12955–60; PMID: 21768351; doi: 10.1073/pnas.1104734108; GPMDB: 8.
  247. Schmidt A, et al. (2011) "Absolute quantification of microbial proteomes at different states by directed mass spectrometry." Mol Syst Biol 7:510; PMID: 21772258; doi: 10.1038/msb.2011.37; GPMDB: 93.
  248. Maier T, et al. (2011) "Quantification of mRNA and protein and integration with protein turnover in a bacterium." Mol Syst Biol 7:511; PMID: 21772259; doi: 10.1038/msb.2011.38; GPMDB: 42.
  249. Sundaresan NR, et al. (2011) "The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy." Sci Signal 4(182):ra46; PMID: 21775285; doi: 10.1126/scisignal.2001465; GPMDB: 2.
  250. Ficarro SB, et al. (2011) "Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis." Mol Cell Proteomics 10(11):O111.011064; PMID: 21788404; doi: 10.1074/mcp.O111.011064; GPMDB: 437.
  251. Vranakis I, et al. (2011) "Unraveling persistent host cell infection with Coxiella burnetii by quantitative proteomics." J Proteome Res 10(9):4241–51; PMID: 21790200; doi: 10.1021/pr200422f; GPMDB: 1.
  252. Weinert BT, et al. (2011) "Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation." Sci Signal 4(183):ra48; PMID: 21791702; doi: 10.1126/scisignal.2001902; GPMDB: 46.
  253. Chaerkady R, et al. (2011) "A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry." Genome Res 21(11):1872–81; PMID: 21795387; doi: 10.1101/gr.127951.111; GPMDB: 341.
  254. Staes A, et al. (2011) "Selecting protein N-terminal peptides by combined fractional diagonal chromatography." Nat Protoc 6(8):1130–41; PMID: 21799483; doi: 10.1038/nprot.2011.355; GPMDB: 1.
  255. Hennrich ML, et al. (2011) "Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach." Anal Chem 83(18):7137–43; PMID: 21815630; doi: 10.1021/ac2015068; GPMDB: 119.
  256. Pagliuca FW, et al. (2011) "Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery." Mol Cell 43(3):406–17; PMID: 21816347; doi: 10.1016/j.molcel.2011.05.031; GPMDB: 3.
  257. Fisunov GY, et al. (2011) "Core proteome of the minimal cell: comparative proteomics of three mollicute species." PLoS One 6(7):e21964; PMID: 21818284; doi: 10.1371/journal.pone.0021964; GPMDB: 1.
  258. Schilling O, et al. (2011) "Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites." Biol Chem 392(11):1031–7; PMID: 21846260; doi: 10.1515/BC.2011.158; GPMDB: 2.
  259. Blasius M, et al. (2011) "A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1." Genome Biol 12(8):R78; PMID: 21851590; doi: 10.1186/gb-2011-12-8-r78; GPMDB: 2.
  260. Grosstessner-Hain K, et al. (2011) "Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome." Mol Cell Proteomics 10(11):M111.008540; PMID: 21857030; doi: 10.1074/mcp.M111.008540; GPMDB: 27.
  261. Galli M, et al. (2011) "aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division." Nat Cell Biol 13(9):1132–8; PMID: 21857670; doi: 10.1038/ncb2315; GPMDB: 57.
  262. James R, et al. (2012) "Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge." J Cereb Blood Flow Metab 32(1):164–76; PMID: 21878944; doi: 10.1038/jcbfm.2011.120; GPMDB: 29.
  263. Peng L, et al. (2011) "Characterization of the Asia Oceania Human Proteome Organisation Membrane Proteomics Initiative Standard using SDS-PAGE shotgun proteomics." Proteomics 11(22):4376–84; PMID: 21887821; doi: 10.1002/pmic.201100169; GPMDB: 6.
  264. Fischer JJ, et al. (2011) "SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders." Proteomics 11(20):4096–104; PMID: 21898820; doi: 10.1002/pmic.201000717; GPMDB: 18.
  265. Østergaard L, et al. (2011) "Pulmonary pressure reduction attenuates expression of proteins identified by lung proteomic profiling in pulmonary hypertensive rats." Proteomics 11(23):4492–502; PMID: 21905223; doi: 10.1002/pmic.201100171; GPMDB: 1.
  266. Kim W, et al. (2011) "Systematic and quantitative assessment of the ubiquitin-modified proteome." Mol Cell 44(2):325–40; PMID: 21906983; doi: 10.1016/j.molcel.2011.08.025; GPMDB: 90.
  267. Nguyen HM, et al. (2011) "Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism." Proteomics 11(21):4266–73; PMID: 21928291; doi: 10.1002/pmic.201100114; GPMDB: 1.
  268. Rogers LD, et al. (2011) "Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events." Sci Signal 4(191):rs9; PMID: 21934108; doi: 10.1126/scisignal.2001668; GPMDB: 9.
  269. Boisvert FM, et al. (2012) "A quantitative spatial proteomics analysis of proteome turnover in human cells." Mol Cell Proteomics 11(3):M111.011429; PMID: 21937730; doi: 10.1074/mcp.M111.011429; GPMDB: 526.
  270. Nishtala K, et al. (2011) "Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes." Proteomics 11(22):4310–20; PMID: 21954127; doi: 10.1002/pmic.201100229; GPMDB: 91.
  271. Zeiler M, et al. (2012) "A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines." Mol Cell Proteomics 11(3):O111.009613; PMID: 21964433; doi: 10.1074/mcp.O111.009613; GPMDB: 138.
  272. Kelkar DS, et al. (2011) "Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry." Mol Cell Proteomics 10(12):M111.011627; PMID: 21969609; doi: 10.1074/mcp.M111.011445; GPMDB: 52.
  273. Burgener A, et al. (2011) "Comprehensive proteomic study identifies serpin and cystatin antiproteases as novel correlates of HIV-1 resistance in the cervicovaginal mucosa of female sex workers." J Proteome Res 10(11):5139–49; PMID: 21973077; doi: 10.1021/pr200596r; GPMDB: 6.
  274. Phanstiel DH, et al. (2011) "Proteomic and phosphoproteomic comparison of human ES and iPS cells." Nat Methods 8(10):821–7; PMID: 21983960; doi: 10.1038/nmeth.1699; GPMDB: 88.
  275. Guan JS, et al. (2011) "Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway." PLoS One 6(9):e25735; PMID: 21984943; doi: 10.1371/journal.pone.0025735; GPMDB: 26.
  276. Fischer R, et al. (2012) "Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis." Mol Cell Proteomics 11(2):M111.013904; PMID: 21997733; doi: 10.1074/mcp.M111.013904; GPMDB: 60.
  277. Ng DW, et al. (2012) "Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors." Heredity (Edinb) 108(4):419–30; PMID: 22009271; doi: 10.1038/hdy.2011.92; GPMDB: 111.
  278. Capuano F, et al. (2011) "LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies." Anal Chem 83(24):9267–72; PMID: 22017570; doi: 10.1021/ac201733m; GPMDB: 3.
  279. Nagaraj N, et al. (2012) "System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap." Mol Cell Proteomics 11(3):M111.013722; PMID: 22021278; doi: 10.1074/mcp.M111.013722; GPMDB: 13.
  280. Bedon F, et al. (2012) "Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field." Plant Cell Environ 35(4):790–805; PMID: 22026815; doi: 10.1111/j.1365-3040.2011.02452.x; GPMDB: 145.
  281. Inder KL, et al. (2012) "Expression of PTRF in PC-3 Cells modulates cholesterol dynamics and the actin cytoskeleton impacting secretion pathways." Mol Cell Proteomics 11(2):M111.012245; PMID: 22030351; doi: 10.1074/mcp.M111.012245; GPMDB: 16.
  282. Dunne JC, et al. (2012) "Extracellular polysaccharide-degrading proteome of Butyrivibrio proteoclasticus." J Proteome Res 11(1):131–42; PMID: 22060546; doi: 10.1021/pr200864j; GPMDB: 2.
  283. Winck FV, et al. (2012) "The nuclear proteome of the green alga Chlamydomonas reinhardtii." Proteomics 12(1):95–100; PMID: 22065562; doi: 10.1002/pmic.201000782; GPMDB: 1.
  284. Hegemann B, et al. (2011) "Systematic phosphorylation analysis of human mitotic protein complexes." Sci Signal 4(198):rs12; PMID: 22067460; doi: 10.1126/scisignal.2001993; GPMDB: 213.
  285. Glatter T, et al. (2011) "Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome." Mol Syst Biol 7:547; PMID: 22068330; doi: 10.1038/msb.2011.79; GPMDB: 138.
  286. Nagaraj N, et al. (2011) "Deep proteome and transcriptome mapping of a human cancer cell line." Mol Syst Biol 7:548; PMID: 22068331; doi: 10.1038/msb.2011.81; GPMDB: 164.
  287. Beck M, et al. (2011) "The quantitative proteome of a human cell line." Mol Syst Biol 7:549; PMID: 22068332; doi: 10.1038/msb.2011.82; GPMDB: 60.
  288. Okamoto A, et al. (2011) "Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome." BMC Microbiol 11:249; PMID: 22070424; doi: 10.1186/1471-2180-11-249; GPMDB: 2.
  289. Chevrier N, et al. (2011) "Systematic discovery of TLR signaling components delineates viral-sensing circuits." Cell 147(4):853–67; PMID: 22078882; doi: 10.1016/j.cell.2011.10.022; GPMDB: 48.
  290. Cappellini E, et al. (2012) "Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins." J Proteome Res 11(2):917–26; PMID: 22103443; doi: 10.1021/pr200721u; GPMDB: 13.
  291. Schneider K, et al. (2012) "The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate." J Biol Chem 287(1):757–766; PMID: 22105076; doi: 10.1074/jbc.M111.305219; GPMDB: 6.
  292. Rivera FE, et al. (2012) "The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus." Proteomics 12(2):263–8; PMID: 22106056; doi: 10.1002/pmic.201100298; GPMDB: 6.
  293. Munoz J, et al. (2011) "The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells." Mol Syst Biol 7:550; PMID: 22108792; doi: 10.1038/msb.2011.84; GPMDB: 220.
  294. Barbhuiya MA, et al. (2011) "Comprehensive proteomic analysis of human bile." Proteomics 11(23):4443–53; PMID: 22114102; doi: 10.1002/pmic.201100197; GPMDB: 37.
  295. Wright B, et al. (2011) "Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes." Proteomics 11(23):4588–92; PMID: 22114104; doi: 10.1002/pmic.201100410; GPMDB: 24.
  296. Malmström J, et al. (2012) "Streptococcus pyogenes in human plasma: adaptive mechanisms analyzed by mass spectrometry-based proteomics." J Biol Chem 287(2):1415–25; PMID: 22117078; doi: 10.1074/jbc.M111.267674; GPMDB: 41.
  297. Christianson JC, et al. (2011) "Defining human ERAD networks through an integrative mapping strategy." Nat Cell Biol 14(1):93–105; PMID: 22119785; doi: 10.1038/ncb2383; GPMDB: 94.
  298. Journet A, et al. (2012) "Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry." Proteomics 12(2):241–5; PMID: 22120990; doi: 10.1002/pmic.201100313; GPMDB: 1.
  299. Murray CI, et al. (2012) "Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay." Mol Cell Proteomics 11(2):M111.013441; PMID: 22126794; doi: 10.1074/mcp.M111.013441; GPMDB: 3.
  300. Bischof S, et al. (2011) "Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins." Plant Cell 23(11):3911–28; PMID: 22128122; doi: 10.1105/tpc.111.092882; GPMDB: 6.
  301. Prasad TS, et al. (2012) "Proteogenomic analysis of Candida glabrata using high resolution mass spectrometry." J Proteome Res 11(1):247–60; PMID: 22129275; doi: 10.1021/pr200827k; GPMDB: 70.
  302. Thomas L, et al. (2012) "Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture." Mol Cell Proteomics 11(2):M111.013797; PMID: 22147733; doi: 10.1074/mcp.M111.013797; GPMDB: 64.
  303. Choi DS, et al. (2012) "The protein interaction network of extracellular vesicles derived from human colorectal cancer cells." J Proteome Res 11(2):1144–51; PMID: 22149170; doi: 10.1021/pr200842h; GPMDB: 1.
  304. Naba A, et al. (2012) "The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices." Mol Cell Proteomics 11(4):M111.014647; PMID: 22159717; doi: 10.1074/mcp.M111.014647; GPMDB: 98.
  305. Michalski A, et al. (2012) "Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes." Mol Cell Proteomics 11(3):O111.013698; PMID: 22159718; doi: 10.1074/mcp.O111.013698; GPMDB: 22.
  306. Martins-de-Souza D, et al. (2012) "Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometry-data-independent analyses." Proteomics 12(3):500–4; PMID: 22162416; doi: 10.1002/pmic.201100476; GPMDB: 26.
  307. Burkhart JM, et al. (2012) "Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics." J Proteomics 75(4):1454–62; PMID: 22166745; doi: 10.1016/j.jprot.2011.11.016; GPMDB: 1.
  308. Sharma K, et al. (2012) "Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response." Mol Cell Proteomics 11(3):M111.014654; PMID: 22167270; doi: 10.1074/mcp.M111.014654; GPMDB: 41.
  309. Graumann J, et al. (2012) "A framework for intelligent data acquisition and real-time database searching for shotgun proteomics." Mol Cell Proteomics 11(3):M111.013185; PMID: 22171319; doi: 10.1074/mcp.M111.013185; GPMDB: 13.
  310. Dresang LR, et al. (2011) "Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes." BMC Genomics 12:625; PMID: 22185355; doi: 10.1186/1471-2164-12-625; GPMDB: 1.
  311. Batruch I, et al. (2012) "Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility." J Proteome Res 11(3):1503–11; PMID: 22188163; doi: 10.1021/pr200812p; GPMDB: 12.
  312. Altelaar AF, et al. (2012) "Database independent proteomics analysis of the ostrich and human proteome." Proc Natl Acad Sci U S A 109(2):407–12; PMID: 22198768; doi: 10.1073/pnas.1108399108; GPMDB: 21.
  313. Oppermann FS, et al. (2012) "Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets." Mol Cell Proteomics 11(4):O111.012351; PMID: 22199227; doi: 10.1074/mcp.O111.012351; GPMDB: 96.
  314. Mertins P, et al. (2012) "iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics." Mol Cell Proteomics 11(6):M111.014423; PMID: 22210691; doi: 10.1074/mcp.M111.014423; GPMDB: 32.
  315. Elmore JM, et al. (2012) "Quantitative proteomics reveals dynamic changes in the plasma membrane during Arabidopsis immune signaling." Mol Cell Proteomics 11(4):M111.014555; PMID: 22215637; doi: 10.1074/mcp.M111.014555; GPMDB: 90.
  316. König S, et al. (2012) "Kinome analysis of receptor-induced phosphorylation in human natural killer cells." PLoS One 7(1):e29672; PMID: 22238634; doi: 10.1371/journal.pone.0029672; GPMDB: 3.
  317. Al-Hakim AK, et al. (2012) "Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture." Mol Cell Proteomics 11(6):M111.014233; PMID: 22261722; doi: 10.1074/mcp.M111.014233; GPMDB: 18.
  318. Franklin S, et al. (2012) "Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth." Mol Cell Proteomics 11(6):M111.014258; PMID: 22270000; doi: 10.1074/mcp.M111.014258; GPMDB: 75.
  319. Capriotti AL, et al. (2013) "Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins." Anal Bioanal Chem 405(2-3):635–45; PMID: 22274284; doi: 10.1007/s00216-011-5691-y; GPMDB: 45.
  320. Lundquist PK, et al. (2012) "The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis." Plant Physiol 158(3):1172–92; PMID: 22274653; doi: 10.1104/pp.111.193144; GPMDB: 20.
  321. Geiger T, et al. (2012) "Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins." Mol Cell Proteomics 11(3):M111.014050; PMID: 22278370; doi: 10.1074/mcp.M111.014050; GPMDB: 181.
  322. Tauro BJ, et al. (2012) "Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes." Methods 56(2):293–304; PMID: 22285593; doi: 10.1016/j.ymeth.2012.01.002; GPMDB: 163.
  323. Schaab C, et al. (2012) "Analysis of high accuracy, quantitative proteomics data in the MaxQB database." Mol Cell Proteomics 11(3):M111.014068; PMID: 22301388; doi: 10.1074/mcp.M111.014068; GPMDB: 361.
  324. Stokes MP, et al. (2012) "PTMScan direct: identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC-MS/MS." Mol Cell Proteomics 11(5):187–201; PMID: 22322096; doi: 10.1074/mcp.M111.015883; GPMDB: 24.
  325. Chen ZW, et al. (2012) "Deep amino acid sequencing of native brain GABAA receptors using high-resolution mass spectrometry." Mol Cell Proteomics 11(1):M111.011445; PMID: 22338125; GPMDB: 16.
  326. Bauer C, et al. (2012) "PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios." BMC Bioinformatics 13:34; PMID: 22340093; doi: 10.1186/1471-2105-13-34; GPMDB: 1.
  327. Zhong J, et al. (2012) "TSLP signaling network revealed by SILAC-based phosphoproteomics." Mol Cell Proteomics 11(6):M112.017764; PMID: 22345495; doi: 10.1074/mcp.M112.017764; GPMDB: 25.
  328. Sandalakis V, et al. (2012) "Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics." J Proteome Res 11(4):2374–85; PMID: 22360387; doi: 10.1021/pr201122w; GPMDB: 1.
  329. Schneider T, et al. (2012) "Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions." ISME J 6(9):1749–62; PMID: 22402400; doi: 10.1038/ismej.2012.11; GPMDB: 1.
  330. Geiger T, et al. (2012) "Proteomic portrait of human breast cancer progression identifies novel prognostic markers." Cancer Res 72(9):2428–39; PMID: 22414580; doi: 10.1158/0008-5472.CAN-11-3711; GPMDB: 420.
  331. Orr SJ, et al. (2012) "Proteomic and protein interaction network analysis of human T lymphocytes during cell-cycle entry." Mol Syst Biol 8:573; PMID: 22415777; doi: 10.1038/msb.2012.5; GPMDB: 62.
  332. Chen R, et al. (2012) "Personal omics profiling reveals dynamic molecular and medical phenotypes." Cell 148(6):1293–307; PMID: 22424236; doi: 10.1016/j.cell.2012.02.009; GPMDB: 165.
  333. Vranakis I, et al. (2012) "Quantitative proteome profiling of C. burnetii under tetracycline stress conditions." PLoS One 7(3):e33599; PMID: 22438959; doi: 10.1371/journal.pone.0033599; GPMDB: 2.
  334. Deeb SJ, et al. (2012) "Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles." Mol Cell Proteomics 11(5):77–89; PMID: 22442255; doi: 10.1074/mcp.M111.015362; GPMDB: 60.
  335. Tondeleir D, et al. (2012) "Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity." Mol Cell Proteomics 11(8):255–71; PMID: 22448045; doi: 10.1074/mcp.M111.015099; GPMDB: 2.
  336. Schrimpe-Rutledge AC, et al. (2012) "Comparative omics-driven genome annotation refinement: application across Yersiniae." PLoS One 7(3):e33903; PMID: 22479471; doi: 10.1371/journal.pone.0033903; GPMDB: 226.
  337. Wright JC, et al. (2012) "Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator." Mol Cell Proteomics 11(8):478–91; PMID: 22493177; doi: 10.1074/mcp.O111.014522; GPMDB: 8.
  338. Franz-Wachtel M, et al. (2012) "Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells." Mol Cell Proteomics 11(5):160–70; PMID: 22496350; doi: 10.1074/mcp.M111.016014; GPMDB: 18.
  339. Ferrando IM, et al. (2012) "Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics." Mol Cell Proteomics 11(8):355–69; PMID: 22499769; doi: 10.1074/mcp.M111.015750; GPMDB: 7.
  340. Udeshi ND, et al. (2012) "Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition." Mol Cell Proteomics 11(5):148–59; PMID: 22505724; doi: 10.1074/mcp.M111.016857; GPMDB: 113.
  341. Yao L, et al. (2012) "Identification of EFEMP2 as a serum biomarker for the early detection of colorectal cancer with lectin affinity capture assisted secretome analysis of cultured fresh tissues." J Proteome Res 11(6):3281–94; PMID: 22506683; doi: 10.1021/pr300020p; GPMDB: 12.
  342. Fonslow BR, et al. (2012) "Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT." J Proteome Res 11(5):2697–709; PMID: 22509746; doi: 10.1021/pr300200x; GPMDB: 77.
  343. Urbaniak MD, et al. (2012) "Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages." PLoS One 7(5):e36619; PMID: 22574199; doi: 10.1371/journal.pone.0036619; GPMDB: 11.
  344. Ivaldi C, et al. (2012) "Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23." PLoS One 7(5):e37187; PMID: 22615937; doi: 10.1371/journal.pone.0037187; GPMDB: 2.
  345. Byron A, et al. (2012) "Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment." Proteomics 12(13):2107–14; PMID: 22623428; doi: 10.1002/pmic.201100487; GPMDB: 18.
  346. Pisitkun T, et al. (2012) "Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation." Proteomics Clin Appl 6(5-6):268–78; PMID: 22641613; doi: 10.1002/prca.201100108; GPMDB: 7.
  347. Coffill CR, et al. (2012) "Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding partner that promotes invasion." EMBO Rep 13(7):638–44; PMID: 22653443; doi: 10.1038/embor.2012.74; GPMDB: 154.
  348. Castello A, et al. (2012) "Insights into RNA biology from an atlas of mammalian mRNA-binding proteins." Cell 149(6):1393–406; PMID: 22658674; doi: 10.1016/j.cell.2012.04.031; GPMDB: 6.
  349. Rose CM, et al. (2012) "Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis." Mol Cell Proteomics 11(9):724–44; PMID: 22683509; doi: 10.1074/mcp.M112.019208; GPMDB: 382.
  350. Vialás V, et al. (2012) "Cell surface shaving of Candida albicans biofilms, hyphae, and yeast form cells." Proteomics 12(14):2331–9; PMID: 22685022; doi: 10.1002/pmic.201100588; GPMDB: 1.
  351. Muñoz J, et al. (2012) "The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers." EMBO J 31(14):3079–91; PMID: 22692129; doi: 10.1038/emboj.2012.166; GPMDB: 106.
  352. Rashid ST, et al. (2012) "Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver." J Proteome Res 11(8):4052–64; PMID: 22694338; doi: 10.1021/pr3000927; GPMDB: 6.
  353. Guyonnet B, et al. (2012) "Isolation and proteomic characterization of the mouse sperm acrosomal matrix." Mol Cell Proteomics 11(9):758–74; PMID: 22707618; doi: 10.1074/mcp.M112.020339; GPMDB: 5.
  354. Bordbar A, et al. (2012) "Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation." Mol Syst Biol 8:558; PMID: 22735334; doi: 10.1038/msb.2012.21; GPMDB: 42.
  355. Graham NA, et al. (2012) "Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death." Mol Syst Biol 8:589; PMID: 22735335; doi: 10.1038/msb.2012.20; GPMDB: 20.
  356. Lim JW, et al. (2012) "Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4." Electrophoresis 33(12):1873–80; PMID: 22740476; doi: 10.1002/elps.201100687; GPMDB: 129.
  357. Enany S, et al. (2012) "Extensive proteomic profiling of the secretome of European community acquired methicillin resistant Staphylococcus aureus clone." Peptides 37(1):128–37; PMID: 22750914; doi: 10.1016/j.peptides.2012.06.011; GPMDB: 2.
  358. Miura N, et al. (2012) "Tracing putative trafficking of the glycolytic enzyme enolase via SNARE-driven unconventional secretion." Eukaryot Cell 11(8):1075–82; PMID: 22753847; doi: 10.1128/EC.00075-12; GPMDB: 1.
  359. Arike L, et al. (2012) "Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli." J Proteomics 75(17):5437–48; PMID: 22771841; doi: 10.1016/j.jprot.2012.06.020; GPMDB: 6.
  360. Bonhomme L, et al. (2012) "Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves." Mol Cell Proteomics 11(10):957–72; PMID: 22787273; doi: 10.1074/mcp.M111.015867; GPMDB: 1598.
  361. Gibbons JG, et al. (2012) "The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae." Curr Biol 22(15):1403–9; PMID: 22795693; doi: 10.1016/j.cub.2012.05.033; GPMDB: 8.
  362. Goswami T, et al. (2012) "Comparative phosphoproteomic analysis of neonatal and adult murine brain." Proteomics 12(13):2185–9; PMID: 22807455; doi: 10.1002/pmic.201200003; GPMDB: 3.
  363. Yuan Y, et al. (2012) "Enhanced energy metabolism contributes to the extended life span of calorie-restricted Caenorhabditis elegans." J Biol Chem 287(37):31414–26; PMID: 22810224; doi: 10.1074/jbc.M112.377275; GPMDB: 40.
  364. Dix MM, et al. (2012) "Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome." Cell 150(2):426–40; PMID: 22817901; doi: 10.1016/j.cell.2012.05.040; GPMDB: 234.
  365. Burgener A, et al. (2012) "Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men." AIDS 26(15):1857–67; PMID: 22824632; doi: 10.1097/QAD.0b013e328357f79c; GPMDB: 2.
  366. Wejda M, et al. (2012) "Degradomics reveals that cleavage specificity profiles of caspase-2 and effector caspases are alike." J Biol Chem 287(41):33983–95; PMID: 22825847; doi: 10.1074/jbc.M112.384552; GPMDB: 1.
  367. Corthals A, et al. (2012) "Detecting the immune system response of a 500 year-old Inca mummy." PLoS One 7(7):e41244; PMID: 22848450; doi: 10.1371/journal.pone.0041244; GPMDB: 12.
  368. Zijnge V, et al. (2012) "Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans." PLoS One 7(7):e41662; PMID: 22848560; doi: 10.1371/journal.pone.0041662; GPMDB: 171.
  369. Wen Q, et al. (2012) "Identification of regulators of polyploidization presents therapeutic targets for treatment of AMKL." Cell 150(3):575–89; PMID: 22863010; doi: 10.1016/j.cell.2012.06.032; GPMDB: 24.
  370. Kohr MJ, et al. (2012) "Measurement of S-nitrosylation occupancy in the myocardium with cysteine-reactive tandem mass tags: short communication." Circ Res 111(10):1308–12; PMID: 22865876; doi: 10.1161/CIRCRESAHA.112.271320; GPMDB: 32.
  371. Henriksen P, et al. (2012) "Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae." Mol Cell Proteomics 11(11):1510–22; PMID: 22865919; doi: 10.1074/mcp.M112.017251; GPMDB: 64.
  372. Uhlmann T, et al. (2012) "A method for large-scale identification of protein arginine methylation." Mol Cell Proteomics 11(11):1489–99; PMID: 22865923; doi: 10.1074/mcp.M112.020743; GPMDB: 133.
  373. Burkhart JM, et al. (2012) "The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways." Blood 120(15):e73–82; PMID: 22869793; doi: 10.1182/blood-2012-04-416594; GPMDB: 4.
  374. Vaudel M, et al. (2012) "Integral quantification accuracy estimation for reporter ion-based quantitative proteomics (iQuARI)." J Proteome Res 11(10):5072–80; PMID: 22874012; doi: 10.1021/pr300247u; GPMDB: 8.
  375. Veitinger M, et al. (2012) "A combined proteomic and genetic analysis of the highly variable platelet proteome: from plasmatic proteins and SNPs." J Proteomics 75(18):5848–60; PMID: 22885077; doi: 10.1016/j.jprot.2012.07.042; GPMDB: 19.
  376. Brown RN, et al. (2012) "A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions." Int J Proteomics 2012:123076; PMID: 22900174; doi: 10.1155/2012/123076; GPMDB: 78.
  377. Jones ML, et al. (2012) "Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis." Cell Host Microbe 12(2):246–58; PMID: 22901544; doi: 10.1016/j.chom.2012.06.005; GPMDB: 10.
  378. Toyofuku M, et al. (2012) "Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix." J Proteome Res 11(10):4906–15; PMID: 22909304; doi: 10.1021/pr300395j; GPMDB: 4.
  379. Jerebtsova M, et al. (2012) "Adenoviral E4 gene stimulates secretion of pigmental epithelium derived factor (PEDF) that maintains long-term survival of human glomerulus-derived endothelial cells." Mol Cell Proteomics 11(11):1378–88; PMID: 22915824; doi: 10.1074/mcp.M112.020313; GPMDB: 20.
  380. Baerenfaller K, et al. (2012) "Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit." Mol Syst Biol 8:606; PMID: 22929616; doi: 10.1038/msb.2012.39; GPMDB: 24.
  381. Havugimana PC, et al. (2012) "A census of human soluble protein complexes." Cell 150(5):1068–81; PMID: 22939629; doi: 10.1016/j.cell.2012.08.011; GPMDB: 2355.
  382. MacDonald ML, et al. (2012) "Biochemical fractionation and stable isotope dilution liquid chromatography-mass spectrometry for targeted and microdomain-specific protein quantification in human postmortem brain tissue." Mol Cell Proteomics 11(12):1670–81; PMID: 22942359; doi: 10.1074/mcp.M112.021766; GPMDB: 14.
  383. Vögtle FN, et al. (2012) "Intermembrane space proteome of yeast mitochondria." Mol Cell Proteomics 11(12):1840–52; PMID: 22984289; doi: 10.1074/mcp.M112.021105; GPMDB: 30.
  384. Kim Y, et al. (2012) "Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer." Mol Cell Proteomics 11(12):1870–84; PMID: 22986220; doi: 10.1074/mcp.M112.017889; GPMDB: 320.
  385. Ene IV, et al. (2012) "Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans." Proteomics 12(21):3164–79; PMID: 22997008; doi: 10.1002/pmic.201200228; GPMDB: 50.
  386. Michalski A, et al. (2012) "A systematic investigation into the nature of tryptic HCD spectra." J Proteome Res 11(11):5479–91; PMID: 22998608; doi: 10.1021/pr3007045; GPMDB: 35.
  387. Bleijerveld OB, et al. (2012) "Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis." J Proteome Res 11(11):5235–44; PMID: 23020738; doi: 10.1021/pr3004375; GPMDB: 163.
  388. Ren YR, et al. (2012) "Unbiased discovery of interactions at a control locus driving expression of the cancer-specific therapeutic and diagnostic target, mesothelin." J Proteome Res 11(11):5301–10; PMID: 23025254; doi: 10.1021/pr300797v; GPMDB: 67.
  389. Motohashi R, et al. (2012) "Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level." Plant Physiol 160(4):2189–201; PMID: 23027667; doi: 10.1104/pp.112.204032; GPMDB: 4.
  390. Hu CW, et al. (2012) "Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production." J Proteome Res 11(11):5362–75; PMID: 23030682; doi: 10.1021/pr300582p; GPMDB: 12.
  391. Ubaida Mohien C, et al. (2013) "A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites." Mol Cell Proteomics 12(1):120–31; PMID: 23082028; doi: 10.1074/mcp.M112.019596; GPMDB: 97.
  392. Mathew R, et al. (2012) "BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs." Nature 491(7425):618–21; PMID: 23086144; doi: 10.1038/nature11548; GPMDB: 8.
  393. Butter F, et al. (2013) "Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery." Mol Cell Proteomics 12(1):172–9; PMID: 23090971; doi: 10.1074/mcp.M112.019224; GPMDB: 94.
  394. Marguerat S, et al. (2012) "Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells." Cell 151(3):671–83; PMID: 23101633; doi: 10.1016/j.cell.2012.09.019; GPMDB: 33.
  395. Pointner J, et al. (2012) "CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe." EMBO J 31(23):4388–403; PMID: 23103765; doi: 10.1038/emboj.2012.289; GPMDB: 30.
  396. Oliveira AP, et al. (2012) "Regulation of yeast central metabolism by enzyme phosphorylation." Mol Syst Biol 8:623; PMID: 23149688; doi: 10.1038/msb.2012.55; GPMDB: 26.
  397. Muraoka S, et al. (2013) "In-depth membrane proteomic study of breast cancer tissues for the generation of a chromosome-based protein list." J Proteome Res 12(1):208–13; PMID: 23153008; doi: 10.1021/pr300824m; GPMDB: 36.
  398. Fonslow BR, et al. (2013) "Digestion and depletion of abundant proteins improves proteomic coverage." Nat Methods 10(1):54–6; PMID: 23160281; doi: 10.1038/nmeth.2250; GPMDB: 132.
  399. Kliemt S, et al. (2013) "Sulfated hyaluronan containing collagen matrices enhance cell-matrix-interaction, endocytosis, and osteogenic differentiation of human mesenchymal stromal cells." J Proteome Res 12(1):378–89; PMID: 23170904; doi: 10.1021/pr300640h; GPMDB: 30.
  400. Hoehenwarter W, et al. (2013) "Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography." Mol Cell Proteomics 12(2):369–80; PMID: 23172892; doi: 10.1074/mcp.M112.020560; GPMDB: 6.
  401. Yamana R, et al. (2013) "Rapid and deep profiling of human induced pluripotent stem cell proteome by one-shot NanoLC-MS/MS analysis with meter-scale monolithic silica columns." J Proteome Res 12(1):214–21; PMID: 23210603; doi: 10.1021/pr300837u; GPMDB: 129.
  402. Meding S, et al. (2013) "Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues." J Proteome Res 12(1):308–15; PMID: 23214983; doi: 10.1021/pr300996x; GPMDB: 31.
  403. Tauro BJ, et al. (2013) "Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids." Mol Cell Proteomics 12(3):587–98; PMID: 23230278; doi: 10.1074/mcp.M112.021303; GPMDB: 20.
  404. Segura V, et al. (2013) "Spanish human proteome project: dissection of chromosome 16." J Proteome Res 12(1):112–22; PMID: 23234512; doi: 10.1021/pr300898u; GPMDB: 43.
  405. Farcas AM, et al. (2012) "KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands." Elife 1:e00205; PMID: 23256043; doi: 10.7554/eLife.00205; GPMDB: 5.
  406. Udeshi ND, et al. (2013) "Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments." Mol Cell Proteomics 12(3):825–31; PMID: 23266961; doi: 10.1074/mcp.O112.027094; GPMDB: 72.
  407. Maccarrone G, et al. (2013) "Proteome profiling of peripheral mononuclear cells from human blood." Proteomics 13(5):893–7; PMID: 23281267; doi: 10.1002/pmic.201200377; GPMDB: 3.
  408. Kentsis A, et al. (2013) "Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease." EMBO Mol Med 5(2):210–20; PMID: 23281308; doi: 10.1002/emmm.201201494; GPMDB: 145.
  409. Chen JS, et al. (2013) "Comprehensive proteomics analysis reveals new substrates and regulators of the fission yeast clp1/cdc14 phosphatase." Mol Cell Proteomics 12(5):1074–86; PMID: 23297348; doi: 10.1074/mcp.M112.025924; GPMDB: 190.
  410. Holewinski RJ, et al. (2013) "A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid." Proteomics 13(5):743–50; PMID: 23300121; doi: 10.1002/pmic.201200192; GPMDB: 27.
  411. Hahne H, et al. (2013) "Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry." J Proteome Res 12(2):927–36; PMID: 23301498; doi: 10.1021/pr300967y; GPMDB: 9.
  412. Strader MB, et al. (2013) "A coordinated proteomic approach for identifying proteins that interact with the E. coli ribosomal protein S12." J Proteome Res 12(3):1289–99; PMID: 23305560; doi: 10.1021/pr3009435; GPMDB: 209.
  413. Shiromizu T, et al. (2013) "Identification of missing proteins in the neXtProt database and unregistered phosphopeptides in the PhosphoSitePlus database as part of the Chromosome-centric Human Proteome Project." J Proteome Res 12(6):2414–21; PMID: 23312004; doi: 10.1021/pr300825v; GPMDB: 232.
  414. Krahmer N, et al. (2013) "Protein correlation profiles identify lipid droplet proteins with high confidence." Mol Cell Proteomics 12(5):1115–26; PMID: 23319140; doi: 10.1074/mcp.M112.020230; GPMDB: 18.
  415. Wenger CD, et al. (2013) "A proteomics search algorithm specifically designed for high-resolution tandem mass spectra." J Proteome Res 12(3):1377–86; PMID: 23323968; doi: 10.1021/pr301024c; GPMDB: 15.
  416. Lindner SE, et al. (2013) "Total and putative surface proteomics of malaria parasite salivary gland sporozoites." Mol Cell Proteomics 12(5):1127–43; PMID: 23325771; doi: 10.1074/mcp.M112.024505; GPMDB: 72.
  417. Zhang H, et al. (2013) "Quantitative phosphoproteomics after auxin-stimulated lateral root induction identifies an SNX1 protein phosphorylation site required for growth." Mol Cell Proteomics 12(5):1158–69; PMID: 23328941; doi: 10.1074/mcp.M112.021220; GPMDB: 11.
  418. Wang F, et al. (2013) "Phosphoproteome analysis of an early onset mouse model (TgCRND8) of Alzheimer's disease reveals temporal changes in neuronal and glia signaling pathways." Proteomics 13(8):1292–305; PMID: 23335269; doi: 10.1002/pmic.201200415; GPMDB: 63.
  419. Albrethsen J, et al. (2013) "Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems." Mol Cell Proteomics 12(5):1180–91; PMID: 23345537; doi: 10.1074/mcp.M112.018846; GPMDB: 59.
  420. Haußmann U, et al. (2013) "Physiological adaptation of the Rhodococcus jostii RHA1 membrane proteome to steroids as growth substrates." J Proteome Res 12(3):1188–98; PMID: 23360181; doi: 10.1021/pr300816n; GPMDB: 220.
  421. Lee HJ, et al. (2013) "Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project." J Proteome Res 12(6):2458–66; PMID: 23362793; doi: 10.1021/pr301040g; GPMDB: 47.
  422. Rhee HW, et al. (2013) "Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging." Science 339(6125):1328–1331; PMID: 23371551; doi: 10.1126/science.1230593; GPMDB: 64.
  423. Zanivan S, et al. (2013) "In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis." Cell Rep 3(2):552–66; PMID: 23375375; doi: 10.1016/j.celrep.2013.01.003; GPMDB: 315.
  424. Ekkebus R, et al. (2013) "On terminal alkynes that can react with active-site cysteine nucleophiles in proteases." J Am Chem Soc 135(8):2867–70; PMID: 23387960; doi: 10.1021/ja309802n; GPMDB: 1.
  425. Cho CK, et al. (2013) "Quantitative proteomic analysis of amniocytes reveals potentially dysregulated molecular networks in Down syndrome." Clin Proteomics 10(1):2; PMID: 23394617; doi: 10.1186/1559-0275-10-2; GPMDB: 30.
  426. de Graaf EL, et al. (2013) "Spatio-temporal analysis of molecular determinants of neuronal degeneration in the aging mouse cerebellum." Mol Cell Proteomics 12(5):1350–62; PMID: 23399551; doi: 10.1074/mcp.M112.024950; GPMDB: 120.
  427. Mohammed H, et al. (2013) "Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor." Cell Rep 3(2):342–9; PMID: 23403292; doi: 10.1016/j.celrep.2013.01.010; GPMDB: 9.
  428. Sun B, et al. (2013) "N-glycoproteome of E14.Tg2a mouse embryonic stem cells." PLoS One 8(2):e55722; PMID: 23405203; doi: 10.1371/journal.pone.0055722; GPMDB: 40.
  429. Colinet H, et al. (2013) "Proteomic profiling of thermal acclimation in Drosophila melanogaster." Insect Biochem Mol Biol 43(4):352–65; PMID: 23416132; doi: 10.1016/j.ibmb.2013.01.006; GPMDB: 50.
  430. Spruijt CG, et al. (2013) "Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives." Cell 152(5):1146–59; PMID: 23434322; doi: 10.1016/j.cell.2013.02.004; GPMDB: 249.
  431. Chapel A, et al. (2013) "An extended proteome map of the lysosomal membrane reveals novel potential transporters." Mol Cell Proteomics 12(6):1572–88; PMID: 23436907; doi: 10.1074/mcp.M112.021980; GPMDB: 1.
  432. Fabietti A, et al. (2013) "Shotgun proteomic analysis of two Bartonella quintana strains." Proteomics 13(8):1375–8; PMID: 23450663; doi: 10.1002/pmic.201200165; GPMDB: 8.
  433. Varjosalo M, et al. (2013) "Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS." Nat Methods 10(4):307–14; PMID: 23455922; doi: 10.1038/nmeth.2400; GPMDB: 288.
  434. Fanayan S, et al. (2013) "Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405." J Proteome Res 12(4):1732–42; PMID: 23458625; doi: 10.1021/pr3010869; GPMDB: 136.
  435. Rao SA, et al. (2013) "Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins." PLoS One 8(2):e57413; PMID: 23460852; doi: 10.1371/journal.pone.0057413; GPMDB: 16.
  436. Gunaratne J, et al. (2013) "Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas." Mol Cell Proteomics 12(6):1741–51; PMID: 23462206; doi: 10.1074/mcp.M112.023754; GPMDB: 384.
  437. Hassan C, et al. (2013) "The human leukocyte antigen-presented ligandome of B lymphocytes." Mol Cell Proteomics 12(7):1829–43; PMID: 23481700; doi: 10.1074/mcp.M112.024810; GPMDB: 191.
  438. Urbaniak MD, et al. (2013) "Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei." J Proteome Res 12(5):2233–44; PMID: 23485197; doi: 10.1021/pr400086y; GPMDB: 148.
  439. van Nuland R, et al. (2013) "Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes." Mol Cell Biol 33(10):2067–77; PMID: 23508102; doi: 10.1128/MCB.01742-12; GPMDB: 52.
  440. Papachristou EK, et al. (2013) "The shotgun proteomic study of the human ThinPrep cervical smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS: the detection of the human papillomavirus at the protein level." J Proteome Res 12(5):2078–89; PMID: 23510160; doi: 10.1021/pr301067r; GPMDB: 3.
  441. Ori A, et al. (2013) "Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines." Mol Syst Biol 9:648; PMID: 23511206; doi: 10.1038/msb.2013.4; GPMDB: 30.
  442. Bendz M, et al. (2013) "Membrane protein shaving with thermolysin can be used to evaluate topology predictors." Proteomics 13(9):1467–80; PMID: 23512833; doi: 10.1002/pmic.201200517; GPMDB: 8.
  443. Cramer GR, et al. (2013) "Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit." BMC Plant Biol 13:49; PMID: 23514573; doi: 10.1186/1471-2229-13-49; GPMDB: 96.
  444. Bradshaw E, et al. (2013) "Proteomic survey of the Streptomyces coelicolor nucleoid." J Proteomics 83:37–46; PMID: 23523638; doi: 10.1016/j.jprot.2013.02.033; GPMDB: 6.
  445. Casado P, et al. (2013) "Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells." Sci Signal 6(268):rs6; PMID: 23532336; doi: 10.1126/scisignal.2003573; GPMDB: 160.
  446. Webb KJ, et al. (2013) "Modified MuDPIT separation identified 4488 proteins in a system-wide analysis of quiescence in yeast." J Proteome Res 12(5):2177–84; PMID: 23540446; doi: 10.1021/pr400027m; GPMDB: 135.
  447. Sun B, et al. (2013) "Glycocapture-assisted global quantitative proteomics (gagQP) reveals multiorgan responses in serum toxicoproteome." J Proteome Res 12(5):2034–44; PMID: 23540550; doi: 10.1021/pr301178a; GPMDB: 58.
  448. Kim J, et al. (2013) "Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis." Plant Physiol 162(1):157–79; PMID: 23548781; doi: 10.1104/pp.113.215699; GPMDB: 118.
  449. Ji H, et al. (2013) "Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components." Proteomics 13(10-11):1672–86; PMID: 23585443; doi: 10.1002/pmic.201200562; GPMDB: 51.
  450. Biarc J, et al. (2013) "Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors." J Biol Chem 288(23):16606–16618; PMID: 23589303; doi: 10.1074/jbc.M113.475285; GPMDB: 210.
  451. Zhuang G, et al. (2013) "Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases." Sci Signal 6(271):ra25; PMID: 23592840; doi: 10.1126/scisignal.2003572; GPMDB: 7.
  452. Varjosalo M, et al. (2013) "The protein interaction landscape of the human CMGC kinase group." Cell Rep 3(4):1306–20; PMID: 23602568; doi: 10.1016/j.celrep.2013.03.027; GPMDB: 114.
  453. Marcone S, et al. (2013) "Proteomic identification of the candidate target proteins of 15-deoxy-delta12,14-prostaglandin J2." Proteomics 13(14):2135–9; PMID: 23606334; doi: 10.1002/pmic.201200289; GPMDB: 62.
  454. Halim VA, et al. (2013) "Comparative phosphoproteomic analysis of checkpoint recovery identifies new regulators of the DNA damage response." Sci Signal 6(272):rs9; PMID: 23612710; doi: 10.1126/scisignal.2003664; GPMDB: 247.
  455. Kooij V, et al. (2013) "Characterization of the cardiac myosin binding protein-C phosphoproteome in healthy and failing human hearts." J Mol Cell Cardiol 60:116–20; PMID: 23619294; doi: 10.1016/j.yjmcc.2013.04.012; GPMDB: 87.
  456. Casado P, et al. (2013) "Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors." Genome Biol 14(4):R37; PMID: 23628362; doi: 10.1186/gb-2013-14-4-r37; GPMDB: 75.
  457. Sheynkman GM, et al. (2013) "Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq." Mol Cell Proteomics 12(8):2341–53; PMID: 23629695; doi: 10.1074/mcp.O113.028142; GPMDB: 28.
  458. Wijten P, et al. (2013) "High precision platelet releasate definition by quantitative reversed protein profiling--brief report." Arterioscler Thromb Vasc Biol 33(7):1635–8; PMID: 23640497; doi: 10.1161/ATVBAHA.113.301147; GPMDB: 82.
  459. Tauro BJ, et al. (2013) "Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition." Mol Cell Proteomics 12(8):2148–59; PMID: 23645497; doi: 10.1074/mcp.M112.027086; GPMDB: 187.
  460. Müller SA, et al. (2013) "Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics." J Proteomics 86:27–42; PMID: 23665149; doi: 10.1016/j.jprot.2013.04.036; GPMDB: 63.
  461. Marimuthu A, et al. (2013) "Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome." Biochim Biophys Acta 1834(11):2308–16; PMID: 23665456; doi: 10.1016/j.bbapap.2013.04.029; GPMDB: 23.
  462. Chen Z, et al. (2013) "Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis." Mol Cell Proteomics 12(8):2266–77; PMID: 23665590; doi: 10.1074/mcp.M112.025817; GPMDB: 84.
  463. Wu L, et al. (2013) "Variation and genetic control of protein abundance in humans." Nature 499(7456):79–82; PMID: 23676674; doi: 10.1038/nature12223; GPMDB: 51.
  464. Greening DW, et al. (2013) "Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment." Biochim Biophys Acta 1834(11):2396–407; PMID: 23684732; doi: 10.1016/j.bbapap.2013.05.006; GPMDB: 4.
  465. Zhang L, et al. (2013) "Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling." J Proteome Res 12(7):3104–16; PMID: 23692254; doi: 10.1021/pr3008495; GPMDB: 106.
  466. Courcelles M, et al. (2013) "Phosphoproteome dynamics reveal novel ERK1/2 MAP kinase substrates with broad spectrum of functions." Mol Syst Biol 9:669; PMID: 23712012; doi: 10.1038/msb.2013.25; GPMDB: 124.
  467. Darville LN, et al. (2013) "In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry." J Proteome Res 12(8):3620–30; PMID: 23721421; doi: 10.1021/pr4001338; GPMDB: 160.
  468. Villamor JG, et al. (2013) "Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes." Mol Cell Proteomics 12(9):2481–96; PMID: 23722185; doi: 10.1074/mcp.M112.026278; GPMDB: 30.
  469. Liberski AR, et al. (2013) "Adaptation of a commonly used, chemically defined medium for human embryonic stem cells to stable isotope labeling with amino acids in cell culture." J Proteome Res 12(7):3233–45; PMID: 23734825; doi: 10.1021/pr400099j; GPMDB: 13.
  470. Casabona MG, et al. (2013) "Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane." Proteomics 13(16):2419–23; PMID: 23744604; doi: 10.1002/pmic.201200565; GPMDB: 6.
  471. Ross BD, et al. (2013) "Stepwise evolution of essential centromere function in a Drosophila neogene." Science 340(6137):1211–4; PMID: 23744945; doi: 10.1126/science.1234393; GPMDB: 18.
  472. Miura N, et al. (2013) "Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia." Eukaryot Cell 12(8):1106–19; PMID: 23748432; doi: 10.1128/EC.00093-13; GPMDB: 8.
  473. Swaney DL, et al. (2013) "Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation." Nat Methods 10(7):676–82; PMID: 23749301; doi: 10.1038/nmeth.2519; GPMDB: 137.
  474. Mertins P, et al. (2013) "Integrated proteomic analysis of post-translational modifications by serial enrichment." Nat Methods 10(7):634–7; PMID: 23749302; doi: 10.1038/nmeth.2518; GPMDB: 231.
  475. Joshi P, et al. (2013) "The functional interactome landscape of the human histone deacetylase family." Mol Syst Biol 9:672; PMID: 23752268; doi: 10.1038/msb.2013.26; GPMDB: 75.
  476. Wierer M, et al. (2013) "PLK1 signaling in breast cancer cells cooperates with estrogen receptor-dependent gene transcription." Cell Rep 3(6):2021–32; PMID: 23770244; doi: 10.1016/j.celrep.2013.05.024; GPMDB: 7.
  477. Takahashi Y, et al. (2013) "bHLH transcription factors that facilitate K⁺ uptake during stomatal opening are repressed by abscisic acid through phosphorylation." Sci Signal 6(280):ra48; PMID: 23779086; doi: 10.1126/scisignal.2003760; GPMDB: 2.
  478. Freund DM, et al. (2013) "Proteomic profiling of the mitochondrial inner membrane of rat renal proximal convoluted tubules." Proteomics 13(16):2495–9; PMID: 23780708; doi: 10.1002/pmic.201200558; GPMDB: 10.
  479. Maier SK, et al. (2013) "Comprehensive identification of proteins from MALDI imaging." Mol Cell Proteomics 12(10):2901–10; PMID: 23782541; doi: 10.1074/mcp.M113.027599; GPMDB: 215.
  480. Tanca A, et al. (2013) "Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome." Proteomics 13(17):2597–607; PMID: 23784971; doi: 10.1002/pmic.201200478; GPMDB: 131.
  481. Hansen AM, et al. (2013) "The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence." PLoS Pathog 9(6):e1003403; PMID: 23785281; doi: 10.1371/journal.ppat.1003403; GPMDB: 24.
  482. Prewitz MC, et al. (2013) "Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments." Nat Methods 10(8):788–94; PMID: 23793238; doi: 10.1038/nmeth.2523; GPMDB: 108.
  483. Xiang F, et al. (2013) "Proteomics analysis of human pericardial fluid." Proteomics 13(17):2692–5; PMID: 23797974; doi: 10.1002/pmic.201200317; GPMDB: 59.
  484. Kosanam H, et al. (2013) "Laminin, gamma 2 (LAMC2): a promising new putative pancreatic cancer biomarker identified by proteomic analysis of pancreatic adenocarcinoma tissues." Mol Cell Proteomics 12(10):2820–32; PMID: 23798558; doi: 10.1074/mcp.M112.023507; GPMDB: 112.
  485. Vialas V, et al. (2014) "A Candida albicans PeptideAtlas." J Proteomics 97:62–8; PMID: 23811049; doi: 10.1016/j.jprot.2013.06.020; GPMDB: 148.
  486. Höhner R, et al. (2013) "The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics." Mol Cell Proteomics 12(10):2774–90; PMID: 23820728; doi: 10.1074/mcp.M113.029991; GPMDB: 669.
  487. Stout GJ, et al. (2013) "Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism." Mol Syst Biol 9:679; PMID: 23820781; doi: 10.1038/msb.2013.35; GPMDB: 66.
  488. Bottermann K, et al. (2013) "Systematic Analysis Reveals Elongation Factor 2 and α-Enolase as Novel Interaction Partners of AKT2." PLoS One 8(6):e66045; PMID: 23823123; doi: 10.1371/journal.pone.0066045; GPMDB: 4.
  489. Rodríguez-Piñeiro AM, et al. (2013) "Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins." Am J Physiol Gastrointest Liver Physiol 305(5):G348–56; PMID: 23832517; doi: 10.1152/ajpgi.00047.2013; GPMDB: 72.
  490. Konvalinka A, et al. (2013) "Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC)." J Biol Chem 288(34):24834–47; PMID: 23846697; doi: 10.1074/jbc.M113.485326; GPMDB: 204.
  491. Zhou F, et al. (2013) "Genome-scale proteome quantification by DEEP SEQ mass spectrometry." Nat Commun 4:2171; PMID: 23863870; doi: 10.1038/ncomms3171; GPMDB: 60.
  492. Johansson HJ, et al. (2013) "Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer." Nat Commun 4:2175; PMID: 23868472; doi: 10.1038/ncomms3175; GPMDB: 144.
  493. Prasad TS, et al. (2013) "Proteomic analysis of purified protein derivative of Mycobacterium tuberculosis." Clin Proteomics 10(1):8; PMID: 23870090; doi: 10.1186/1559-0275-10-8; GPMDB: 1.
  494. Omasits U, et al. (2013) "Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome." Genome Res 23(11):1916–27; PMID: 23878158; doi: 10.1101/gr.151035.112; GPMDB: 26.
  495. Xia L, et al. (2013) "Phosphoproteomics study on the activated PKCδ-induced cell death." J Proteome Res 12(10):4280–301; PMID: 23879269; doi: 10.1021/pr400089v; GPMDB: 385.
  496. Chen YY, et al. (2013) "IDPQuantify: combining precursor intensity with spectral counts for protein and peptide quantification." J Proteome Res 12(9):4111–21; PMID: 23879310; doi: 10.1021/pr400438q; GPMDB: 23.
  497. Chamrád I, et al. (2013) "A miniaturized chemical proteomic approach for target profiling of clinical kinase inhibitors in tumor biopsies." J Proteome Res 12(9):4005–17; PMID: 23901793; doi: 10.1021/pr400309p; GPMDB: 56.
  498. Oosterkamp MJ, et al. (2013) "Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation." Proteomics 13(18-19):2886–94; PMID: 23907812; doi: 10.1002/pmic.201200571; GPMDB: 16.
  499. Kwon SC, et al. (2013) "The RNA-binding protein repertoire of embryonic stem cells." Nat Struct Mol Biol 20(9):1122–30; PMID: 23912277; doi: 10.1038/nsmb.2638; GPMDB: 36.
  500. Gholami AM, et al. (2013) "Global proteome analysis of the NCI-60 cell line panel." Cell Rep 4(3):609–20; PMID: 23933261; doi: 10.1016/j.celrep.2013.07.018; GPMDB: 899.
  501. Krishnappa L, et al. (2013) "Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis." J Proteome Res 12(9):4101–10; PMID: 23937099; doi: 10.1021/pr400433h; GPMDB: 112.
  502. Han D, et al. (2013) "In-depth proteomic analysis of mouse microglia using a combination of FASP and StageTip-based, high pH, reversed-phase fractionation." Proteomics 13(20):2984–8; PMID: 23943505; doi: 10.1002/pmic.201300091; GPMDB: 36.
  503. Edwards AV, et al. (2014) "Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain." J Proteome Res 13(1):260–7; PMID: 23947802; doi: 10.1021/pr4002977; GPMDB: 11.
  504. Ulrich C, et al. (2013) "The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor." Am J Physiol Cell Physiol 305(8):C803–16; PMID: 23948706; doi: 10.1152/ajpcell.00198.2013; GPMDB: 9.
  505. Liu NQ, et al. (2013) "Quantitative proteomic analysis of microdissected breast cancer tissues: comparison of label-free and SILAC-based quantification with shotgun, directed, and targeted MS approaches." J Proteome Res 12(10):4627–41; PMID: 23957277; doi: 10.1021/pr4005794; GPMDB: 57.
  506. Hahne H, et al. (2013) "DMSO enhances electrospray response, boosting sensitivity of proteomic experiments." Nat Methods 10(10):989–91; PMID: 23975139; doi: 10.1038/nmeth.2610; GPMDB: 64.
  507. Lewandowska D, et al. (2013) "Plant SILAC: stable-isotope labelling with amino acids of arabidopsis seedlings for quantitative proteomics." PLoS One 8(8):e72207; PMID: 23977254; doi: 10.1371/journal.pone.0072207; GPMDB: 50.
  508. Zanivan S, et al. (2013) "SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers." Mol Cell Proteomics 12(12):3599–611; PMID: 23979707; doi: 10.1074/mcp.M113.031344; GPMDB: 452.
  509. Lichtman JS, et al. (2013) "Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota." Mol Cell Proteomics 12(11):3310–8; PMID: 23982161; doi: 10.1074/mcp.M113.029967; GPMDB: 289.
  510. Ueda K, et al. (2013) "Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide." J Proteome Res 12(10):4497–506; PMID: 23991666; doi: 10.1021/pr400547s; GPMDB: 116.
  511. Depuydt G, et al. (2013) "Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans." Mol Cell Proteomics 12(12):3624–39; PMID: 24002365; doi: 10.1074/mcp.M113.027383; GPMDB: 64.
  512. Jones KA, et al. (2013) "Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers." J Proteome Res 12(10):4351–65; PMID: 24004147; doi: 10.1021/pr400307u; GPMDB: 149.
  513. Salmon CR, et al. (2013) "Proteomic analysis of human dental cementum and alveolar bone." J Proteomics 91:544–55; PMID: 24007660; doi: 10.1016/j.jprot.2013.08.016; GPMDB: 42.
  514. Martínez-Fábregas J, et al. (2013) "New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants." Mol Cell Proteomics 12(12):3666–76; PMID: 24019145; doi: 10.1074/mcp.M113.030692; GPMDB: 8.
  515. Bai B, et al. (2013) "U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease." Proc Natl Acad Sci U S A 110(41):16562–7; PMID: 24023061; doi: 10.1073/pnas.1310249110; GPMDB: 80.
  516. Kirkwood KJ, et al. (2013) "Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics." Mol Cell Proteomics 12(12):3851–73; PMID: 24043423; doi: 10.1074/mcp.M113.032367; GPMDB: 120.
  517. Miranda HV, et al. (2014) "Archaeal ubiquitin-like SAMP3 is isopeptide-linked to proteins via a UbaA-dependent mechanism." Mol Cell Proteomics 13(1):220–39; PMID: 24097257; doi: 10.1074/mcp.M113.029652; GPMDB: 35.
  518. Hartmann EM, et al. (2014) "Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1." Environ Microbiol 16(1):162–76; PMID: 24118890; doi: 10.1111/1462-2920.12264; GPMDB: 84.
  519. Puttamallesh VN, et al. (2013) "Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response." Clin Proteomics 10(1):14; PMID: 24124767; doi: 10.1186/1559-0275-10-14; GPMDB: 23.
  520. Wang W, et al. (2014) "Defining the protein-protein interaction network of the human hippo pathway." Mol Cell Proteomics 13(1):119–31; PMID: 24126142; doi: 10.1074/mcp.M113.030049; GPMDB: 66.
  521. Khan Z, et al. (2013) "Primate transcript and protein expression levels evolve under compensatory selection pressures." Science 342(6162):1100–4; PMID: 24136357; doi: 10.1126/science.1242379; GPMDB: 173.
  522. Segura V, et al. (2014) "Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome." J Proteome Res 13(1):158–72; PMID: 24138474; doi: 10.1021/pr400721r; GPMDB: 106.
  523. Hebert AS, et al. (2014) "The one hour yeast proteome." Mol Cell Proteomics 13(1):339–47; PMID: 24143002; doi: 10.1074/mcp.M113.034769; GPMDB: 7.
  524. Gorbachev AY, et al. (2013) "DNA repair in Mycoplasma gallisepticum." BMC Genomics 14:726; PMID: 24148612; doi: 10.1186/1471-2164-14-726; GPMDB: 1.
  525. McKnight H, et al. (2014) "Proteomic analyses of human gingival and periodontal ligament fibroblasts." J Periodontol 85(6):810–8; PMID: 24171499; doi: 10.1902/jop.2013.130161; GPMDB: 8.
  526. Deeb SJ, et al. (2014) "N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes." Mol Cell Proteomics 13(1):240–51; PMID: 24190977; doi: 10.1074/mcp.M113.033977; GPMDB: 40.
  527. English JA, et al. (2013) "Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus." Front Genet 4:208; PMID: 24194745; doi: 10.3389/fgene.2013.00208; GPMDB: 48.
  528. Fujita T, et al. (2013) "Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)." Sci Rep 3:3171; PMID: 24201379; doi: 10.1038/srep03171; GPMDB: 30.
  529. Salek M, et al. (2013) "Quantitative phosphoproteome analysis unveils LAT as a modulator of CD3ζ and ZAP-70 tyrosine phosphorylation." PLoS One 8(10):e77423; PMID: 24204825; doi: 10.1371/journal.pone.0077423; GPMDB: 162.
  530. Sandberg A, et al. (2014) "Quantitative accuracy in mass spectrometry based proteomics of complex samples: the impact of labeling and precursor interference." J Proteomics 96:133–44; PMID: 24211767; doi: 10.1016/j.jprot.2013.10.035; GPMDB: 27.
  531. Caruthers NJ, et al. (2014) "Mercury alters B-cell protein phosphorylation profiles." J Proteome Res 13(2):496–505; PMID: 24224561; doi: 10.1021/pr400657k; GPMDB: 21.
  532. Sancak Y, et al. (2013) "EMRE is an essential component of the mitochondrial calcium uniporter complex." Science 342(6164):1379–82; PMID: 24231807; doi: 10.1126/science.1242993; GPMDB: 7.
  533. Thomae AW, et al. (2013) "A pair of centromeric proteins mediates reproductive isolation in Drosophila species." Dev Cell 27(4):412–24; PMID: 24239514; doi: 10.1016/j.devcel.2013.10.001; GPMDB: 51.
  534. Branca RM, et al. (2014) "HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics." Nat Methods 11(1):59–62; PMID: 24240322; doi: 10.1038/nmeth.2732; GPMDB: 2592.
  535. Schaab C, et al. (2014) "Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib." Leukemia 28(3):716–9; PMID: 24247654; doi: 10.1038/leu.2013.347; GPMDB: 22.
  536. Drake JM, et al. (2013) "Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets." Proc Natl Acad Sci U S A 110(49):E4762–9; PMID: 24248375; doi: 10.1073/pnas.1319948110; GPMDB: 87.
  537. Chang C, et al. (2014) "Systematic analyses of the transcriptome, translatome, and proteome provide a global view and potential strategy for the C-HPP." J Proteome Res 13(1):38–49; PMID: 24256510; doi: 10.1021/pr4009018; GPMDB: 216.
  538. Dagley LF, et al. (2014) "Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain." Proteomics 14(2-3):241–61; PMID: 24259518; doi: 10.1002/pmic.201300196; GPMDB: 56.
  539. Xing X, et al. (2014) "Qualitative and quantitative analysis of the adult Drosophila melanogaster proteome." Proteomics 14(2-3):286–90; PMID: 24259522; doi: 10.1002/pmic.201300121; GPMDB: 125.
  540. Lichti CF, et al. (2014) "Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines." J Proteome Res 13(1):191–9; PMID: 24266786; doi: 10.1021/pr400786s; GPMDB: 66.
  541. Grolimund L, et al. (2013) "A quantitative telomeric chromatin isolation protocol identifies different telomeric states." Nat Commun 4:2848; PMID: 24270157; doi: 10.1038/ncomms3848; GPMDB: 177.
  542. Martins-de-Souza D, et al. (2014) "Deciphering the human brain proteome: characterization of the anterior temporal lobe and corpus callosum as part of the Chromosome 15-centric Human Proteome Project." J Proteome Res 13(1):147–57; PMID: 24274931; doi: 10.1021/pr4009157; GPMDB: 80.
  543. Schlage P, et al. (2014) "Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome." Mol Cell Proteomics 13(2):580–93; PMID: 24281761; doi: 10.1074/mcp.M113.035139; GPMDB: 34.
  544. Aquino PF, et al. (2014) "Exploring the proteomic landscape of a gastric cancer biopsy with the shotgun imaging analyzer." J Proteome Res 13(1):314–20; PMID: 24283986; doi: 10.1021/pr400919k; GPMDB: 152.
  545. Nensa FM, et al. (2014) "Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain." Mol Cell Proteomics 13(2):475–88; PMID: 24284412; doi: 10.1074/mcp.M113.029280; GPMDB: 60.
  546. Jüschke C, et al. (2013) "Transcriptome and proteome quantification of a tumor model provides novel insights into post-transcriptional gene regulation." Genome Biol 14(11):r133; PMID: 24289286; doi: 10.1186/gb-2013-14-11-r133; GPMDB: 203.
  547. Wang C, et al. (2014) "A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles." Nat Methods 11(1):79–85; PMID: 24292485; doi: 10.1038/nmeth.2759; GPMDB: 180.
  548. Krönke J, et al. (2014) "Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells." Science 343(6168):301–5; PMID: 24292625; doi: 10.1126/science.1244851; GPMDB: 90.
  549. Poulsen ET, et al. (2014) "Comparison of two phenotypically distinct lattice corneal dystrophies caused by mutations in the transforming growth factor beta induced (TGFBI) gene." Proteomics Clin Appl 8(3-4):168–77; PMID: 24302499; doi: 10.1002/prca.201300058; GPMDB: 10.
  550. Macleod AK, et al. (2014) "A targeted in vivo SILAC approach for quantification of drug metabolism enzymes: regulation by the constitutive androstane receptor." J Proteome Res 13(2):866–74; PMID: 24303842; doi: 10.1021/pr400897t; GPMDB: 44.
  551. Aguilera L, et al. (2014) "Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917." Proteomics 14(2-3):222–9; PMID: 24307187; doi: 10.1002/pmic.201300328; GPMDB: 44.
  552. de la Tour CB, et al. (2013) "Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage." Proteomics 13(23-24):3457–69; PMID: 24307635; doi: 10.1002/pmic.201300249; GPMDB: 24.
  553. Carlson SM, et al. (2014) "Proteome-wide enrichment of proteins modified by lysine methylation." Nat Protoc 9(1):37–50; PMID: 24309976; doi: 10.1038/nprot.2013.164; GPMDB: 8.
  554. Fierro-Monti I, et al. (2013) "Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy." PLoS One 8(11):e80425; PMID: 24312219; doi: 10.1371/journal.pone.0080425; GPMDB: 293.
  555. Bland C, et al. (2014) "Magnetic immunoaffinity enrichment for selective capture and MS/MS analysis of N-terminal-TMPP-labeled peptides." J Proteome Res 13(2):668–80; PMID: 24313271; doi: 10.1021/pr400774z; GPMDB: 9.
  556. Tsai CF, et al. (2014) "Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography." Anal Chem 86(1):685–93; PMID: 24313913; doi: 10.1021/ac4031175; GPMDB: 27.
  557. Kennedy JJ, et al. (2014) "Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins." Nat Methods 11(2):149–55; PMID: 24317253; doi: 10.1038/nmeth.2763; GPMDB: 221.
  558. Kao L, et al. (2014) "Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis." Mol Cell Proteomics 13(2):594–605; PMID: 24319056; doi: 10.1074/mcp.M113.032680; GPMDB: 9.
  559. Beck F, et al. (2014) "Time-resolved characterization of cAMP/PKA-dependent signaling reveals that platelet inhibition is a concerted process involving multiple signaling pathways." Blood 123(5):e1–e10; PMID: 24324209; doi: 10.1182/blood-2013-07-512384; GPMDB: 19.
  560. Lv DW, et al. (2014) "Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress." Mol Cell Proteomics 13(2):632–52; PMID: 24335353; doi: 10.1074/mcp.M113.030171; GPMDB: 87.
  561. Hauri S, et al. (2013) "Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1." Mol Syst Biol 9:713; PMID: 24366813; doi: 10.1002/msb.201304750; GPMDB: 96.
  562. Hoffmann C, et al. (2014) "Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages." Cell Microbiol 16(7):1034–52; PMID: 24373249; doi: 10.1111/cmi.12256; GPMDB: 120.
  563. Robles MS, et al. (2014) "In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism." PLoS Genet 10(1):e1004047; PMID: 24391516; doi: 10.1371/journal.pgen.1004047; GPMDB: 282.
  564. Faso C, et al. (2013) "The proteome landscape of Giardia lamblia encystation." PLoS One 8(12):e83207; PMID: 24391747; doi: 10.1371/journal.pone.0083207; GPMDB: 125.
  565. Forterre A, et al. (2014) "Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk?" PLoS One 9(1):e84153; PMID: 24392111; doi: 10.1371/journal.pone.0084153; GPMDB: 6.
  566. Eichelbaum K, et al. (2014) "Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation." Mol Cell Proteomics 13(3):792–810; PMID: 24396086; doi: 10.1074/mcp.M113.030916; GPMDB: 48.
  567. Liu NQ, et al. (2014) "Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer." J Natl Cancer Inst 106(2):djt376; PMID: 24399849; doi: 10.1093/jnci/djt376; GPMDB: 126.
  568. Van Damme P, et al. (2014) "A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant." Mol Cell Proteomics 13(8):2031–41; PMID: 24408909; doi: 10.1074/mcp.M113.035402; GPMDB: 192.
  569. Sinha A, et al. (2014) "In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome." Biochem Biophys Res Commun 445(4):694–701; PMID: 24434149; doi: 10.1016/j.bbrc.2013.12.070; GPMDB: 14.
  570. Lennon R, et al. (2014) "Global analysis reveals the complexity of the human glomerular extracellular matrix." J Am Soc Nephrol 25(5):939–51; PMID: 24436468; doi: 10.1681/ASN.2013030233; GPMDB: 89.
  571. Byron A, et al. (2014) "Glomerular cell cross-talk influences composition and assembly of extracellular matrix." J Am Soc Nephrol 25(5):953–66; PMID: 24436469; doi: 10.1681/ASN.2013070795; GPMDB: 180.
  572. Licker V, et al. (2014) "Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson's disease pathogenesis." Proteomics 14(6):784–94; PMID: 24449343; doi: 10.1002/pmic.201300342; GPMDB: 48.
  573. Pesciotta EN, et al. (2014) "Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients." PLoS One 9(1):e85504; PMID: 24454878; doi: 10.1371/journal.pone.0085504; GPMDB: 346.
  574. Ferreira R, et al. (2014) "Lifelong exercise training modulates cardiac mitochondrial phosphoproteome in rats." J Proteome Res 13(4):2045–55; PMID: 24467267; doi: 10.1021/pr4011926; GPMDB: 20.
  575. Barth J, et al. (2014) "The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry." Mol Cell Proteomics 13(4):969–89; PMID: 24482124; doi: 10.1074/mcp.M113.032771; GPMDB: 198.
  576. Kulak NA, et al. (2014) "Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells." Nat Methods 11(3):319–24; PMID: 24487582; doi: 10.1038/nmeth.2834; GPMDB: 59.
  577. Weinert BT, et al. (2014) "Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae." Mol Syst Biol 10:716; PMID: 24489116; doi: 10.1002/msb.134766; GPMDB: 88.
  578. Kjellin H, et al. (2014) "Differentially expressed proteins in malignant and benign adrenocortical tumors." PLoS One 9(2):e87951; PMID: 24498411; doi: 10.1371/journal.pone.0087951; GPMDB: 2.
  579. van den Biggelaar M, et al. (2014) "Quantitative phosphoproteomics unveils temporal dynamics of thrombin signaling in human endothelial cells." Blood 123(12):e22–36; PMID: 24501219; doi: 10.1182/blood-2013-12-546036; GPMDB: 87.
  580. Eguren M, et al. (2014) "A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens." Cell Rep 6(4):670–83; PMID: 24508461; doi: 10.1016/j.celrep.2014.01.017; GPMDB: 119.
  581. Rinschen MM, et al. (2014) "Phosphoproteomic analysis reveals regulatory mechanisms at the kidney filtration barrier." J Am Soc Nephrol 25(7):1509–22; PMID: 24511133; doi: 10.1681/ASN.2013070760; GPMDB: 34.
  582. Tao D, et al. (2014) "The acute transcriptomic and proteomic response of HC-04 hepatoma cells to hepatocyte growth factor and its implications for Plasmodium falciparum sporozoite invasion." Mol Cell Proteomics 13(5):1153–64; PMID: 24532842; doi: 10.1074/mcp.M113.035584; GPMDB: 51.
  583. Kustatscher G, et al. (2014) "Proteomics of a fuzzy organelle: interphase chromatin." EMBO J 33(6):648–64; PMID: 24534090; doi: 10.1002/embj.201387614; GPMDB: 519.
  584. Bland C, et al. (2014) "N-Terminal-oriented proteogenomics of the marine bacterium roseobacter denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography." Mol Cell Proteomics 13(5):1369–81; PMID: 24536027; doi: 10.1074/mcp.O113.032854; GPMDB: 4.
  585. Zufferey A, et al. (2014) "Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules." J Proteomics 101:130–40; PMID: 24549006; doi: 10.1016/j.jprot.2014.02.008; GPMDB: 8.
  586. Depuydt G, et al. (2014) "LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism." J Proteome Res 13(4):1938–56; PMID: 24555535; doi: 10.1021/pr401081b; GPMDB: 40.
  587. Lange PF, et al. (2014) "Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome." J Proteome Res 13(4):2028–44; PMID: 24555563; doi: 10.1021/pr401191w; GPMDB: 101.
  588. Plohnke N, et al. (2014) "Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms." Exp Gerontol 56:13–25; PMID: 24556281; doi: 10.1016/j.exger.2014.02.008; GPMDB: 36.
  589. Kolinko I, et al. (2014) "Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters." Nat Nanotechnol 9(3):193–7; PMID: 24561353; doi: 10.1038/nnano.2014.13; GPMDB: 1.
  590. Warinner C, et al. (2014) "Pathogens and host immunity in the ancient human oral cavity." Nat Genet 46(4):336–44; PMID: 24562188; doi: 10.1038/ng.2906; GPMDB: 18.
  591. Sigdel TK, et al. (2014) "Optimization for peptide sample preparation for urine peptidomics." Clin Proteomics 11(1):7; PMID: 24568099; doi: 10.1186/1559-0275-11-7; GPMDB: 8.
  592. Husi H, et al. (2014) "Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease." Circ Cardiovasc Genet 7(2):161–70; PMID: 24573165; doi: 10.1161/CIRCGENETICS.113.000196; GPMDB: 14.
  593. Talamantes T, et al. (2014) "Label-free LC-MS/MS identification of phosphatidylglycerol-regulated proteins in Synechocystis sp. PCC6803." Proteomics 14(9):1053–7; PMID: 24574175; doi: 10.1002/pmic.201300372; GPMDB: 30.
  594. Benevento M, et al. (2014) "Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics." J Biol Chem 289(16):11421–11430; PMID: 24591515; doi: 10.1074/jbc.M113.537498; GPMDB: 5.
  595. Legendre M, et al. (2014) "Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology." Proc Natl Acad Sci U S A 111(11):4274–9; PMID: 24591590; doi: 10.1073/pnas.1320670111; GPMDB: 1.
  596. Ly T, et al. (2014) "A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells." Elife 3:e01630; PMID: 24596151; doi: 10.7554/eLife.01630; GPMDB: 98.
  597. Bailey DJ, et al. (2014) "Intelligent data acquisition blends targeted and discovery methods." J Proteome Res 13(4):2152–61; PMID: 24611583; doi: 10.1021/pr401278j; GPMDB: 37.
  598. Dai DF, et al. (2014) "Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart." Aging Cell 13(3):529–39; PMID: 24612461; doi: 10.1111/acel.12203; GPMDB: 140.
  599. Naba A, et al. (2014) "Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters." Elife 3:e01308; PMID: 24618895; doi: 10.7554/eLife.01308; GPMDB: 44.
  600. Peebo K, et al. (2014) "Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli." Appl Microbiol Biotechnol 98(11):5131–43; PMID: 24633370; doi: 10.1007/s00253-014-5613-y; GPMDB: 10.
  601. Clark CG, et al. (2014) "The CJIE1 prophage of Campylobacter jejuni affects protein expression in growth media with and without bile salts." BMC Microbiol 14:70; PMID: 24641125; doi: 10.1186/1471-2180-14-70; GPMDB: 163.
  602. Zhang Q, et al. (2014) "High and low doses of ionizing radiation induce different secretome profiles in a human skin model." PLoS One 9(3):e92332; PMID: 24642900; doi: 10.1371/journal.pone.0092332; GPMDB: 85.
  603. de Groot RE, et al. (2014) "Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway." Sci Signal 7(317):ra26; PMID: 24643799; doi: 10.1126/scisignal.2004985; GPMDB: 10.
  604. Sahasrabuddhe NA, et al. (2014) "Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics." Biochem Biophys Res Commun 446(4):863–9; PMID: 24657443; doi: 10.1016/j.bbrc.2014.03.017; GPMDB: 29.
  605. Schwarzer C, et al. (2014) "Maternal age effect on mouse oocytes: new biological insight from proteomic analysis." Reproduction 148(1):55–72; PMID: 24686459; doi: 10.1530/REP-14-0126; GPMDB: 3.
  606. Kume H, et al. (2014) "Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis." Mol Cell Proteomics 13(6):1471–84; PMID: 24687888; doi: 10.1074/mcp.M113.037093; GPMDB: 6.
  607. Guo X, et al. (2014) "Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics." Mol Cell Proteomics 13(6):1573–84; PMID: 24696503; doi: 10.1074/mcp.M113.035170; GPMDB: 99.
  608. Hiemstra TF, et al. (2014) "Human urinary exosomes as innate immune effectors." J Am Soc Nephrol 25(9):2017–27; PMID: 24700864; doi: 10.1681/ASN.2013101066; GPMDB: 489.
  609. Shevchuk O, et al. (2014) "HOPE-fixation of lung tissue allows retrospective proteome and phosphoproteome studies." J Proteome Res 13(11):5230–9; PMID: 24702127; doi: 10.1021/pr500096a; GPMDB: 4.
  610. Tsai CM, et al. (2014) "Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling." J Proteomics 103:241–53; PMID: 24704852; doi: 10.1016/j.jprot.2014.03.031; GPMDB: 15.
  611. MacLean AM, et al. (2014) "Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner." PLoS Biol 12(4):e1001835; PMID: 24714165; doi: 10.1371/journal.pbio.1001835; GPMDB: 20.
  612. Bourdetsky D, et al. (2014) "The nature and extent of contributions by defective ribosome products to the HLA peptidome." Proc Natl Acad Sci U S A 111(16):E1591–9; PMID: 24715725; doi: 10.1073/pnas.1321902111; GPMDB: 16.
  613. Azimi A, et al. (2014) "Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance." Br J Cancer 110(10):2489–95; PMID: 24722184; doi: 10.1038/bjc.2014.169; GPMDB: 146.
  614. Svozil J, et al. (2014) "Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A." Mol Cell Proteomics 13(6):1523–36; PMID: 24732913; doi: 10.1074/mcp.M113.036269; GPMDB: 128.
  615. Farrelly LA, et al. (2014) "Adolescent Risperidone treatment alters protein expression associated with protein trafficking and cellular metabolism in the adult rat prefrontal cortex." Proteomics 14(12):1574–8; PMID: 24733778; doi: 10.1002/pmic.201300466; GPMDB: 30.
  616. Tran DT, et al. (2014) "StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions." Mol Cell Proteomics 13(7):1800–13; PMID: 24741112; doi: 10.1074/mcp.M113.034702; GPMDB: 27.
  617. Kuhlmann K, et al. (2014) "The membrane proteome of sensory cilia to the depth of olfactory receptors." Mol Cell Proteomics 13(7):1828–43; PMID: 24748648; doi: 10.1074/mcp.M113.035378; GPMDB: 91.
  618. Sansoni V, et al. (2014) "The histone variant H2A.Bbd is enriched at sites of DNA synthesis." Nucleic Acids Res 42(10):6405–20; PMID: 24753410; doi: 10.1093/nar/gku303; GPMDB: 96.
  619. Han D, et al. (2014) "Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation." Proteomics 14(13-14):1604–9; PMID: 24753479; doi: 10.1002/pmic.201300495; GPMDB: 107.
  620. Chiasserini D, et al. (2014) "Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset." J Proteomics 106:191–204; PMID: 24769233; doi: 10.1016/j.jprot.2014.04.028; GPMDB: 36.
  621. Renvoisé M, et al. (2014) "Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae." J Proteomics 106:140–50; PMID: 24769239; doi: 10.1016/j.jprot.2014.04.022; GPMDB: 48.
  622. Eravci M, et al. (2014) "IPG strip-based peptide fractionation for shotgun proteomics." Methods Mol Biol 1156:67–77; PMID: 24791982; doi: 10.1007/978-1-4939-0685-7_5; GPMDB: 41.
  623. Güther ML, et al. (2014) "High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics." J Proteome Res 13(6):2796–806; PMID: 24792668; doi: 10.1021/pr401209w; GPMDB: 154.
  624. Guyonnet B, et al. (2014) "Functional amyloids in the mouse sperm acrosome." Mol Cell Biol 34(14):2624–34; PMID: 24797071; doi: 10.1128/MCB.00073-14; GPMDB: 12.
  625. Tong J, et al. (2014) "Proteomic analysis of the epidermal growth factor receptor (EGFR) interactome and post-translational modifications associated with receptor endocytosis in response to EGF and stress." Mol Cell Proteomics 13(7):1644–58; PMID: 24797263; doi: 10.1074/mcp.M114.038596; GPMDB: 69.
  626. Giansanti P, et al. (2014) "Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics." ACS Chem Biol 9(7):1490–8; PMID: 24804581; doi: 10.1021/cb500116c; GPMDB: 71.
  627. Rowshanravan B, et al. (2014) "RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis." J Cell Sci 127(Pt 13):2849–61; PMID: 24816559; doi: 10.1242/jcs.139329; GPMDB: 42.
  628. Bracht T, et al. (2014) "Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration." J Proteome Res 13(6):2771–82; PMID: 24818710; doi: 10.1021/pr401188r; GPMDB: 68.
  629. Siljamäki P, et al. (2014) "Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence." J Proteome Res 13(7):3249–61; PMID: 24840314; doi: 10.1021/pr500075j; GPMDB: 94.
  630. Barth TK, et al. (2014) "Identification of novel Drosophila centromere-associated proteins." Proteomics 14(19):2167–78; PMID: 24841622; doi: 10.1002/pmic.201400052; GPMDB: 72.
  631. Poulsen ET, et al. (2014) "Proteomics of Fuchs' endothelial corneal dystrophy support that the extracellular matrix of Descemet's membrane is disordered." J Proteome Res 13(11):4659–67; PMID: 24846694; doi: 10.1021/pr500252r; GPMDB: 66.
  632. Leong HS, et al. (2014) "A global non-coding RNA system modulates fission yeast protein levels in response to stress." Nat Commun 5:3947; PMID: 24853205; doi: 10.1038/ncomms4947; GPMDB: 60.
  633. Kim MS, et al. (2014) "A draft map of the human proteome." Nature 509(7502):575–81; PMID: 24870542; doi: 10.1038/nature13302; GPMDB: 88.
  634. Wilhelm M, et al. (2014) "Mass-spectrometry-based draft of the human proteome." Nature 509(7502):582–7; PMID: 24870543; doi: 10.1038/nature13319; GPMDB: 1257.
  635. van der Post S, et al. (2014) "Membrane protein profiling of human colon reveals distinct regional differences." Mol Cell Proteomics 13(9):2277–87; PMID: 24889196; doi: 10.1074/mcp.M114.040204; GPMDB: 16.
  636. Kim MS, et al. (2014) "Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics." Mol Cell Proteomics 13(11):2803–11; PMID: 24895378; doi: 10.1074/mcp.M114.038547; GPMDB: 24.
  637. Siljamäki P, et al. (2014) "Comparative proteome profiling of bovine and human Staphylococcus epidermidis strains for screening specifically expressed virulence and adaptation proteins." Proteomics 14(16):1890–4; PMID: 24909406; doi: 10.1002/pmic.201300275; GPMDB: 3.
  638. Köcher T, et al. (2014) "Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up." Proteomics 14(17-18):1999–2007; PMID: 24920484; doi: 10.1002/pmic.201300418; GPMDB: 39.
  639. Corradini E, et al. (2014) "Alterations in the cerebellar (Phospho)proteome of a cyclic guanosine monophosphate (cGMP)-dependent protein kinase knockout mouse." Mol Cell Proteomics 13(8):2004–16; PMID: 24925903; doi: 10.1074/mcp.M113.035154; GPMDB: 6.
  640. Kukuczka B, et al. (2014) "Proton Gradient Regulation5-Like1-Mediated Cyclic Electron Flow Is Crucial for Acclimation to Anoxia and Complementary to Nonphotochemical Quenching in Stress Adaptation." Plant Physiol 165(4):1604–1617; PMID: 24948831; doi: 10.1104/pp.114.240648; GPMDB: 79.
  641. Cuello F, et al. (2014) "Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis." Mol Cell Proteomics 13(10):2545–57; PMID: 24958171; doi: 10.1074/mcp.M114.039446; GPMDB: 384.
  642. de Graaf EL, et al. (2014) "Phosphoproteome dynamics in onset and maintenance of oncogene-induced senescence." Mol Cell Proteomics 13(8):2089–100; PMID: 24961811; doi: 10.1074/mcp.M113.035436; GPMDB: 223.
  643. Iesmantavicius V, et al. (2014) "Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells." Mol Cell Proteomics 13(8):1979–92; PMID: 24961812; doi: 10.1074/mcp.O113.035683; GPMDB: 71.
  644. Jefferson M, et al. (2014) "Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex." J Virol 88(18):10340–53; PMID: 24965446; doi: 10.1128/JVI.00984-14; GPMDB: 30.
  645. Milbradt J, et al. (2014) "Proteomic analysis of the multimeric nuclear egress complex of human cytomegalovirus." Mol Cell Proteomics 13(8):2132–46; PMID: 24969177; doi: 10.1074/mcp.M113.035782; GPMDB: 24.
  646. Fischer MG, et al. (2014) "The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair." Virology 466-467:82–94; PMID: 24973308; doi: 10.1016/j.virol.2014.05.029; GPMDB: 10.
  647. Chiva C, et al. (2014) "Influence of the digestion technique, protease, and missed cleavage peptides in protein quantitation." J Proteome Res 13(9):3979–86; PMID: 24986539; doi: 10.1021/pr500294d; GPMDB: 89.
  648. Uechi G, et al. (2014) "Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules." J Proteome Res 13(8):3693–3705; PMID: 24990792; doi: 10.1021/pr5002065; GPMDB: 315.
  649. Zhang H, et al. (2014) "SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells." Proteomics 14(17-18):1977–86; PMID: 24995952; doi: 10.1002/pmic.201300539; GPMDB: 30.
  650. Pasillas MP, et al. (2015) "Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation." Mol Cell Proteomics 14(1):1–14; PMID: 24997994; doi: 10.1074/mcp.M114.037697; GPMDB: 51.
  651. Chopra T, et al. (2014) "Quantitative mass spectrometry reveals plasticity of metabolic networks in Mycobacterium smegmatis." Mol Cell Proteomics 13(11):3014–28; PMID: 24997995; doi: 10.1074/mcp.M113.034082; GPMDB: 28.
  652. Öhman T, et al. (2014) "Phosphoproteomics combined with quantitative 14-3-3-affinity capture identifies SIRT1 and RAI as novel regulators of cytosolic double-stranded RNA recognition pathway." Mol Cell Proteomics 13(10):2604–17; PMID: 24997996; doi: 10.1074/mcp.M114.038968; GPMDB: 44.
  653. Sangar V, et al. (2014) "Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells." Mol Cell Proteomics 13(10):2618–31; PMID: 24997998; doi: 10.1074/mcp.M114.040428; GPMDB: 8.
  654. Savijoki K, et al. (2014) "Genomics and Proteomics Provide New Insight into the Commensal and Pathogenic Lifestyles of Bovine- and Human-Associated Staphylococcus epidermidis Strains." J Proteome Res 13(8):3748–3762; PMID: 25014494; doi: 10.1021/pr500322d; GPMDB: 8.
  655. de Keijzer J, et al. (2014) "Disclosure of selective advantages in the "modern" sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics." Mol Cell Proteomics 13(10):2632–45; PMID: 25022876; doi: 10.1074/mcp.M114.038380; GPMDB: 152.
  656. Engel E, et al. (2014) "Identifying USPs regulating immune signals in Drosophila: USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome." Cell Commun Signal 12:41; PMID: 25027767; doi: 10.1186/s12964-014-0041-2; GPMDB: 2.
  657. Padden J, et al. (2014) "Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma." Mol Cell Proteomics 13(10):2661–72; PMID: 25034945; doi: 10.1074/mcp.M113.034942; GPMDB: 16.
  658. Naba A, et al. (2014) "Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver." BMC Cancer 14:518; PMID: 25037231; doi: 10.1186/1471-2407-14-518; GPMDB: 176.
  659. Guldbrandsen A, et al. (2014) "In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR)." Mol Cell Proteomics 13(11):3152–63; PMID: 25038066; doi: 10.1074/mcp.M114.038554; GPMDB: 88.
  660. Chen YJ, et al. (2014) "Decoding the s-nitrosoproteomic atlas in individualized human colorectal cancer tissues using a label-free quantitation strategy." J Proteome Res 13(11):4942–58; PMID: 25040305; doi: 10.1021/pr5002675; GPMDB: 54.
  661. Zhang B, et al. (2014) "Proteogenomic characterization of human colon and rectal cancer." Nature 513(7518):382–7; PMID: 25043054; doi: 10.1038/nature13438; GPMDB: 1381.
  662. An E, et al. (2014) "Characterization of functional reprogramming during osteoclast development using quantitative proteomics and mRNA profiling." Mol Cell Proteomics 13(10):2687–704; PMID: 25044017; doi: 10.1074/mcp.M113.034371; GPMDB: 73.
  663. Végh MJ, et al. (2014) "Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline." Mol Cell Proteomics 13(11):2975–85; PMID: 25044018; doi: 10.1074/mcp.M113.032086; GPMDB: 8.
  664. Heo S, et al. (2014) "Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro." Proteomics 14(17-18):2084–8; PMID: 25044505; doi: 10.1002/pmic.201400077; GPMDB: 60.
  665. Aasebø E, et al. (2014) "Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines." Proteomics 14(17-18):1971–6; PMID: 25044641; doi: 10.1002/pmic.201300448; GPMDB: 186.
  666. Soleilhavoup C, et al. (2014) "Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa." J Proteomics 109:245–60; PMID: 25053255; doi: 10.1016/j.jprot.2014.07.007; GPMDB: 114.
  667. Smits AH, et al. (2014) "Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs." Nucleic Acids Res 42(15):9880–91; PMID: 25056316; doi: 10.1093/nar/gku661; GPMDB: 62.
  668. Tao D, et al. (2014) "Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology." Mol Cell Proteomics 13(10):2705–24; PMID: 25056935; doi: 10.1074/mcp.M114.040956; GPMDB: 10.
  669. Klaubauf S, et al. (2014) "Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi." Fungal Genet Biol 72:73–81; PMID: 25064064; doi: 10.1016/j.fgb.2014.07.007; GPMDB: 40.
  670. Putker M, et al. (2015) "Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling." Antioxid Redox Signal 22(1):15–28; PMID: 25069953; doi: 10.1089/ars.2014.6056; GPMDB: 41.
  671. Dephoure N, et al. (2014) "Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast." Elife 3:e03023; PMID: 25073701; doi: 10.7554/eLife.03023; GPMDB: 10.
  672. Yang W, et al. (2014) "Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells." Cell Commun Signal 12:44; PMID: 25080971; doi: 10.1186/s12964-014-0044-z; GPMDB: 30.
  673. Labas V, et al. (2015) "Qualitative and quantitative peptidomic and proteomic approaches to phenotyping chicken semen." J Proteomics 112:313–35; PMID: 25086240; doi: 10.1016/j.jprot.2014.07.024; GPMDB: 44.
  674. Berlin C, et al. (2015) "Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy." Leukemia 29(3):647–59; PMID: 25092142; doi: 10.1038/leu.2014.233; GPMDB: 146.
  675. Alqahtani A, et al. (2014) "Analysis of purified wild type and mutant adenovirus particles by SILAC based quantitative proteomics." J Gen Virol 95(Pt 11):2504–2511; PMID: 25096814; doi: 10.1099/vir.0.068221-0; GPMDB: 22.
  676. Jin L, et al. (2014) "Down-regulation of Ras-related protein Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines." Mol Cell Proteomics 13(11):3138–51; PMID: 25096996; doi: 10.1074/mcp.M113.033217; GPMDB: 11.
  677. Zhang B, et al. (2014) "DeMix workflow for efficient identification of cofragmented peptides in high resolution data-dependent tandem mass spectrometry." Mol Cell Proteomics 13(11):3211–23; PMID: 25100859; doi: 10.1074/mcp.O114.038877; GPMDB: 7.
  678. Wallin MT, et al. (2015) "Serum proteomic analysis of a pre-symptomatic multiple sclerosis cohort." Eur J Neurol 22(3):591–9; PMID: 25104396; doi: 10.1111/ene.12534; GPMDB: 104.
  679. Perdomo D, et al. (2015) "Cellular and proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica." J Proteomics 112:125–40; PMID: 25109464; doi: 10.1016/j.jprot.2014.07.034; GPMDB: 3.
  680. Talman AM, et al. (2014) "Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility." Malar J 13:315; PMID: 25124718; doi: 10.1186/1475-2875-13-315; GPMDB: 3.
  681. Carvalho AS, et al. (2014) "Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress." Mol Cell Proteomics 13(12):3294–307; PMID: 25128556; doi: 10.1074/mcp.M113.034363; GPMDB: 18.
  682. Surmann K, et al. (2014) "Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells." Front Microbiol 5:392; PMID: 25136337; doi: 10.3389/fmicb.2014.00392; GPMDB: 71.
  683. Worboys JD, et al. (2014) "Systematic evaluation of quantotypic peptides for targeted analysis of the human kinome." Nat Methods 11(10):1041–4; PMID: 25152083; doi: 10.1038/nmeth.3072; GPMDB: 12.
  684. Moczulska KE, et al. (2014) "Deep and precise quantification of the mouse synaptosomal proteome reveals substantial remodeling during postnatal maturation." J Proteome Res 13(10):4310–24; PMID: 25157418; doi: 10.1021/pr500456t; GPMDB: 100.
  685. Han D, et al. (2015) "Integrated approach using multistep enzyme digestion, TiO2 enrichment, and database search for in-depth phosphoproteomic profiling." Proteomics 15(2-3):618–23; PMID: 25159016; doi: 10.1002/pmic.201400102; GPMDB: 36.
  686. Sharma K, et al. (2014) "Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling." Cell Rep 8(5):1583–94; PMID: 25159151; doi: 10.1016/j.celrep.2014.07.036; GPMDB: 276.
  687. Bennike T, et al. (2014) "A normative study of the synovial fluid proteome from healthy porcine knee joints." J Proteome Res 13(10):4377–87; PMID: 25160569; doi: 10.1021/pr500587x; GPMDB: 57.
  688. Reinartz M, et al. (2014) "AKT1 and AKT2 induce distinct phosphorylation patterns in HL-1 cardiac myocytes." J Proteome Res 13(10):4232–45; PMID: 25162660; doi: 10.1021/pr500131g; GPMDB: 8.
  689. Dyrlund TF, et al. (2014) "Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis." Hum Reprod 29(11):2421–30; PMID: 25164020; doi: 10.1093/humrep/deu220; GPMDB: 63.
  690. Yang J, et al. (2014) "Site-specific mapping and quantification of protein S-sulphenylation in cells." Nat Commun 5:4776; PMID: 25175731; doi: 10.1038/ncomms5776; GPMDB: 24.
  691. Liao BM, et al. (2014) "Proteomic analysis of livers from fat-fed mice deficient in either PKCδ or PKCε identifies Htatip2 as a regulator of lipid metabolism." Proteomics 14(21-22):2578–87; PMID: 25175814; doi: 10.1002/pmic.201400202; GPMDB: 222.
  692. Van den Bossche A, et al. (2014) "Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa." J Proteome Res 13(10):4446–56; PMID: 25185497; doi: 10.1021/pr500796n; GPMDB: 600.
  693. Hornburg D, et al. (2014) "Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics." Mol Cell Proteomics 13(12):3410–20; PMID: 25193168; doi: 10.1074/mcp.M113.037291; GPMDB: 29.
  694. Wang X, et al. (2014) "JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy." Mol Cell Proteomics 13(12):3663–73; PMID: 25202125; doi: 10.1074/mcp.O114.039586; GPMDB: 13.
  695. Zeiler M, et al. (2014) "Copy number analysis of the murine platelet proteome spanning the complete abundance range." Mol Cell Proteomics 13(12):3435–45; PMID: 25205226; doi: 10.1074/mcp.M114.038513; GPMDB: 9.
  696. Chocu S, et al. (2014) "Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells." Biol Reprod 91(5):123; PMID: 25210130; doi: 10.1095/biolreprod.114.122416; GPMDB: 6.
  697. Frenk S, et al. (2014) "The nuclear exosome is active and important during budding yeast meiosis." PLoS One 9(9):e107648; PMID: 25210768; doi: 10.1371/journal.pone.0107648; GPMDB: 12.
  698. Laouami S, et al. (2014) "Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579." PLoS One 9(9):e107354; PMID: 25216269; doi: 10.1371/journal.pone.0107354; GPMDB: 12.
  699. Shin J, et al. (2014) "Discovery of melanotransferrin as a serological marker of colorectal cancer by secretome analysis and quantitative proteomics." J Proteome Res 13(11):4919–31; PMID: 25216327; doi: 10.1021/pr500790f; GPMDB: 34.
  700. Hendriks IA, et al. (2014) "Uncovering global SUMOylation signaling networks in a site-specific manner." Nat Struct Mol Biol 21(10):927–36; PMID: 25218447; doi: 10.1038/nsmb.2890; GPMDB: 32.
  701. Wiese H, et al. (2015) "Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells." Biochim Biophys Acta 1854(6):632–40; PMID: 25219547; doi: 10.1016/j.bbapap.2014.09.002; GPMDB: 191.
  702. Negroni L, et al. (2014) "Integrative quantitative proteomics unveils proteostasis imbalance in human hepatocellular carcinoma developed on nonfibrotic livers." Mol Cell Proteomics 13(12):3473–83; PMID: 25225353; doi: 10.1074/mcp.M114.043174; GPMDB: 8.
  703. Wiśniewski JR, et al. (2014) "A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards." Mol Cell Proteomics 13(12):3497–506; PMID: 25225357; doi: 10.1074/mcp.M113.037309; GPMDB: 69.
  704. Adachi J, et al. (2014) "Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe." J Proteome Res 13(12):5461–70; PMID: 25230287; doi: 10.1021/pr500845u; GPMDB: 37.
  705. Alli Shaik A, et al. (2014) "Functional mapping of the zebrafish early embryo proteome and transcriptome." J Proteome Res 13(12):5536–50; PMID: 25230361; doi: 10.1021/pr5005136; GPMDB: 24.
  706. Tape CJ, et al. (2014) "Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC." Anal Chem 86(20):10296–302; PMID: 25233145; doi: 10.1021/ac5025842; GPMDB: 103.
  707. Groessl M, et al. (2014) "Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts." J Proteome Res 13(11):4773–82; PMID: 25238572; doi: 10.1021/pr500727h; GPMDB: 281.
  708. Song Z, et al. (2014) "A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803." Mol Cell Proteomics 13(12):3519–32; PMID: 25239498; doi: 10.1074/mcp.M113.035675; GPMDB: 21.
  709. Schwenk J, et al. (2014) "Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain." Neuron 84(1):41–54; PMID: 25242221; doi: 10.1016/j.neuron.2014.08.044; GPMDB: 95.
  710. Wu X, et al. (2014) "Activation of diverse signalling pathways by oncogenic PIK3CA mutations." Nat Commun 5:4961; PMID: 25247763; doi: 10.1038/ncomms5961; GPMDB: 91.
  711. van der Lelij P, et al. (2014) "SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs." EMBO J 33(22):2643–58; PMID: 25257309; doi: 10.15252/embj.201488202; GPMDB: 2.
  712. Cortes LK, et al. (2014) "Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment." Proteomics 14(21-22):2471–84; PMID: 25262930; doi: 10.1002/pmic.201400148; GPMDB: 36.
  713. Zhong J, et al. (2015) "Quantitative phosphoproteomics reveals crosstalk between phosphorylation and O-GlcNAc in the DNA damage response pathway." Proteomics 15(2-3):591–607; PMID: 25263469; doi: 10.1002/pmic.201400339; GPMDB: 6.
  714. Navarro MN, et al. (2014) "Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks." Mol Cell Proteomics 13(12):3544–57; PMID: 25266776; doi: 10.1074/mcp.M113.037242; GPMDB: 274.
  715. Zhang G, et al. (2014) "In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor." J Proteome Res 13(12):5707–14; PMID: 25271054; doi: 10.1021/pr5006982; GPMDB: 8.
  716. Shender VO, et al. (2014) "Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication." Mol Cell Proteomics 13(12):3558–71; PMID: 25271300; doi: 10.1074/mcp.M114.041194; GPMDB: 17.
  717. Savitski MM, et al. (2014) "Tracking cancer drugs in living cells by thermal profiling of the proteome." Science 346(6205):1255784; PMID: 25278616; doi: 10.1126/science.1255784; GPMDB: 403.
  718. Handtke S, et al. (2014) "Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach." J Biotechnol 192 Pt A:204–14; PMID: 25281541; doi: 10.1016/j.jbiotec.2014.08.028; GPMDB: 120.
  719. Bhargava M, et al. (2014) "Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors." PLoS One 9(10):e109713; PMID: 25290099; doi: 10.1371/journal.pone.0109713; GPMDB: 15.
  720. Qi L, et al. (2014) "Systematic analysis of the phosphoproteome and kinase-substrate networks in the mouse testis." Mol Cell Proteomics 13(12):3626–38; PMID: 25293948; doi: 10.1074/mcp.M114.039073; GPMDB: 59.
  721. Tan H, et al. (2015) "Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome." Proteomics 15(2-3):500–7; PMID: 25307156; doi: 10.1002/pmic.201400171; GPMDB: 3.
  722. Carney KE, et al. (2014) "Proteomic analysis of gliosomes from mouse brain: identification and investigation of glial membrane proteins." J Proteome Res 13(12):5918–27; PMID: 25308431; doi: 10.1021/pr500829z; GPMDB: 42.
  723. Yin X, et al. (2014) "Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress." J Proteome Res 13(12):5618–34; PMID: 25316100; doi: 10.1021/pr500621c; GPMDB: 54.
  724. Gopinath RK, et al. (2014) "The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity." Genome Biol Evol 6(10):2851–65; PMID: 25316598; doi: 10.1093/gbe/evu226; GPMDB: 2.
  725. Herbst FA, et al. (2015) "Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1." J Proteome Res 14(1):72–81; PMID: 25317949; doi: 10.1021/pr500938x; GPMDB: 282.
  726. Syed N, et al. (2015) "Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma." Proteomics 15(2-3):383–93; PMID: 25327479; doi: 10.1002/pmic.201400338; GPMDB: 1.
  727. Helgeland E, et al. (2014) "Exploring the human plasma proteome for humoral mediators of remote ischemic preconditioning--a word of caution." PLoS One 9(10):e109279; PMID: 25333471; doi: 10.1371/journal.pone.0109279; GPMDB: 146.
  728. Batth TS, et al. (2014) "Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics." J Proteome Res 13(12):6176–86; PMID: 25338131; doi: 10.1021/pr500893m; GPMDB: 11.
  729. Fang NN, et al. (2014) "Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress." Nat Cell Biol 16(12):1227–37; PMID: 25344756; doi: 10.1038/ncb3054; GPMDB: 9.
  730. Renuse S, et al. (2014) "Proteomic analysis and genome annotation of Pichia pastoris, a recombinant protein expression host." Proteomics 14(23-24):2769–79; PMID: 25346215; doi: 10.1002/pmic.201400267; GPMDB: 105.
  731. Marino F, et al. (2014) "Characterization and usage of the EASY-spray technology as part of an online 2D SCX-RP ultra-high pressure system." Analyst 139(24):6520–8; PMID: 25346955; doi: 10.1039/c4an01568a; GPMDB: 38.
  732. Bileck A, et al. (2014) "Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells." J Proteome Res 13(12):5989–6000; PMID: 25347463; doi: 10.1021/pr5008625; GPMDB: 48.
  733. Kelstrup CD, et al. (2014) "Rapid and deep proteomes by faster sequencing on a benchtop quadrupole ultra-high-field Orbitrap mass spectrometer." J Proteome Res 13(12):6187–95; PMID: 25349961; doi: 10.1021/pr500985w; GPMDB: 36.
  734. Huang TC, et al. (2015) "Identification of miR-145 targets through an integrated omics analysis." Mol Biosyst 11(1):197–207; PMID: 25354783; doi: 10.1039/c4mb00585f; GPMDB: 10.
  735. Hughes CS, et al. (2014) "Ultrasensitive proteome analysis using paramagnetic bead technology." Mol Syst Biol 10:757; PMID: 25358341; doi: 10.15252/msb.20145625; GPMDB: 163.
  736. Yang YS, et al. (2015) "Prioritizing targets for structural biology through the lens of proteomics: the archaeal protein TGAM_1934 from Thermococcus gammatolerans." Proteomics 15(1):114–23; PMID: 25359407; doi: 10.1002/pmic.201300535; GPMDB: 4.
  737. Scheltema RA, et al. (2014) "The Q Exactive HF, a Benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer." Mol Cell Proteomics 13(12):3698–708; PMID: 25360005; doi: 10.1074/mcp.M114.043489; GPMDB: 99.
  738. Mazin PV, et al. (2014) "Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium." Nucleic Acids Res 42(21):13254–68; PMID: 25361977; doi: 10.1093/nar/gku976; GPMDB: 12.
  739. Keilhauer EC, et al. (2015) "Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS)." Mol Cell Proteomics 14(1):120–35; PMID: 25363814; doi: 10.1074/mcp.M114.041012; GPMDB: 196.
  740. Bourderioux M, et al. (2015) "A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients." J Proteome Res 14(1):567–77; PMID: 25365230; doi: 10.1021/pr501003q; GPMDB: 340.
  741. Pinto SM, et al. (2015) "Quantitative phosphoproteomic analysis of IL-33-mediated signaling." Proteomics 15(2-3):532–44; PMID: 25367039; doi: 10.1002/pmic.201400303; GPMDB: 4.
  742. Cubeñas-Potts C, et al. (2015) "Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes." Proteomics 15(4):763–72; PMID: 25367092; doi: 10.1002/pmic.201400400; GPMDB: 8.
  743. Pfeiffer MJ, et al. (2015) "Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice." Proteomics 15(4):675–87; PMID: 25367296; doi: 10.1002/pmic.201400334; GPMDB: 4.
  744. Lamoliatte F, et al. (2014) "Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling." Nat Commun 5:5409; PMID: 25391492; doi: 10.1038/ncomms6409; GPMDB: 6.
  745. Ruprecht B, et al. (2015) "Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns." Mol Cell Proteomics 14(1):205–15; PMID: 25394399; doi: 10.1074/mcp.M114.043109; GPMDB: 152.
  746. Götzke H, et al. (2015) "Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics." Mol Cell Proteomics 14(1):216–26; PMID: 25403562; doi: 10.1074/mcp.M114.043216; GPMDB: 9.
  747. Nirujogi RS, et al. (2015) "Phosphoproteomic analysis reveals compensatory effects in the piriform cortex of VX nerve agent exposed rats." Proteomics 15(2-3):487–99; PMID: 25403869; doi: 10.1002/pmic.201400371; GPMDB: 12.
  748. Sap KA, et al. (2015) "Global quantitative proteomics reveals novel factors in the ecdysone signaling pathway in Drosophila melanogaster." Proteomics 15(4):725–38; PMID: 25403936; doi: 10.1002/pmic.201400308; GPMDB: 8.
  749. Zhang X, et al. (2015) "Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics." Proteomics 15(2-3):340–55; PMID: 25404012; doi: 10.1002/pmic.201400315; GPMDB: 73.
  750. Loroch S, et al. (2015) "Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography." Anal Chem 87(3):1596–604; PMID: 25405705; doi: 10.1021/ac502708m; GPMDB: 84.
  751. Chawade A, et al. (2015) "Data processing has major impact on the outcome of quantitative label-free LC-MS analysis." J Proteome Res 14(2):676–87; PMID: 25407311; doi: 10.1021/pr500665j; GPMDB: 12.
  752. Zhang P, et al. (2015) "The proteome of human retina." Proteomics 15(4):836–40; PMID: 25407473; doi: 10.1002/pmic.201400397; GPMDB: 60.
  753. Gruber AR, et al. (2014) "Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells." Nat Commun 5:5465; PMID: 25413384; doi: 10.1038/ncomms6465; GPMDB: 13.
  754. Huesgen PF, et al. (2015) "LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification." Nat Methods 12(1):55–8; PMID: 25419962; doi: 10.1038/nmeth.3177; GPMDB: 60.
  755. Rinschen MM, et al. (2015) "Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture." Proteomics 15(7):1326–31; PMID: 25420462; doi: 10.1002/pmic.201400235; GPMDB: 40.
  756. Li L, et al. (2014) "Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact." Nat Commun 5:5469; PMID: 25429762; doi: 10.1038/ncomms6469; GPMDB: 33.
  757. Hagen L, et al. (2015) "Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection." Biochim Biophys Acta 1854(1):84–90; PMID: 25448019; doi: 10.1016/j.bbapap.2014.10.016; GPMDB: 27.
  758. Tummala KS, et al. (2014) "Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage." Cancer Cell 26(6):826–839; PMID: 25453901; doi: 10.1016/j.ccell.2014.10.002; GPMDB: 46.
  759. Guo Z, et al. (2014) "E-cadherin interactome complexity and robustness resolved by quantitative proteomics." Sci Signal 7(354):rs7; PMID: 25468996; doi: 10.1126/scisignal.2005473; GPMDB: 90.
  760. Wiśniewski JR, et al. (2015) "Absolute protein quantification allows differentiation of cell-specific metabolic routes and functions." Proteomics 15(7):1316–25; PMID: 25475432; doi: 10.1002/pmic.201400456; GPMDB: 44.
  761. Schnell G, et al. (2015) "Proteomic analysis of three Borrelia burgdorferi sensu lato native species and disseminating clones: relevance for Lyme vaccine design." Proteomics 15(7):1280–90; PMID: 25475896; doi: 10.1002/pmic.201400177; GPMDB: 6.
  762. Yang X, et al. (2015) "Proteomic analysis of N-glycosylation of human seminal plasma." Proteomics 15(7):1255–8; PMID: 25476145; doi: 10.1002/pmic.201400203; GPMDB: 3.
  763. Binai NA, et al. (2015) "Rapid analyses of proteomes and interactomes using an integrated solid-phase extraction-liquid chromatography-MS/MS system." J Proteome Res 14(2):977–85; PMID: 25485597; doi: 10.1021/pr501011z; GPMDB: 71.
  764. Vaga S, et al. (2014) "Phosphoproteomic analyses reveal novel cross-modulation mechanisms between two signaling pathways in yeast." Mol Syst Biol 10:767; PMID: 25492886; doi: 10.15252/msb.20145112; GPMDB: 108.
  765. Selvam RM, et al. (2015) "Exoproteome of Aspergillus flavus corneal isolates and saprophytes: identification of proteoforms of an oversecreted alkaline protease." J Proteomics 115:23–35; PMID: 25497218; doi: 10.1016/j.jprot.2014.11.017; GPMDB: 10.
  766. Bergseng E, et al. (2015) "Different binding motifs of the celiac disease-associated HLA molecules DQ2.5, DQ2.2, and DQ7.5 revealed by relative quantitative proteomics of endogenous peptide repertoires." Immunogenetics 67(2):73–84; PMID: 25502872; doi: 10.1007/s00251-014-0819-9; GPMDB: 51.
  767. Guo M, et al. (2015) "High-resolution quantitative proteome analysis reveals substantial differences between phagosomes of RAW 264.7 and bone marrow derived macrophages." Proteomics 15(18):3169–74; PMID: 25504905; doi: 10.1002/pmic.201400431; GPMDB: 6.
  768. Gomes-Alves P, et al. (2015) "Exploring analytical proteomics platforms toward the definition of human cardiac stem cells receptome." Proteomics 15(7):1332–7; PMID: 25504917; doi: 10.1002/pmic.201400318; GPMDB: 2.
  769. Baert Y, et al. (2015) "Derivation and characterization of a cytocompatible scaffold from human testis." Hum Reprod 30(2):256–67; PMID: 25505010; doi: 10.1093/humrep/deu330; GPMDB: 1.
  770. Peláez-García A, et al. (2015) "A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation." Mol Cell Proteomics 14(2):303–15; PMID: 25505127; doi: 10.1074/mcp.M114.045328; GPMDB: 2.
  771. Gao L, et al. (2015) "Systematically ranking the tightness of membrane association for peripheral membrane proteins (PMPs)." Mol Cell Proteomics 14(2):340–53; PMID: 25505158; doi: 10.1074/mcp.M114.044800; GPMDB: 24.
  772. Low TY, et al. (2014) "A systems-wide screen identifies substrates of the SCFβTrCP ubiquitin ligase." Sci Signal 7(356):rs8; PMID: 25515538; doi: 10.1126/scisignal.2005882; GPMDB: 120.
  773. Park JJ, et al. (2015) "The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis." Plant J 81(4):611–24; PMID: 25515814; doi: 10.1111/tpj.12747; GPMDB: 6.
  774. Ferl RJ, et al. (2015) "Spaceflight induces specific alterations in the proteomes of Arabidopsis." Astrobiology 15(1):32–56; PMID: 25517942; doi: 10.1089/ast.2014.1210; GPMDB: 15.
  775. Mathias RA, et al. (2014) "Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity." Cell 159(7):1615–25; PMID: 25525879; doi: 10.1016/j.cell.2014.11.046; GPMDB: 24.
  776. Gueugneau M, et al. (2014) "Proteomics of muscle chronological ageing in post-menopausal women." BMC Genomics 15:1165; PMID: 25532418; doi: 10.1186/1471-2164-15-1165; GPMDB: 98.
  777. Rotival M, et al. (2015) "Integrating phosphoproteome and transcriptome reveals new determinants of macrophage multinucleation." Mol Cell Proteomics 14(3):484–98; PMID: 25532521; doi: 10.1074/mcp.M114.043836; GPMDB: 15.
  778. Hustedt N, et al. (2015) "Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling." Mol Cell 57(2):273–89; PMID: 25533186; doi: 10.1016/j.molcel.2014.11.016; GPMDB: 12.
  779. Paster W, et al. (2015) "A THEMIS:SHP1 complex promotes T-cell survival." EMBO J 34(3):393–409; PMID: 25535246; doi: 10.15252/embj.201387725; GPMDB: 15.
  780. Hubner NC, et al. (2015) "A quantitative proteomics tool to identify DNA-protein interactions in primary cells or blood." J Proteome Res 14(2):1315–29; PMID: 25546135; doi: 10.1021/pr5009515; GPMDB: 82.
  781. Chang HY, et al. (2015) "Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells." J Proteome Res 14(2):1250–62; PMID: 25556991; doi: 10.1021/pr5011873; GPMDB: 1.
  782. Boj SF, et al. (2015) "Organoid models of human and mouse ductal pancreatic cancer." Cell 160(1-2):324–38; PMID: 25557080; doi: 10.1016/j.cell.2014.12.021; GPMDB: 4.
  783. Selevsek N, et al. (2015) "Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry." Mol Cell Proteomics 14(3):739–49; PMID: 25561506; doi: 10.1074/mcp.M113.035550; GPMDB: 46.
  784. Fabre B, et al. (2015) "Deciphering preferential interactions within supramolecular protein complexes: the proteasome case." Mol Syst Biol 11(1):771; PMID: 25561571; doi: 10.15252/msb.20145497; GPMDB: 84.
  785. Kershaw CJ, et al. (2015) "The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response." PLoS Genet 11(1):e1004903; PMID: 25569619; doi: 10.1371/journal.pgen.1004903; GPMDB: 20.
  786. Zappacosta F, et al. (2015) "An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome." J Proteome Res 14(2):997–1009; PMID: 25575281; doi: 10.1021/pr501025e; GPMDB: 42.
  787. Bassani-Sternberg M, et al. (2015) "Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation." Mol Cell Proteomics 14(3):658–73; PMID: 25576301; doi: 10.1074/mcp.M114.042812; GPMDB: 40.
  788. Hong JH, et al. (2015) "KCMF1 (potassium channel modulatory factor 1) Links RAD6 to UBR4 (ubiquitin N-recognin domain-containing E3 ligase 4) and lysosome-mediated degradation." Mol Cell Proteomics 14(3):674–85; PMID: 25582440; doi: 10.1074/mcp.M114.042168; GPMDB: 58.
  789. Chiang DY, et al. (2015) "Alterations in the interactome of serine/threonine protein phosphatase type-1 in atrial fibrillation patients." J Am Coll Cardiol 65(2):163–73; PMID: 25593058; doi: 10.1016/j.jacc.2014.10.042; GPMDB: 22.
  790. Kasvandik S, et al. (2015) "Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment." Proteomics 15(11):1906–20; PMID: 25603787; doi: 10.1002/pmic.201400297; GPMDB: 16.
  791. Byron A, et al. (2015) "A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting." Nat Commun 6:6135; PMID: 25609142; doi: 10.1038/ncomms7135; GPMDB: 237.
  792. Braakman RB, et al. (2015) "Integrative analysis of genomics and proteomics data on clinical breast cancer tissue specimens extracted with acid guanidinium thiocyanate-phenol-chloroform." J Proteome Res 14(3):1627–36; PMID: 25611981; doi: 10.1021/acs.jproteome.5b00046; GPMDB: 3.
  793. Deshmukh AS, et al. (2015) "Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors." Mol Cell Proteomics 14(4):841–53; PMID: 25616865; doi: 10.1074/mcp.M114.044222; GPMDB: 6.
  794. Ramond E, et al. (2015) "Importance of host cell arginine uptake in Francisella phagosomal escape and ribosomal protein amounts." Mol Cell Proteomics 14(4):870–81; PMID: 25616868; doi: 10.1074/mcp.M114.044552; GPMDB: 18.
  795. Loroch S, et al. (2015) "Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research." Biochim Biophys Acta 1854(5):460–8; PMID: 25619855; doi: 10.1016/j.bbapap.2015.01.006; GPMDB: 36.
  796. Harel M, et al. (2015) "Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification." Mol Cell Proteomics 14(4):1127–36; PMID: 25624350; doi: 10.1074/mcp.M114.043364; GPMDB: 46.
  797. Zanker D, et al. (2015) "Compartment resolved reference proteome map from highly purified naïve, activated, effector, and memory CD8⁺ murine immune cells." Proteomics 15(11):1808–12; PMID: 25643623; doi: 10.1002/pmic.201400405; GPMDB: 249.
  798. Murgia M, et al. (2015) "Single muscle fiber proteomics reveals unexpected mitochondrial specialization." EMBO Rep 16(3):387–95; PMID: 25643707; doi: 10.15252/embr.201439757; GPMDB: 89.
  799. Eagle GL, et al. (2015) "Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia." Mol Cell Proteomics 14(4):933–45; PMID: 25645933; doi: 10.1074/mcp.M114.044479; GPMDB: 3.
  800. Walker MP, et al. (2015) "FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma." Sci Signal 8(362):ra12; PMID: 25650440; doi: 10.1126/scisignal.2005654; GPMDB: 8.
  801. Marza E, et al. (2015) "Genome-wide screen identifies a novel p97/CDC-48-dependent pathway regulating ER-stress-induced gene transcription." EMBO Rep 16(3):332–40; PMID: 25652260; doi: 10.15252/embr.201439123; GPMDB: 6.
  802. Corradini E, et al. (2015) "Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase Iβ isoform." J Biol Chem 290(12):7887–96; PMID: 25653285; doi: 10.1074/jbc.M114.622613; GPMDB: 6.
  803. Sandin M, et al. (2015) "Is label-free LC-MS/MS ready for biomarker discovery?" Proteomics Clin Appl 9(3-4):289–94; PMID: 25656266; doi: 10.1002/prca.201400202; GPMDB: 2.
  804. Battle A, et al. (2015) "Genomic variation. Impact of regulatory variation from RNA to protein." Science 347(6222):664–7; PMID: 25657249; doi: 10.1126/science.1260793; GPMDB: 2622.
  805. St-Denis N, et al. (2015) "Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission." Mol Cell Proteomics 14(4):946–60; PMID: 25659891; doi: 10.1074/mcp.M114.046086; GPMDB: 190.
  806. Hill RC, et al. (2015) "Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering." Mol Cell Proteomics 14(4):961–73; PMID: 25660013; doi: 10.1074/mcp.M114.045260; GPMDB: 60.
  807. Médard G, et al. (2015) "Optimized chemical proteomics assay for kinase inhibitor profiling." J Proteome Res 14(3):1574–86; PMID: 25660469; doi: 10.1021/pr5012608; GPMDB: 126.
  808. Krahmer J, et al. (2015) "Sample preparation for phosphoproteomic analysis of circadian time series in Arabidopsis thaliana." Methods Enzymol 551:405–31; PMID: 25662467; doi: 10.1016/bs.mie.2014.10.022; GPMDB: 117.
  809. Diner BA, et al. (2015) "The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA." Mol Syst Biol 11(1):787; PMID: 25665578; doi: 10.15252/msb.20145808; GPMDB: 21.
  810. Jacques S, et al. (2015) "Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress." Mol Cell Proteomics 14(5):1217–29; PMID: 25693801; doi: 10.1074/mcp.M114.043729; GPMDB: 2.
  811. Hu J, et al. (2015) "Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis." Plant Physiol 167(4):1731–46; PMID: 25699590; doi: 10.1104/pp.15.00026; GPMDB: 12.
  812. Peebo K, et al. (2015) "Proteome reallocation in Escherichia coli with increasing specific growth rate." Mol Biosyst 11(4):1184–93; PMID: 25712329; doi: 10.1039/c4mb00721b; GPMDB: 26.
  813. Koganti S, et al. (2015) "Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes." J Virol 89(9):5002–11; PMID: 25717101; doi: 10.1128/JVI.00121-15; GPMDB: 2.
  814. Kettenbach AN, et al. (2015) "Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1." Mol Cell Proteomics 14(5):1275–87; PMID: 25720772; doi: 10.1074/mcp.M114.045245; GPMDB: 96.
  815. González-Prieto R, et al. (2015) "SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites." EMBO Rep 16(4):512–9; PMID: 25722289; doi: 10.15252/embr.201440017; GPMDB: 27.
  816. Keshishian H, et al. (2015) "Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury." Mol Cell Proteomics 14(9):2375–93; PMID: 25724909; doi: 10.1074/mcp.M114.046813; GPMDB: 322.
  817. Vogel CJ, et al. (2015) "Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK." Pigment Cell Melanoma Res 28(3):307–17; PMID: 25728708; doi: 10.1111/pcmr.12364; GPMDB: 170.
  818. Zhang H, et al. (2015) "Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots." Proteomics 15(14):2447–57; PMID: 25728785; doi: 10.1002/pmic.201400530; GPMDB: 14.
  819. Aller K, et al. (2015) "Excess of threonine compared with serine promotes threonine aldolase activity in Lactococcus lactis IL1403." Microbiology (Reading) 161(Pt 5):1073–1080; PMID: 25743155; doi: 10.1099/mic.0.000071; GPMDB: 6.
  820. Štalekar M, et al. (2015) "Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport." Neuroscience 293:157–70; PMID: 25743254; doi: 10.1016/j.neuroscience.2015.02.046; GPMDB: 96.
  821. Jamdhade MD, et al. (2015) "Comprehensive proteomics analysis of glycosomes from Leishmania donovani." OMICS 19(3):157–70; PMID: 25748437; doi: 10.1089/omi.2014.0163; GPMDB: 2.
  822. Willger SD, et al. (2015) "Analysis of the Candida albicans Phosphoproteome." Eukaryot Cell 14(5):474–85; PMID: 25750214; doi: 10.1128/EC.00011-15; GPMDB: 13.
  823. Schölz C, et al. (2015) "Acetylation site specificities of lysine deacetylase inhibitors in human cells." Nat Biotechnol 33(4):415–23; PMID: 25751058; doi: 10.1038/nbt.3130; GPMDB: 292.
  824. Alvarez Hayes J, et al. (2015) "Shotgun proteome analysis of Bordetella pertussis reveals a distinct influence of iron availability on the bacterial metabolism, virulence, and defense response." Proteomics 15(13):2258–66; PMID: 25755163; doi: 10.1002/pmic.201400512; GPMDB: 6.
  825. Xiao Z, et al. (2015) "System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability." Mol Cell Proteomics 14(5):1419–34; PMID: 25755297; doi: 10.1074/mcp.O114.044792; GPMDB: 84.
  826. Dill BD, et al. (2015) "Quantitative proteome analysis of temporally resolved phagosomes following uptake via key phagocytic receptors." Mol Cell Proteomics 14(5):1334–49; PMID: 25755298; doi: 10.1074/mcp.M114.044594; GPMDB: 91.
  827. Mackmull MT, et al. (2015) "Histone Deacetylase Inhibitors (HDACi) Cause the Selective Depletion of Bromodomain Containing Proteins (BCPs)." Mol Cell Proteomics 14(5):1350–60; PMID: 25755299; doi: 10.1074/mcp.M114.042499; GPMDB: 96.
  828. Carter DM, et al. (2015) "Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection." Proteomics 15(12):1995–2005; PMID: 25758553; doi: 10.1002/pmic.201400599; GPMDB: 8.
  829. Martin-Perez M, et al. (2015) "Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains." Anal Chem 87(7):4008–14; PMID: 25767917; doi: 10.1021/acs.analchem.5b00264; GPMDB: 22.
  830. Zub KA, et al. (2015) "Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells." PLoS One 10(3):e0119857; PMID: 25769101; doi: 10.1371/journal.pone.0119857; GPMDB: 12.
  831. Zigdon H, et al. (2015) "Identification of a biomarker in cerebrospinal fluid for neuronopathic forms of Gaucher disease." PLoS One 10(3):e0120194; PMID: 25775479; doi: 10.1371/journal.pone.0120194; GPMDB: 27.
  832. Shalit T, et al. (2015) "MS1-based label-free proteomics using a quadrupole orbitrap mass spectrometer." J Proteome Res 14(4):1979–86; PMID: 25780947; doi: 10.1021/pr501045t; GPMDB: 12.
  833. Markmann S, et al. (2015) "Lrp1/LDL Receptor Play Critical Roles in Mannose 6-Phosphate-Independent Lysosomal Enzyme Targeting." Traffic 16(7):743–59; PMID: 25786328; doi: 10.1111/tra.12284; GPMDB: 3.
  834. Manousopoulou A, et al. (2015) "Are you also what your mother eats? Distinct proteomic portrait as a result of maternal high-fat diet in the cerebral cortex of the adult mouse." Int J Obes (Lond) 39(8):1325–8; PMID: 25797609; doi: 10.1038/ijo.2015.35; GPMDB: 61.
  835. Bracht T, et al. (2015) "Analysis of disease-associated protein expression using quantitative proteomics—fibulin-5 is expressed in association with hepatic fibrosis." J Proteome Res 14(5):2278–86; PMID: 25807371; doi: 10.1021/acs.jproteome.5b00053; GPMDB: 27.
  836. Broncel M, et al. (2015) "Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development." Angew Chem Int Ed Engl 54(20):5948–51; PMID: 25807930; doi: 10.1002/anie.201500342; GPMDB: 1.
  837. Tsai CF, et al. (2015) "Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics." Nat Commun 6:6622; PMID: 25814448; doi: 10.1038/ncomms7622; GPMDB: 24.
  838. Khan MN, et al. (2015) "Proteomic analysis of soybean hypocotyl during recovery after flooding stress." J Proteomics 121:15–27; PMID: 25818724; doi: 10.1016/j.jprot.2015.03.020; GPMDB: 21.
  839. Moretti F, et al. (2015) "Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth." Mol Cell Biol 35(11):2035–50; PMID: 25825524; doi: 10.1128/MCB.00133-15; GPMDB: 72.
  840. Alpert AJ, et al. (2015) "Anion-exchange chromatography of phosphopeptides: weak anion exchange versus strong anion exchange and anion-exchange chromatography versus electrostatic repulsion-hydrophilic interaction chromatography." Anal Chem 87(9):4704–11; PMID: 25827581; doi: 10.1021/ac504420c; GPMDB: 42.
  841. Ao J, et al. (2015) "Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation." PLoS Genet 11(4):e1005118; PMID: 25835551; doi: 10.1371/journal.pgen.1005118; GPMDB: 20.
  842. Lardi M, et al. (2015) "σ54-Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111." Appl Environ Microbiol 81(12):4077–89; PMID: 25841012; doi: 10.1128/AEM.00694-15; GPMDB: 40.
  843. Piersma SR, et al. (2015) "Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines." J Proteomics 127(Pt B):247–58; PMID: 25841592; doi: 10.1016/j.jprot.2015.03.019; GPMDB: 31.
  844. Krishnan RK, et al. (2015) "Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate." Nat Commun 6:6658; PMID: 25849741; doi: 10.1038/ncomms7658; GPMDB: 53.
  845. Krisp C, et al. (2015) "Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics." Mol Cell Proteomics 14(6):1708–19; PMID: 25850434; doi: 10.1074/mcp.M114.046425; GPMDB: 12.
  846. Stuart SA, et al. (2015) "A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells." Mol Cell Proteomics 14(6):1599–615; PMID: 25850435; doi: 10.1074/mcp.M114.047233; GPMDB: 255.
  847. Bergner SV, et al. (2015) "STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes." Plant Physiol 168(2):615–34; PMID: 25858915; doi: 10.1104/pp.15.00072; GPMDB: 72.
  848. Oberstein A, et al. (2015) "Human cytomegalovirus pUL97 kinase induces global changes in the infected cell phosphoproteome." Proteomics 15(12):2006–22; PMID: 25867546; doi: 10.1002/pmic.201400607; GPMDB: 8.
  849. Papadopoulos P, et al. (2015) "TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis." Mol Cell Biol 35(12):2103–18; PMID: 25870109; doi: 10.1128/MCB.01370-14; GPMDB: 4.
  850. Tyagi K, et al. (2015) "Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures." Nucleic Acids Res 43(9):4701–12; PMID: 25870413; doi: 10.1093/nar/gkv322; GPMDB: 46.
  851. Rauniyar N, et al. (2015) "Quantitative Proteomics of Human Fibroblasts with I1061T Mutation in Niemann-Pick C1 (NPC1) Protein Provides Insights into the Disease Pathogenesis." Mol Cell Proteomics 14(7):1734–49; PMID: 25873482; doi: 10.1074/mcp.M114.045609; GPMDB: 2.
  852. Welinder C, et al. (2015) "A protein deep sequencing evaluation of metastatic melanoma tissues." PLoS One 10(4):e0123661; PMID: 25874936; doi: 10.1371/journal.pone.0123661; GPMDB: 11.
  853. Hosp F, et al. (2015) "A Double-Barrel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) System to Quantify 96 Interactomes per Day." Mol Cell Proteomics 14(7):2030–41; PMID: 25887394; doi: 10.1074/mcp.O115.049460; GPMDB: 234.
  854. Yu Y, et al. (2015) "Diagnosing inflammation and infection in the urinary system via proteomics." J Transl Med 13:111; PMID: 25889401; doi: 10.1186/s12967-015-0475-3; GPMDB: 260.
  855. Xu R, et al. (2015) "Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct." Methods 87:11–25; PMID: 25890246; doi: 10.1016/j.ymeth.2015.04.008; GPMDB: 4.
  856. van der Mijn JC, et al. (2015) "Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics." J Proteomics 127(Pt B):259–63; PMID: 25890253; doi: 10.1016/j.jprot.2015.04.006; GPMDB: 10.
  857. Lawrence RT, et al. (2015) "The proteomic landscape of triple-negative breast cancer." Cell Rep 11(4):630–44; PMID: 25892236; doi: 10.1016/j.celrep.2015.03.050; GPMDB: 91.
  858. Wang J, et al. (2015) "Crescendo: A Protein Sequence Database Search Engine for Tandem Mass Spectra." J Am Soc Mass Spectrom 26(7):1077–84; PMID: 25895889; doi: 10.1007/s13361-015-1120-3; GPMDB: 20.
  859. Wendler S, et al. (2015) "Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster." J Proteomics 125:1–16; PMID: 25896738; doi: 10.1016/j.jprot.2015.04.013; GPMDB: 198.
  860. Oettinghaus B, et al. (2016) "Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons." Cell Death Differ 23(1):18–28; PMID: 25909888; doi: 10.1038/cdd.2015.39; GPMDB: 12.
  861. Tan HT, et al. (2015) "Unravelling the proteome of degenerative human mitral valves." Proteomics 15(17):2934–44; PMID: 25914152; doi: 10.1002/pmic.201500040; GPMDB: 12.
  862. Arntzen MØ, et al. (2015) "Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine." PLoS One 10(4):e0126694; PMID: 25915650; doi: 10.1371/journal.pone.0126694; GPMDB: 24.
  863. Franck WL, et al. (2015) "Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development." J Proteome Res 14(6):2408–24; PMID: 25926025; doi: 10.1021/pr501064q; GPMDB: 36.
  864. Le Bihan T, et al. (2015) "Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri." Proteomics 15(23-24):4135–44; PMID: 25930153; doi: 10.1002/pmic.201500086; GPMDB: 35.
  865. Mertz J, et al. (2015) "Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth." Mol Cell Proteomics 14(7):1898–910; PMID: 25931508; doi: 10.1074/mcp.M114.045898; GPMDB: 2.
  866. Gadelha C, et al. (2015) "Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics." Mol Cell Proteomics 14(7):1911–26; PMID: 25931509; doi: 10.1074/mcp.M114.047647; GPMDB: 48.
  867. Räschle M, et al. (2015) "DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links." Science 348(6234):1253671; PMID: 25931565; doi: 10.1126/science.1253671; GPMDB: 21.
  868. Penzo M, et al. (2015) "Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation." FASEB J 29(8):3472–82; PMID: 25934701; doi: 10.1096/fj.15-270991; GPMDB: 20.
  869. Böhm G, et al. (2015) "Low-pH Solid-Phase Amino Labeling of Complex Peptide Digests with TMTs Improves Peptide Identification Rates for Multiplexed Global Phosphopeptide Analysis." J Proteome Res 14(6):2500–10; PMID: 25939058; doi: 10.1021/acs.jproteome.5b00072; GPMDB: 18.
  870. Sjöström M, et al. (2015) "A Combined Shotgun and Targeted Mass Spectrometry Strategy for Breast Cancer Biomarker Discovery." J Proteome Res 14(7):2807–18; PMID: 25944384; doi: 10.1021/acs.jproteome.5b00315; GPMDB: 238.
  871. Svinkina T, et al. (2015) "Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow." Mol Cell Proteomics 14(9):2429–40; PMID: 25953088; doi: 10.1074/mcp.O114.047555; GPMDB: 30.
  872. Madeira JP, et al. (2015) "Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation." Front Microbiol 6:342; PMID: 25954265; doi: 10.3389/fmicb.2015.00342; GPMDB: 30.
  873. Walther DM, et al. (2015) "Widespread Proteome Remodeling and Aggregation in Aging C. elegans." Cell 161(4):919–32; PMID: 25957690; doi: 10.1016/j.cell.2015.03.032; GPMDB: 278.
  874. George IS, et al. (2015) "Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism." Proteomics 15(17):3048–60; PMID: 25959233; doi: 10.1002/pmic.201400541; GPMDB: 60.
  875. Hosp F, et al. (2015) "Quantitative interaction proteomics of neurodegenerative disease proteins." Cell Rep 11(7):1134–46; PMID: 25959826; doi: 10.1016/j.celrep.2015.04.030; GPMDB: 122.
  876. Tay AP, et al. (2015) "Proteomic Validation of Transcript Isoforms, Including Those Assembled from RNA-Seq Data." J Proteome Res 14(9):3541–54; PMID: 25961807; doi: 10.1021/pr5011394; GPMDB: 77.
  877. Drissi R, et al. (2015) "Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage." Mol Cell Proteomics 14(7):2002–13; PMID: 25963833; doi: 10.1074/mcp.M115.048991; GPMDB: 48.
  878. Koch H, et al. (2015) "Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition." J Proteome Res 14(6):2617–25; PMID: 25963923; doi: 10.1021/acs.jproteome.5b00161; GPMDB: 18.
  879. Watanabe S, et al. (2015) "Structural analyses of the chromatin remodelling enzymes INO80-C and SWR-C." Nat Commun 6:7108; PMID: 25964121; doi: 10.1038/ncomms8108; GPMDB: 2.
  880. Hesketh A, et al. (2015) "High-Resolution Mass Spectrometry Based Proteomic Analysis of the Response to Vancomycin-Induced Cell Wall Stress in Streptomyces coelicolor A3(2)." J Proteome Res 14(7):2915–28; PMID: 25965010; doi: 10.1021/acs.jproteome.5b00242; GPMDB: 3.
  881. Xiong Q, et al. (2015) "Proteomic study of different culture medium serum volume fractions on RANKL-dependent RAW264.7 cells differentiating into osteoclasts." Proteome Sci 13:16; PMID: 25969670; doi: 10.1186/s12953-015-0073-6; GPMDB: 1.
  882. Oishi N, et al. (2015) "XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death." Cell Death Dis 6:e1763; PMID: 25973683; doi: 10.1038/cddis.2015.108; GPMDB: 1.
  883. Lee JG, et al. (2015) "A draft map of rhesus monkey tissue proteome for biomedical research." PLoS One 10(5):e0126243; PMID: 25974132; doi: 10.1371/journal.pone.0126243; GPMDB: 19.
  884. Gorshkov V, et al. (2015) "SuperQuant: A Data Processing Approach to Increase Quantitative Proteome Coverage." Anal Chem 87(12):6319–27; PMID: 25978296; doi: 10.1021/acs.analchem.5b01166; GPMDB: 12.
  885. Dinets A, et al. (2015) "Differential protein expression profiles of cyst fluid from papillary thyroid carcinoma and benign thyroid lesions." PLoS One 10(5):e0126472; PMID: 25978681; doi: 10.1371/journal.pone.0126472; GPMDB: 2.
  886. Campos A, et al. (2015) "Multicenter experiment for quality control of peptide-centric LC-MS/MS analysis - A longitudinal performance assessment with nLC coupled to orbitrap MS analyzers." J Proteomics 127(Pt B):264–74; PMID: 25982386; doi: 10.1016/j.jprot.2015.05.012; GPMDB: 112.
  887. Goodfellow HS, et al. (2015) "The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway." Sci Signal 8(377):ra49; PMID: 25990959; doi: 10.1126/scisignal.2005596; GPMDB: 20.
  888. Graessel A, et al. (2015) "A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation." Mol Cell Proteomics 14(8):2085–102; PMID: 25991687; doi: 10.1074/mcp.M114.045690; GPMDB: 48.
  889. Bennike TB, et al. (2015) "Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies." Inflamm Bowel Dis 21(9):2052–67; PMID: 25993694; doi: 10.1097/MIB.0000000000000460; GPMDB: 60.
  890. Jehmlich N, et al. (2015) "Differences in the whole saliva baseline proteome profile associated with development of oral mucositis in head and neck cancer patients undergoing radiotherapy." J Proteomics 125:98–103; PMID: 25997676; doi: 10.1016/j.jprot.2015.04.030; GPMDB: 56.
  891. Kharlampieva D, et al. (2015) "Recombinant fragilysin isoforms cause E-cadherin cleavage of intact cells and do not cleave isolated E-cadherin." Microb Pathog 83-84:47–56; PMID: 25998017; doi: 10.1016/j.micpath.2015.05.003; GPMDB: 23.
  892. Chen Y, et al. (2015) "Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance." PLoS One 10(6):e0127788; PMID: 26035302; doi: 10.1371/journal.pone.0127788; GPMDB: 1.
  893. Aeberhard L, et al. (2015) "The Proteome of the Isolated Chlamydia trachomatis Containing Vacuole Reveals a Complex Trafficking Platform Enriched for Retromer Components." PLoS Pathog 11(6):e1004883; PMID: 26042774; doi: 10.1371/journal.ppat.1004883; GPMDB: 24.
  894. Helou YA, et al. (2015) "Vav1 Regulates T-Cell Activation through a Feedback Mechanism and Crosstalk between the T-Cell Receptor and CD28." J Proteome Res 14(7):2963–75; PMID: 26043137; doi: 10.1021/acs.jproteome.5b00340; GPMDB: 40.
  895. Marie P, et al. (2015) "Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralisation and the active calcification phase." J Proteomics 126:140–54; PMID: 26049031; doi: 10.1016/j.jprot.2015.05.034; GPMDB: 180.
  896. Higgins R, et al. (2015) "The Unfolded Protein Response Triggers Site-Specific Regulatory Ubiquitylation of 40S Ribosomal Proteins." Mol Cell 59(1):35–49; PMID: 26051182; doi: 10.1016/j.molcel.2015.04.026; GPMDB: 54.
  897. Sethi MK, et al. (2015) "Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis." J Proteomics 126:54–67; PMID: 26054784; doi: 10.1016/j.jprot.2015.05.037; GPMDB: 15.
  898. Cifani P, et al. (2015) "Molecular Portrait of Breast-Cancer-Derived Cell Lines Reveals Poor Similarity with Tumors." J Proteome Res 14(7):2819–27; PMID: 26055192; doi: 10.1021/acs.jproteome.5b00375; GPMDB: 439.
  899. McCloy RA, et al. (2015) "Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs." Mol Cell Proteomics 14(8):2194–212; PMID: 26055452; doi: 10.1074/mcp.M114.046938; GPMDB: 29.
  900. Mulvey CM, et al. (2015) "Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells." Stem Cells 33(9):2712–25; PMID: 26059426; doi: 10.1002/stem.2067; GPMDB: 7.
  901. Chang JW, et al. (2015) "mRNA 3'-UTR shortening is a molecular signature of mTORC1 activation." Nat Commun 6:7218; PMID: 26074333; doi: 10.1038/ncomms8218; GPMDB: 1.
  902. Murphy JP, et al. (2015) "Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae." Mol Cell Proteomics 14(9):2454–65; PMID: 26077900; doi: 10.1074/mcp.M114.045849; GPMDB: 66.
  903. Wiśniewski JR, et al. (2015) "Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways." J Proteome Res 14(8):3263–73; PMID: 26080680; doi: 10.1021/acs.jproteome.5b00276; GPMDB: 18.
  904. Yagoub D, et al. (2015) "Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p." Proteomics 15(18):3209–18; PMID: 26081071; doi: 10.1002/pmic.201500075; GPMDB: 7.
  905. Mui MZ, et al. (2015) "The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway." J Virol 89(17):8855–70; PMID: 26085163; doi: 10.1128/JVI.03710-14; GPMDB: 16.
  906. Cehofski LJ, et al. (2015) "Proteins involved in focal adhesion signaling pathways are differentially regulated in experimental branch retinal vein occlusion." Exp Eye Res 138:87–95; PMID: 26086079; doi: 10.1016/j.exer.2015.06.011; GPMDB: 48.
  907. Stebbing J, et al. (2015) "Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics." Mol Cell Proteomics 14(9):2479–92; PMID: 26089344; doi: 10.1074/mcp.M115.048090; GPMDB: 370.
  908. Muqaku B, et al. (2015) "Quantification of cytokines secreted by primary human cells using multiple reaction monitoring: evaluation of analytical parameters." Anal Bioanal Chem 407(21):6525–36; PMID: 26092402; doi: 10.1007/s00216-015-8817-9; GPMDB: 19.
  909. Barco RA, et al. (2015) "New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph." Appl Environ Microbiol 81(17):5927–37; PMID: 26092463; doi: 10.1128/AEM.01374-15; GPMDB: 28.
  910. Mei Y, et al. (2015) "A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells." Nat Commun 6:7316; PMID: 26095918; doi: 10.1038/ncomms8316; GPMDB: 2.
  911. Ducret A, et al. (2015) "Identification of six cell surface proteins for specific liver targeting." Proteomics Clin Appl 9(7-8):651–61; PMID: 26097162; doi: 10.1002/prca.201400194; GPMDB: 68.
  912. Kosono S, et al. (2015) "Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source." PLoS One 10(6):e0131169; PMID: 26098117; doi: 10.1371/journal.pone.0131169; GPMDB: 6.
  913. Clabaut A, et al. (2015) "Variations of secretome profiles according to conditioned medium preparation: The example of human mesenchymal stem cell-derived adipocytes." Electrophoresis 36(20):2587–93; PMID: 26105977; doi: 10.1002/elps.201500086; GPMDB: 6.
  914. Chen Y, et al. (2015) "Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins." J Proteome Res 14(9):3693–709; PMID: 26108252; doi: 10.1021/pr501103r; GPMDB: 46.
  915. Uebbing S, et al. (2015) "Quantitative Mass Spectrometry Reveals Partial Translational Regulation for Dosage Compensation in Chicken." Mol Biol Evol 32(10):2716–25; PMID: 26108680; doi: 10.1093/molbev/msv147; GPMDB: 30.
  916. Inácio P, et al. (2015) "Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection." EMBO Rep 16(8):955–64; PMID: 26113366; doi: 10.15252/embr.201439979; GPMDB: 16.
  917. Zhu M, et al. (2015) "Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans." PLoS One 10(6):e0130778; PMID: 26115433; doi: 10.1371/journal.pone.0130778; GPMDB: 2.
  918. Marcon E, et al. (2015) "Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation." Nat Methods 12(8):725–31; PMID: 26121405; doi: 10.1038/nmeth.3472; GPMDB: 1220.
  919. Cardona M, et al. (2015) "Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart." PLoS One 10(6):e0131411; PMID: 26121671; doi: 10.1371/journal.pone.0131411; GPMDB: 8.
  920. Herbst FA, et al. (2015) "Label-free quantification reveals major proteomic changes in Pseudomonas putida F1 during the exponential growth phase." Proteomics 15(18):3244–52; PMID: 26122999; doi: 10.1002/pmic.201400482; GPMDB: 16.
  921. Sghaier H, et al. (2016) "Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes." ISME J 10(1):21–9; PMID: 26125681; doi: 10.1038/ismej.2015.108; GPMDB: 9.
  922. Carapito C, et al. (2015) "Computational and Mass-Spectrometry-Based Workflow for the Discovery and Validation of Missing Human Proteins: Application to Chromosomes 2 and 14." J Proteome Res 14(9):3621–34; PMID: 26132440; doi: 10.1021/pr5010345; GPMDB: 58.
  923. Dislich B, et al. (2015) "Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo." Mol Cell Proteomics 14(10):2550–63; PMID: 26139848; doi: 10.1074/mcp.M114.041533; GPMDB: 26.
  924. Swaney DL, et al. (2015) "Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover." EMBO Rep 16(9):1131–44; PMID: 26142280; doi: 10.15252/embr.201540298; GPMDB: 56.
  925. Su N, et al. (2015) "Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples." J Proteome Res 14(9):3680–92; PMID: 26144840; doi: 10.1021/acs.jproteome.5b00481; GPMDB: 428.
  926. Ajeian JN, et al. (2016) "Proteomic analysis of integrin-associated complexes from mesenchymal stem cells." Proteomics Clin Appl 10(1):51–7; PMID: 26147903; doi: 10.1002/prca.201500033; GPMDB: 177.
  927. Hoover H, et al. (2015) "Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers." J Proteome Res 14(9):3670–9; PMID: 26151158; doi: 10.1021/acs.jproteome.5b00508; GPMDB: 27.
  928. Huber RJ, et al. (2015) "Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum." Proteomics 15(19):3315–9; PMID: 26152465; doi: 10.1002/pmic.201500143; GPMDB: 23.
  929. Moche M, et al. (2015) "Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions." J Proteome Res 14(9):3804–22; PMID: 26152824; doi: 10.1021/acs.jproteome.5b00148; GPMDB: 924.
  930. Caron E, et al. (2015) "An open-source computational and data resource to analyze digital maps of immunopeptidomes." Elife; PMID: 26154972; doi: 10.7554/eLife.07661; GPMDB: 70.
  931. Madsen CT, et al. (2015) "Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p." Nat Commun 6:7726; PMID: 26158509; doi: 10.1038/ncomms8726; GPMDB: 47.
  932. Stroud DA, et al. (2015) "COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2." Hum Mol Genet 24(19):5404–15; PMID: 26160915; doi: 10.1093/hmg/ddv265; GPMDB: 14.
  933. Jumeau F, et al. (2015) "Human Spermatozoa as a Model for Detecting Missing Proteins in the Context of the Chromosome-Centric Human Proteome Project." J Proteome Res 14(9):3606–20; PMID: 26168773; doi: 10.1021/acs.jproteome.5b00170; GPMDB: 63.
  934. Schiller HB, et al. (2015) "Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair." Mol Syst Biol 11(7):819; PMID: 26174933; doi: 10.15252/msb.20156123; GPMDB: 228.
  935. Morley S, et al. (2015) "Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes." Sci Rep 5:12136; PMID: 26179371; doi: 10.1038/srep12136; GPMDB: 16.
  936. Feng S, et al. (2015) "Proteomic Insight into Functional Changes of Proteorhodopsin-Containing Bacterial Species Psychroflexus torquis under Different Illumination and Salinity Levels." J Proteome Res 14(9):3848–58; PMID: 26179671; doi: 10.1021/acs.jproteome.5b00241; GPMDB: 72.
  937. Selvan LD, et al. (2015) "Characterization of host response to Cryptococcus neoformans through quantitative proteomic analysis of cryptococcal meningitis co-infected with HIV." Mol Biosyst 11(9):2529–40; PMID: 26181685; doi: 10.1039/c5mb00187k; GPMDB: 1.
  938. Hünten S, et al. (2015) "p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses." Mol Cell Proteomics 14(10):2609–29; PMID: 26183718; doi: 10.1074/mcp.M115.050237; GPMDB: 120.
  939. Bish R, et al. (2015) "Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins." Biomolecules 5(3):1441–66; PMID: 26184334; doi: 10.3390/biom5031441; GPMDB: 50.
  940. Nyström A, et al. (2015) "Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms." EMBO Mol Med 7(9):1211–28; PMID: 26194911; doi: 10.15252/emmm.201505061; GPMDB: 110.
  941. Zheng B, et al. (2015) "Quantitative Proteomics Reveals the Essential Roles of Stromal Interaction Molecule 1 (STIM1) in the Testicular Cord Formation in Mouse Testis." Mol Cell Proteomics 14(10):2682–91; PMID: 26199344; doi: 10.1074/mcp.M115.049569; GPMDB: 2.
  942. Wang IX, et al. (2015) "Genetic variation in insulin-induced kinase signaling." Mol Syst Biol 11(7):820; PMID: 26202599; doi: 10.15252/msb.20156250; GPMDB: 46.
  943. Corradini E, et al. (2015) "Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach." Mol Biosyst 11(10):2786–97; PMID: 26205238; doi: 10.1039/c5mb00142k; GPMDB: 47.
  944. Courtney DG, et al. (2015) "Protein Composition of TGFBI-R124C- and TGFBI-R555W-Associated Aggregates Suggests Multiple Mechanisms Leading to Lattice and Granular Corneal Dystrophy." Invest Ophthalmol Vis Sci 56(8):4653–61; PMID: 26207300; doi: 10.1167/iovs.15-16922; GPMDB: 39.
  945. Díez P, et al. (2015) "Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project." J Proteome Res 14(9):3530–40; PMID: 26216070; doi: 10.1021/acs.jproteome.5b00474; GPMDB: 60.
  946. Golizeh M, et al. (2015) "Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions." Data Brief 3:95–8; PMID: 26217725; doi: 10.1016/j.dib.2015.02.007; GPMDB: 4.
  947. Berger ST, et al. (2015) "MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates." Mol Cell Proteomics 14(10):2814–23; PMID: 26223766; doi: 10.1074/mcp.O115.049650; GPMDB: 113.
  948. Woo J, et al. (2015) "In-depth characterization of the secretome of mouse CNS cell lines by LC-MS/MS without prefractionation." Proteomics 15(21):3617–22; PMID: 26227174; doi: 10.1002/pmic.201400623; GPMDB: 27.
  949. Guo H, et al. (2015) "Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation." Proteomics 15(23-24):4080–95; PMID: 26227301; doi: 10.1002/pmic.201500159; GPMDB: 182.
  950. Na YR, et al. (2015) "Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells." Mol Cell Proteomics 14(10):2722–32; PMID: 26229149; doi: 10.1074/mcp.M115.048744; GPMDB: 16.
  951. Haurogné K, et al. (2015) "Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes." PLoS One 10(7):e0134365; PMID: 26230114; doi: 10.1371/journal.pone.0134365; GPMDB: 12.
  952. Subasic D, et al. (2015) "Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans." Genome Res 25(11):1680–91; PMID: 26232411; doi: 10.1101/gr.183160.114; GPMDB: 52.
  953. Wiśniewski JR, et al. (2015) "Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters." J Proteome Res 14(9):4005–18; PMID: 26245529; doi: 10.1021/acs.jproteome.5b00523; GPMDB: 184.
  954. Hou J, et al. (2015) "Extensive allele-specific translational regulation in hybrid mice." Mol Syst Biol 11(8):825; PMID: 26253569; doi: 10.15252/msb.156240; GPMDB: 3.
  955. Shah P, et al. (2015) "Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation." Mol Cell Proteomics 14(10):2753–63; PMID: 26256267; doi: 10.1074/mcp.M115.047928; GPMDB: 24.
  956. Toledo A, et al. (2015) "The lipid raft proteome of Borrelia burgdorferi." Proteomics 15(21):3662–75; PMID: 26256460; doi: 10.1002/pmic.201500093; GPMDB: 18.
  957. Kwon OK, et al. (2015) "In-depth proteomics approach of secretome to identify novel biomarker for sepsis in LPS-stimulated endothelial cells." Electrophoresis 36(23):2851–8; PMID: 26257168; doi: 10.1002/elps.201500198; GPMDB: 4.
  958. He P, et al. (2015) "Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss." J Clin Invest 125(9):3519–31; PMID: 26258413; doi: 10.1172/JCI79552; GPMDB: 20.
  959. Chen L, et al. (2015) "Global Metabonomic and Proteomic Analysis of Human Conjunctival Epithelial Cells (IOBA-NHC) in Response to Hyperosmotic Stress." J Proteome Res 14(9):3982–95; PMID: 26260330; doi: 10.1021/acs.jproteome.5b00443; GPMDB: 3.
  960. Dubois L, et al. (2015) "Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes." Mol Cell Proteomics 14(11):3015–22; PMID: 26272980; doi: 10.1074/mcp.M114.047530; GPMDB: 1.
  961. Houser JR, et al. (2015) "Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation." PLoS Comput Biol 11(8):e1004400; PMID: 26275208; doi: 10.1371/journal.pcbi.1004400; GPMDB: 54.
  962. Kauko O, et al. (2015) "Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling." Sci Rep 5:13099; PMID: 26278961; doi: 10.1038/srep13099; GPMDB: 30.
  963. Humphrey SJ, et al. (2015) "High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics." Nat Biotechnol 33(9):990–5; PMID: 26280412; doi: 10.1038/nbt.3327; GPMDB: 199.
  964. Zhang Y, et al. (2015) "Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins." J Proteome Res 14(9):3583–94; PMID: 26282447; doi: 10.1021/acs.jproteome.5b00435; GPMDB: 150.
  965. De Marchi T, et al. (2016) "4-protein signature predicting tamoxifen treatment outcome in recurrent breast cancer." Mol Oncol 10(1):24–39; PMID: 26285647; doi: 10.1016/j.molonc.2015.07.004; GPMDB: 112.
  966. Haas S, et al. (2015) "Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors." Cell Stem Cell 17(4):422–34; PMID: 26299573; doi: 10.1016/j.stem.2015.07.007; GPMDB: 240.
  967. Payne SH, et al. (2015) "The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity." Sci Data 2:150041; PMID: 26306205; doi: 10.1038/sdata.2015.41; GPMDB: 19590.
  968. Titz B, et al. (2015) "Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects." J Proteomics 128:306–20; PMID: 26306861; doi: 10.1016/j.jprot.2015.08.009; GPMDB: 120.
  969. Yang CR, et al. (2015) "Deep proteomic profiling of vasopressin-sensitive collecting duct cells. II. Bioinformatic analysis of vasopressin signaling." Am J Physiol Cell Physiol 309(12):C799–812; PMID: 26310817; doi: 10.1152/ajpcell.00214.2015; GPMDB: 257.
  970. Deeb SJ, et al. (2015) "Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles." Mol Cell Proteomics 14(11):2947–60; PMID: 26311899; doi: 10.1074/mcp.M115.050245; GPMDB: 20.
  971. Benoit I, et al. (2015) "Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization." Sci Rep 5:13592; PMID: 26314379; doi: 10.1038/srep13592; GPMDB: 10.
  972. Shrivastava AN, et al. (2015) "α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient." EMBO J 34(19):2408–23; PMID: 26323479; doi: 10.15252/embj.201591397; GPMDB: 23.
  973. Grosche A, et al. (2016) "The Proteome of Native Adult Müller Glial Cells From Murine Retina." Mol Cell Proteomics 15(2):462–80; PMID: 26324419; doi: 10.1074/mcp.M115.052183; GPMDB: 40.
  974. Chu XL, et al. (2016) "Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans." Curr Genet 62(1):191–201; PMID: 26328806; doi: 10.1007/s00294-015-0517-7; GPMDB: 1.
  975. Wu X, et al. (2015) "Phosphoproteomic Analysis Identifies Focal Adhesion Kinase 2 (FAK2) as a Potential Therapeutic Target for Tamoxifen Resistance in Breast Cancer." Mol Cell Proteomics 14(11):2887–900; PMID: 26330541; doi: 10.1074/mcp.M115.050484; GPMDB: 29.
  976. Duhamel M, et al. (2015) "Molecular Consequences of Proprotein Convertase 1/3 (PC1/3) Inhibition in Macrophages for Application to Cancer Immunotherapy: A Proteomic Study." Mol Cell Proteomics 14(11):2857–77; PMID: 26330543; doi: 10.1074/mcp.M115.052480; GPMDB: 18.
  977. Liebensteiner MG, et al. (2015) "Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes." Environ Microbiol Rep 7(6):936–45; PMID: 26332065; doi: 10.1111/1758-2229.12335; GPMDB: 12.
  978. Lluch-Senar M, et al. (2015) "Comparative "-omics" in Mycoplasma pneumoniae Clinical Isolates Reveals Key Virulence Factors." PLoS One 10(9):e0137354; PMID: 26335586; doi: 10.1371/journal.pone.0137354; GPMDB: 25.
  979. White CH, et al. (2015) "Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency." Antiviral Res 123:78–85; PMID: 26343910; doi: 10.1016/j.antiviral.2015.09.002; GPMDB: 172.
  980. Wan C, et al. (2015) "Panorama of ancient metazoan macromolecular complexes." Nature 525(7569):339–44; PMID: 26344197; doi: 10.1038/nature14877; GPMDB: 4066.
  981. Borgdorff H, et al. (2016) "Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier." Mucosal Immunol 9(3):621–33; PMID: 26349657; doi: 10.1038/mi.2015.86; GPMDB: 50.
  982. Wu X, et al. (2015) "Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways." Oncotarget 6(30):29143–60; PMID: 26356563; doi: 10.18632/oncotarget.5020; GPMDB: 27.
  983. Weinert BT, et al. (2015) "Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions." EMBO J 34(21):2620–32; PMID: 26358839; doi: 10.15252/embj.201591271; GPMDB: 142.
  984. Grundner-Culemann K, et al. (2016) "Comparative proteome analysis across non-small cell lung cancer cell lines." J Proteomics 130:1–10; PMID: 26361996; doi: 10.1016/j.jprot.2015.09.003; GPMDB: 23.
  985. Mackowiak SD, et al. (2015) "Extensive identification and analysis of conserved small ORFs in animals." Genome Biol 16:179; PMID: 26364619; doi: 10.1186/s13059-015-0742-x; GPMDB: 19.
  986. Preil SA, et al. (2015) "Quantitative Proteome Analysis Reveals Increased Content of Basement Membrane Proteins in Arteries From Patients With Type 2 Diabetes Mellitus and Lower Levels Among Metformin Users." Circ Cardiovasc Genet 8(5):727–35; PMID: 26371159; doi: 10.1161/CIRCGENETICS.115.001165; GPMDB: 19.
  987. Lin MH, et al. (2015) "Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation." Sci Signal 8(394):rs10; PMID: 26373674; doi: 10.1126/scisignal.aaa3117; GPMDB: 73.
  988. Park AJ, et al. (2015) "Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms." J Proteome Res 14(11):4524–37; PMID: 26378716; doi: 10.1021/acs.jproteome.5b00262; GPMDB: 34.
  989. Ruprecht B, et al. (2015) "Evaluation of Kinase Activity Profiling Using Chemical Proteomics." ACS Chem Biol 10(12):2743–52; PMID: 26378887; doi: 10.1021/acschembio.5b00616; GPMDB: 94.
  990. Clark DJ, et al. (2015) "Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis." Anal Chem 87(20):10462–9; PMID: 26378940; doi: 10.1021/acs.analchem.5b02586; GPMDB: 2.
  991. Kieselbach T, et al. (2015) "Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles." PLoS One 10(9):e0138591; PMID: 26381655; doi: 10.1371/journal.pone.0138591; GPMDB: 5.
  992. Goris T, et al. (2015) "Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates." Sci Rep 5:13794; PMID: 26387727; doi: 10.1038/srep13794; GPMDB: 36.
  993. Creixell P, et al. (2015) "Kinome-wide decoding of network-attacking mutations rewiring cancer signaling." Cell 163(1):202–17; PMID: 26388441; doi: 10.1016/j.cell.2015.08.056; GPMDB: 141.
  994. Paulo JA, et al. (2015) "Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae." Mol Biol Cell 26(22):4063–74; PMID: 26399295; doi: 10.1091/mbc.E15-07-0499; GPMDB: 1.
  995. Liu T, et al. (2015) "Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase." PLoS One 10(9):e0139143; PMID: 26401955; doi: 10.1371/journal.pone.0139143; GPMDB: 2.
  996. Li S, et al. (2015) "Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA." J Immunol 195(9):4244–56; PMID: 26408665; doi: 10.4049/jimmunol.1500676; GPMDB: 60.
  997. Beckley JR, et al. (2015) "A Degenerate Cohort of Yeast Membrane Trafficking DUBs Mediates Cell Polarity and Survival." Mol Cell Proteomics 14(12):3132–41; PMID: 26412298; doi: 10.1074/mcp.M115.050039; GPMDB: 246.
  998. Glatter T, et al. (2015) "Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells." J Proteome Res 14(11):4472–85; PMID: 26412744; doi: 10.1021/acs.jproteome.5b00654; GPMDB: 934.
  999. Hadley KC, et al. (2015) "Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics." Elife; PMID: 26418743; doi: 10.7554/eLife.09579; GPMDB: 12.
  1000. Gallart-Palau X, et al. (2015) "Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR)." Sci Rep 5:14664; PMID: 26419333; doi: 10.1038/srep14664; GPMDB: 172.
  1001. Bell-Temin H, et al. (2015) "Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics." Mol Cell Proteomics 14(12):3173–84; PMID: 26424600; doi: 10.1074/mcp.M115.053926; GPMDB: 12.
  1002. Vermillion KL, et al. (2015) "Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics." J Proteome Res 14(11):4792–804; PMID: 26435507; doi: 10.1021/acs.jproteome.5b00575; GPMDB: 3.
  1003. Alanko J, et al. (2015) "Integrin endosomal signalling suppresses anoikis." Nat Cell Biol 17(11):1412–21; PMID: 26436690; doi: 10.1038/ncb3250; GPMDB: 60.
  1004. Hoffman NJ, et al. (2015) "Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates." Cell Metab 22(5):922–35; PMID: 26437602; doi: 10.1016/j.cmet.2015.09.001; GPMDB: 28.
  1005. Matheson NJ, et al. (2015) "Cell Surface Proteomic Map of HIV Infection Reveals Antagonism of Amino Acid Metabolism by Vpu and Nef." Cell Host Microbe 18(4):409–23; PMID: 26439863; doi: 10.1016/j.chom.2015.09.003; GPMDB: 10.
  1006. Zhang H, et al. (2015) "Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1." Sci Signal 8(397):ra98; PMID: 26443705; doi: 10.1126/scisignal.aac5418; GPMDB: 2.
  1007. Kwon OK, et al. (2016) "Global analysis of phosphoproteome dynamics in embryonic development of zebrafish (Danio rerio)." Proteomics 16(1):136–49; PMID: 26449285; doi: 10.1002/pmic.201500017; GPMDB: 32.
  1008. Núñez Galindo A, et al. (2015) "Proteomics of Cerebrospinal Fluid: Throughput and Robustness Using a Scalable Automated Analysis Pipeline for Biomarker Discovery." Anal Chem 87(21):10755–61; PMID: 26452177; doi: 10.1021/acs.analchem.5b02748; GPMDB: 66.
  1009. Geddes JM, et al. (2015) "Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A." BMC Microbiol 15:206; PMID: 26453029; doi: 10.1186/s12866-015-0532-3; GPMDB: 48.
  1010. Gomez-Auli A, et al. (2016) "Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers." Biochimie 122:88–98; PMID: 26455267; doi: 10.1016/j.biochi.2015.10.009; GPMDB: 1.
  1011. Roos A, et al. (2016) "Cellular Signature of SIL1 Depletion: Disease Pathogenesis due to Alterations in Protein Composition Beyond the ER Machinery." Mol Neurobiol 53(8):5527–41; PMID: 26468156; doi: 10.1007/s12035-015-9456-z; GPMDB: 18.
  1012. Poli M, et al. (2015) "Characterization and quantification of proteins secreted by single human embryos prior to implantation." EMBO Mol Med 7(11):1465–79; PMID: 26471863; doi: 10.15252/emmm.201505344; GPMDB: 11.
  1013. Schlage P, et al. (2015) "Matrix Metalloproteinase 10 Degradomics in Keratinocytes and Epidermal Tissue Identifies Bioactive Substrates With Pleiotropic Functions." Mol Cell Proteomics 14(12):3234–46; PMID: 26475864; doi: 10.1074/mcp.M115.053520; GPMDB: 25.
  1014. Horton ER, et al. (2015) "Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly." Nat Cell Biol 17(12):1577–1587; PMID: 26479319; doi: 10.1038/ncb3257; GPMDB: 100.
  1015. Hein MY, et al. (2015) "A human interactome in three quantitative dimensions organized by stoichiometries and abundances." Cell 163(3):712–23; PMID: 26496610; doi: 10.1016/j.cell.2015.09.053; GPMDB: 4296.
  1016. Isasa M, et al. (2015) "Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains." J Proteome Res 14(12):5306–17; PMID: 26503604; doi: 10.1021/acs.jproteome.5b00802; GPMDB: 4.
  1017. Hu CW, et al. (2015) "Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin." Mol Cell Proteomics 14(12):3284–98; PMID: 26503892; doi: 10.1074/mcp.M115.051383; GPMDB: 48.
  1018. O'Connor HF, et al. (2015) "Ubiquitin-Activated Interaction Traps (UBAITs) identify E3 ligase binding partners." EMBO Rep 16(12):1699–712; PMID: 26508657; doi: 10.15252/embr.201540620; GPMDB: 74.
  1019. Golizeh M, et al. (2015) "Identification of Acetaminophen Adducts of Rat Liver Microsomal Proteins using 2D-LC-MS/MS." Chem Res Toxicol 28(11):2142–50; PMID: 26510387; doi: 10.1021/acs.chemrestox.5b00317; GPMDB: 6.
  1020. Soleilhavoup C, et al. (2016) "Proteomes of the Female Genital Tract During the Oestrous Cycle." Mol Cell Proteomics 15(1):93–108; PMID: 26518761; doi: 10.1074/mcp.M115.052332; GPMDB: 198.
  1021. Sharma K, et al. (2015) "Cell type- and brain region-resolved mouse brain proteome." Nat Neurosci 18(12):1819–31; PMID: 26523646; doi: 10.1038/nn.4160; GPMDB: 99.
  1022. Traylen C, et al. (2015) "Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells." Pathogens 4(4):739–51; PMID: 26529022; doi: 10.3390/pathogens4040739; GPMDB: 1.
  1023. Parker BL, et al. (2016) "Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes." Mol Cell Proteomics 15(1):141–53; PMID: 26537798; doi: 10.1074/mcp.M115.054221; GPMDB: 39.
  1024. Elkon R, et al. (2015) "Myc coordinates transcription and translation to enhance transformation and suppress invasiveness." EMBO Rep 16(12):1723–36; PMID: 26538417; doi: 10.15252/embr.201540717; GPMDB: 3.
  1025. Stewart PA, et al. (2015) "A Pilot Proteogenomic Study with Data Integration Identifies MCT1 and GLUT1 as Prognostic Markers in Lung Adenocarcinoma." PLoS One 10(11):e0142162; PMID: 26539827; doi: 10.1371/journal.pone.0142162; GPMDB: 50.
  1026. Mitchell CJ, et al. (2015) "A multi-omic analysis of human naïve CD4+ T cells." BMC Syst Biol 9:75; PMID: 26542228; doi: 10.1186/s12918-015-0225-4; GPMDB: 14.
  1027. Aurass P, et al. (2016) "Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors." Mol Cell Proteomics 15(1):177–200; PMID: 26545400; doi: 10.1074/mcp.M115.053579; GPMDB: 209.
  1028. Hwang H, et al. (2015) "Chromosome-Based Proteomic Study for Identifying Novel Protein Variants from Human Hippocampal Tissue Using Customized neXtProt and GENCODE Databases." J Proteome Res 14(12):5028–37; PMID: 26549206; doi: 10.1021/acs.jproteome.5b00472; GPMDB: 1.
  1029. Bensaddek D, et al. (2016) "Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level." Proteomics 16(3):381–92; PMID: 26552604; doi: 10.1002/pmic.201500264; GPMDB: 40.
  1030. Dimayacyac-Esleta BR, et al. (2015) "Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling." Anal Chem 87(24):12016–23; PMID: 26554430; doi: 10.1021/acs.analchem.5b03639; GPMDB: 14.
  1031. Kito K, et al. (2016) "Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication." Mol Cell Proteomics 15(1):218–35; PMID: 26560065; doi: 10.1074/mcp.M115.051854; GPMDB: 150.
  1032. Zhao Y, et al. (2016) "Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling." Mol Cell Proteomics 15(1):289–304; PMID: 26560068; doi: 10.1074/mcp.M115.054361; GPMDB: 7.
  1033. Tutakhel OA, et al. (2016) "Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling." Am J Physiol Renal Physiol 310(3):F204–16; PMID: 26561651; doi: 10.1152/ajprenal.00429.2015; GPMDB: 2.
  1034. Slavov N, et al. (2015) "Differential Stoichiometry among Core Ribosomal Proteins." Cell Rep 13(5):865–73; PMID: 26565899; doi: 10.1016/j.celrep.2015.09.056; GPMDB: 16.
  1035. Sun S, et al. (2016) "Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides." Nat Biotechnol 34(1):84–8; PMID: 26571101; doi: 10.1038/nbt.3403; GPMDB: 55.
  1036. Wagner SA, et al. (2016) "ATR inhibition rewires cellular signaling networks induced by replication stress." Proteomics 16(3):402–16; PMID: 26572502; doi: 10.1002/pmic.201500172; GPMDB: 20.
  1037. Lichtman JS, et al. (2016) "The effect of microbial colonization on the host proteome varies by gastrointestinal location." ISME J 10(5):1170–81; PMID: 26574685; doi: 10.1038/ismej.2015.187; GPMDB: 45.
  1038. Latos PA, et al. (2015) "Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks." Genes Dev 29(23):2435–48; PMID: 26584622; doi: 10.1101/gad.268821.115; GPMDB: 6.
  1039. Cundiff JK, et al. (2016) "Sensing Small Changes in Protein Abundance: Stimulation of Caco-2 Cells by Human Whey Proteins." J Proteome Res 15(1):125–43; PMID: 26586228; doi: 10.1021/acs.jproteome.5b00597; GPMDB: 16.
  1040. Kudelko M, et al. (2016) "Label-Free Quantitative Proteomics Reveals Survival Mechanisms Developed by Hypertrophic Chondrocytes under ER Stress." J Proteome Res 15(1):86–99; PMID: 26587667; doi: 10.1021/acs.jproteome.5b00537; GPMDB: 30.
  1041. Dammeier S, et al. (2016) "Mass-Spectrometry-Based Proteomics Reveals Organ-Specific Expression Patterns To Be Used as Forensic Evidence." J Proteome Res 15(1):182–92; PMID: 26593679; doi: 10.1021/acs.jproteome.5b00704; GPMDB: 88.
  1042. Basak T, et al. (2016) "Comprehensive Characterization of Glycosylation and Hydroxylation of Basement Membrane Collagen IV by High-Resolution Mass Spectrometry." J Proteome Res 15(1):245–58; PMID: 26593852; doi: 10.1021/acs.jproteome.5b00767; GPMDB: 26.
  1043. Leiser OP, et al. (2015) "Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach." PLoS One 10(11):e0142997; PMID: 26599979; doi: 10.1371/journal.pone.0142997; GPMDB: 169.
  1044. Broncel M, et al. (2016) "Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach." Mol Cell Proteomics 15(2):715–25; PMID: 26604261; doi: 10.1074/mcp.O115.054429; GPMDB: 56.
  1045. Pankow S, et al. (2015) "∆F508 CFTR interactome remodelling promotes rescue of cystic fibrosis." Nature 528(7583):510–6; PMID: 26618866; doi: 10.1038/nature15729; GPMDB: 56.
  1046. Kennedy JJ, et al. (2016) "Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling." Mol Cell Proteomics 15(2):726–39; PMID: 26621847; doi: 10.1074/mcp.O115.054940; GPMDB: 114.
  1047. Urfer M, et al. (2016) "A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli." J Biol Chem 291(4):1921–1932; PMID: 26627837; doi: 10.1074/jbc.M115.691725; GPMDB: 59.
  1048. Krogager TP, et al. (2015) "Hepatocytes respond differently to major dietary trans fatty acid isomers, elaidic acid and trans-vaccenic acid." Proteome Sci 13:31; PMID: 26628894; doi: 10.1186/s12953-015-0084-3; GPMDB: 95.
  1049. Xu B, et al. (2016) "Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank." Exp Gerontol 73:31–41; PMID: 26631761; doi: 10.1016/j.exger.2015.11.016; GPMDB: 1.
  1050. Aguado BA, et al. (2015) "Secretome identification of immune cell factors mediating metastatic cell homing." Sci Rep 5:17566; PMID: 26634905; doi: 10.1038/srep17566; GPMDB: 6.
  1051. Whisenant TC, et al. (2015) "The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells." PLoS One 10(12):e0144409; PMID: 26641092; doi: 10.1371/journal.pone.0144409; GPMDB: 19.
  1052. Padden J, et al. (2016) "Immunohistochemical Markers Distinguishing Cholangiocellular Carcinoma (CCC) from Pancreatic Ductal Adenocarcinoma (PDAC) Discovered by Proteomic Analysis of Microdissected Cells." Mol Cell Proteomics 15(3):1072–82; PMID: 26644413; doi: 10.1074/mcp.M115.054585; GPMDB: 66.
  1053. Xu J, et al. (2016) "Development of Online pH Gradient-Eluted Strong Cation Exchange Nanoelectrospray-Tandem Mass Spectrometry for Proteomic Analysis Facilitating Basic and Histidine-Containing Peptides Identification." Anal Chem 88(1):583–91; PMID: 26646553; doi: 10.1021/acs.analchem.5b04000; GPMDB: 6.
  1054. Iglesias-Gato D, et al. (2016) "The Proteome of Primary Prostate Cancer." Eur Urol 69(5):942–52; PMID: 26651926; doi: 10.1016/j.eururo.2015.10.053; GPMDB: 36.
  1055. Kasvandik S, et al. (2016) "Deep Quantitative Proteomics Reveals Extensive Metabolic Reprogramming and Cancer-Like Changes of Ectopic Endometriotic Stromal Cells." J Proteome Res 15(2):572–84; PMID: 26654049; doi: 10.1021/acs.jproteome.5b00965; GPMDB: 21.
  1056. Farina F, et al. (2016) "The centrosome is an actin-organizing centre." Nat Cell Biol 18(1):65–75; PMID: 26655833; doi: 10.1038/ncb3285; GPMDB: 2.
  1057. Giguère SS, et al. (2016) "The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression." Mol Cell Proteomics 15(3):791–809; PMID: 26657080; doi: 10.1074/mcp.M115.054619; GPMDB: 109.
  1058. Su S, et al. (2017) "Lowering Endogenous Cathepsin D Abundance Results in Reactive Oxygen Species Accumulation and Cell Senescence." Mol Cell Proteomics 16(7):1217–1232; PMID: 26657266; doi: 10.1074/mcp.M115.050179; GPMDB: 154.
  1059. Park JM, et al. (2015) "Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks." Sci Rep 5:18189; PMID: 26657352; doi: 10.1038/srep18189; GPMDB: 144.
  1060. Chen M, et al. (2015) "Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome." Sci Rep 5:18019; PMID: 26658305; doi: 10.1038/srep18019; GPMDB: 36.
  1061. Mizuno Y, et al. (2016) "Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction." Microbiologyopen 5(1):152–73; PMID: 26663479; doi: 10.1002/mbo3.320; GPMDB: 10.
  1062. Ulaganathan VK, et al. (2015) "Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site." Nature 528(7583):570–4; PMID: 26675719; doi: 10.1038/nature16449; GPMDB: 32.
  1063. Aronica L, et al. (2016) "The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast." Nucleic Acids Res 44(4):1703–17; PMID: 26682798; doi: 10.1093/nar/gkv1473; GPMDB: 4.
  1064. Rudney JD, et al. (2015) "Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries." Microbiome 3:69; PMID: 26684897; doi: 10.1186/s40168-015-0136-z; GPMDB: 24.
  1065. Debaisieux S, et al. (2016) "Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons." Mol Cell Proteomics 15(2):542–57; PMID: 26685126; doi: 10.1074/mcp.M115.051649; GPMDB: 28.
  1066. Oberbach A, et al. (2016) "Proteome profiles of HDL particles of patients with chronic heart failure are associated with immune response and also include bacteria proteins." Clin Chim Acta 453:114–22; PMID: 26688386; doi: 10.1016/j.cca.2015.12.005; GPMDB: 10.
  1067. Eitzinger N, et al. (2015) "Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation." Front Plant Sci 6:1085; PMID: 26697039; doi: 10.3389/fpls.2015.01085; GPMDB: 128.
  1068. Kozlov SV, et al. (2016) "Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen." Mol Cell Proteomics 15(3):1032–47; PMID: 26699800; doi: 10.1074/mcp.M115.055723; GPMDB: 141.
  1069. El Ouaamari A, et al. (2016) "SerpinB1 Promotes Pancreatic β Cell Proliferation." Cell Metab 23(1):194–205; PMID: 26701651; doi: 10.1016/j.cmet.2015.12.001; GPMDB: 4.
  1070. Chong WM, et al. (2016) "Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication." J Biol Chem 291(8):3918–31; PMID: 26702051; doi: 10.1074/jbc.M115.675413; GPMDB: 27.
  1071. Lluch-Senar M, et al. (2016) "Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome." Proteomics 16(4):554–63; PMID: 26702875; doi: 10.1002/pmic.201500187; GPMDB: 2.
  1072. Thierry E, et al. (2016) "Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains." Mol Cell 61(1):125–37; PMID: 26711008; doi: 10.1016/j.molcel.2015.11.016; GPMDB: 44.
  1073. Vartanian S, et al. (2016) "Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis." Mol Cell Proteomics 15(4):1220–31; PMID: 26711467; doi: 10.1074/mcp.M115.055509; GPMDB: 4.
  1074. Bode D, et al. (2016) "Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells." Mol Cell Proteomics 15(3):878–91; PMID: 26714524; doi: 10.1074/mcp.M115.053207; GPMDB: 179.
  1075. McAfee A, et al. (2016) "Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics." J Proteome Res 15(2):411–21; PMID: 26718741; doi: 10.1021/acs.jproteome.5b00589; GPMDB: 27.
  1076. Li Q, et al. (2016) "Protein turnover during in vitro tissue engineering." Biomaterials 81:104–113; PMID: 26724458; doi: 10.1016/j.biomaterials.2015.12.004; GPMDB: 66.
  1077. Tyanova S, et al. (2016) "Proteomic maps of breast cancer subtypes." Nat Commun 7:10259; PMID: 26725330; doi: 10.1038/ncomms10259; GPMDB: 255.
  1078. Laumont CM, et al. (2016) "Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames." Nat Commun 7:10238; PMID: 26728094; doi: 10.1038/ncomms10238; GPMDB: 35.
  1079. Guo Z, et al. (2016) "DCAF1 controls T-cell function via p53-dependent and -independent mechanisms." Nat Commun 7:10307; PMID: 26728942; doi: 10.1038/ncomms10307; GPMDB: 120.
  1080. Supper V, et al. (2016) "Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling." J Immunol 196(3):1387–99; PMID: 26729804; doi: 10.4049/jimmunol.1501889; GPMDB: 27.
  1081. Clark DJ, et al. (2016) "Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes." J Proteomics 133:161–169; PMID: 26739763; doi: 10.1016/j.jprot.2015.12.023; GPMDB: 3.
  1082. Walton A, et al. (2016) "It's Time for Some "Site"-Seeing: Novel Tools to Monitor the Ubiquitin Landscape in Arabidopsis thaliana." Plant Cell 28(1):6–16; PMID: 26744219; doi: 10.1105/tpc.15.00878; GPMDB: 110.
  1083. Wandinger SK, et al. (2016) "Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling." PLoS One 11(1):e0146100; PMID: 26745281; doi: 10.1371/journal.pone.0146100; GPMDB: 72.
  1084. Finne K, et al. (2016) "Proteomic Analysis of Minimally Damaged Renal Tubular Tissue from Two-Kidney-One-Clip Hypertensive Rats Demonstrates Extensive Changes Compared to Tissue from Controls." Nephron 132(1):70–80; PMID: 26745798; doi: 10.1159/000442825; GPMDB: 10.
  1085. Christoforou A, et al. (2016) "A draft map of the mouse pluripotent stem cell spatial proteome." Nat Commun 7:8992; PMID: 26754106; doi: 10.1038/ncomms9992; GPMDB: 2.
  1086. Jin J, et al. (2016) "Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90." Mol Cell Biol 36(6):1007–18; PMID: 26755559; doi: 10.1128/MCB.01045-15; GPMDB: 17.
  1087. So EC, et al. (2016) "The Rab-binding Profiles of Bacterial Virulence Factors during Infection." J Biol Chem 291(11):5832–5843; PMID: 26755725; doi: 10.1074/jbc.M115.700930; GPMDB: 60.
  1088. Geddes JM, et al. (2016) "Analysis of the Protein Kinase A-Regulated Proteome of Cryptococcus neoformans Identifies a Role for the Ubiquitin-Proteasome Pathway in Capsule Formation." mBio 7(1):e01862–15; PMID: 26758180; doi: 10.1128/mBio.01862-15; GPMDB: 133.
  1089. Uren PJ, et al. (2016) "High-throughput analyses of hnRNP H1 dissects its multi-functional aspect." RNA Biol 13(4):400–11; PMID: 26760575; doi: 10.1080/15476286.2015.1138030; GPMDB: 32.
  1090. Neubert P, et al. (2016) "Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae." Mol Cell Proteomics 15(4):1323–37; PMID: 26764011; doi: 10.1074/mcp.M115.057505; GPMDB: 6.
  1091. Kümper S, et al. (2016) "Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis." Elife 5:e12994; PMID: 26765561; doi: 10.7554/eLife.12203; GPMDB: 28.
  1092. Ma Y, et al. (2016) "Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue." J Proteome Res 15(2):628–37; PMID: 26767403; doi: 10.1021/acs.jproteome.5b01030; GPMDB: 12.
  1093. Mithoe SC, et al. (2016) "Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase." EMBO Rep 17(3):441–54; PMID: 26769563; doi: 10.15252/embr.201540806; GPMDB: 64.
  1094. Kwiatkowski M, et al. (2016) "Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization." J Proteomics 134:193–202; PMID: 26778141; doi: 10.1016/j.jprot.2015.12.029; GPMDB: 372.
  1095. Peleg S, et al. (2016) "Life span extension by targeting a link between metabolism and histone acetylation in Drosophila." EMBO Rep 17(3):455–69; PMID: 26781291; doi: 10.15252/embr.201541132; GPMDB: 20.
  1096. Kollipara L, et al. (2016) "Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies." J Proteome Res 15(3):945–55; PMID: 26781476; doi: 10.1021/acs.jproteome.5b00972; GPMDB: 1.
  1097. Fang Y, et al. (2016) "Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells." Int J Oncol 48(3):1016–28; PMID: 26783066; doi: 10.3892/ijo.2016.3327; GPMDB: 2.
  1098. Cheng Z, et al. (2016) "Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress." Mol Syst Biol 12(1):855; PMID: 26792871; doi: 10.15252/msb.20156423; GPMDB: 138.
  1099. Vincent D, et al. (2015) "Milk Bottom-Up Proteomics: Method Optimization." Front Genet 6:360; PMID: 26793233; doi: 10.3389/fgene.2015.00360; GPMDB: 262.
  1100. Li Q, et al. (2016) "The Pluripotency Factor NANOG Binds to GLI Proteins and Represses Hedgehog-mediated Transcription." J Biol Chem 291(13):7171–82; PMID: 26797124; doi: 10.1074/jbc.M116.714857; GPMDB: 10.
  1101. Schüller R, et al. (2016) "Heptad-Specific Phosphorylation of RNA Polymerase II CTD." Mol Cell 61(2):305–14; PMID: 26799765; doi: 10.1016/j.molcel.2015.12.003; GPMDB: 209.
  1102. Wojtuszkiewicz A, et al. (2016) "Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis." Mol Cell Proteomics 15(4):1281–98; PMID: 26801919; doi: 10.1074/mcp.M115.052944; GPMDB: 271.
  1103. Serra A, et al. (2016) "Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate." Anal Bioanal Chem 408(7):1963–73; PMID: 26804737; doi: 10.1007/s00216-016-9312-7; GPMDB: 40.
  1104. Woodford MR, et al. (2016) "Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors." Cell Rep 14(4):872–884; PMID: 26804907; doi: 10.1016/j.celrep.2015.12.084; GPMDB: 12.
  1105. Völker-Albert MC, et al. (2016) "A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin." Mol Cell Proteomics 15(3):945–59; PMID: 26811354; doi: 10.1074/mcp.M115.053553; GPMDB: 12.
  1106. da Silva BF, et al. (2016) "Towards Understanding Male Infertility After Spinal Cord Injury Using Quantitative Proteomics." Mol Cell Proteomics 15(4):1424–34; PMID: 26814186; doi: 10.1074/mcp.M115.052175; GPMDB: 504.
  1107. Coman C, et al. (2016) "Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology." Mol Cell Proteomics 15(4):1453–66; PMID: 26814187; doi: 10.1074/mcp.M115.053702; GPMDB: 68.
  1108. Bigaud E, et al. (2016) "Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease." Mol Cell Proteomics 15(5):1498–510; PMID: 26819315; doi: 10.1074/mcp.M115.055772; GPMDB: 3.
  1109. Aubert G, et al. (2016) "The Failing Heart Relies on Ketone Bodies as a Fuel." Circulation 133(8):698–705; PMID: 26819376; doi: 10.1161/CIRCULATIONAHA.115.017355; GPMDB: 115.
  1110. Kristensen TN, et al. (2016) "Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation." J Exp Biol 219(Pt 7):969–76; PMID: 26823104; doi: 10.1242/jeb.132696; GPMDB: 9.
  1111. Steger M, et al. (2016) "Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases." Elife; PMID: 26824392; doi: 10.7554/eLife.12813; GPMDB: 216.
  1112. Wiśniewski JR, et al. (2016) "In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes." J Proteomics 136:234–47; PMID: 26825538; doi: 10.1016/j.jprot.2016.01.016; GPMDB: 122.
  1113. Lichtman JS, et al. (2016) "Host-Microbiota Interactions in the Pathogenesis of Antibiotic-Associated Diseases." Cell Rep 14(5):1049–1061; PMID: 26832403; doi: 10.1016/j.celrep.2016.01.009; GPMDB: 486.
  1114. Lechman ER, et al. (2016) "miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells." Cancer Cell 29(2):214–28; PMID: 26832662; doi: 10.1016/j.ccell.2015.12.011; GPMDB: 72.
  1115. Horton ER, et al. (2016) "Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition." J Cell Biol 212(3):349–64; PMID: 26833789; doi: 10.1083/jcb.201508080; GPMDB: 9.
  1116. Zhang P, et al. (2016) "Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid." Proteomics 16(7):1146–53; PMID: 26834087; doi: 10.1002/pmic.201500188; GPMDB: 180.
  1117. Long B, et al. (2016) "Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells." Amino Acids 48(5):1297–307; PMID: 26837383; doi: 10.1007/s00726-016-2182-7; GPMDB: 1.
  1118. Iwamoto N, et al. (2016) "Context-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation." Sci Signal 9(413):ra13; PMID: 26838549; doi: 10.1126/scisignal.aab1967; GPMDB: 66.
  1119. Tong M, et al. (2016) "Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication." Hum Reprod 31(4):687–99; PMID: 26839151; doi: 10.1093/humrep/dew004; GPMDB: 3.
  1120. Huang H, et al. (2016) "PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis." Elife 5:e13292; PMID: 26839287; doi: 10.7554/eLife.13292; GPMDB: 9.
  1121. Thorpe CT, et al. (2016) "Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition." Sci Rep 6:20455; PMID: 26842662; doi: 10.1038/srep20455; GPMDB: 20.
  1122. Chidiac R, et al. (2016) "Comparative Phosphoproteomics Analysis of VEGF and Angiopoietin-1 Signaling Reveals ZO-1 as a Critical Regulator of Endothelial Cell Proliferation." Mol Cell Proteomics 15(5):1511–25; PMID: 26846344; doi: 10.1074/mcp.M115.053298; GPMDB: 13.
  1123. Meierhofer D, et al. (2016) "Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations." Mol Cell Proteomics 15(5):1728–39; PMID: 26850065; doi: 10.1074/mcp.M115.056770; GPMDB: 48.
  1124. Aretz I, et al. (2016) "An Impaired Respiratory Electron Chain Triggers Down-regulation of the Energy Metabolism and De-ubiquitination of Solute Carrier Amino Acid Transporters." Mol Cell Proteomics 15(5):1526–38; PMID: 26852163; doi: 10.1074/mcp.M115.053181; GPMDB: 60.
  1125. Peffers MJ, et al. (2016) "Age-related changes in mesenchymal stem cells identified using a multi-omics approach." Eur Cell Mater 31:136–59; PMID: 26853623; doi: 10.22203/ecm.v031a10; GPMDB: 8.
  1126. Billing AM, et al. (2016) "Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers." Sci Rep 6:21507; PMID: 26857143; doi: 10.1038/srep21507; GPMDB: 9.
  1127. Kowal J, et al. (2016) "Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes." Proc Natl Acad Sci U S A 113(8):E968–77; PMID: 26858453; doi: 10.1073/pnas.1521230113; GPMDB: 56.
  1128. Locard-Paulet M, et al. (2016) "Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration." Sci Signal 9(414):ra15; PMID: 26861043; doi: 10.1126/scisignal.aac5820; GPMDB: 76.
  1129. Prior KK, et al. (2016) "The Endoplasmic Reticulum Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein." J Biol Chem 291(13):7045–59; PMID: 26861875; doi: 10.1074/jbc.M115.710772; GPMDB: 120.
  1130. Ramus C, et al. (2016) "Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods." Data Brief 6:286–94; PMID: 26862574; doi: 10.1016/j.dib.2015.11.063; GPMDB: 27.
  1131. Sahebekhtiari N, et al. (2016) "Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency." Proteomics 16(7):1166–76; PMID: 26867521; doi: 10.1002/pmic.201500336; GPMDB: 50.
  1132. Lamberti Y, et al. (2016) "Proteome analysis of Bordetella pertussis isolated from human macrophages." J Proteomics 136:55–67; PMID: 26873878; doi: 10.1016/j.jprot.2016.02.002; GPMDB: 9.
  1133. Schneider RK, et al. (2016) "Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9." Nat Med 22(3):288–97; PMID: 26878232; doi: 10.1038/nm.4047; GPMDB: 1.
  1134. Knöppel A, et al. (2016) "Compensating the Fitness Costs of Synonymous Mutations." Mol Biol Evol 33(6):1461–77; PMID: 26882986; doi: 10.1093/molbev/msw028; GPMDB: 72.
  1135. Creedon H, et al. (2016) "Identification of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy." Oncotarget 7(10):11539–52; PMID: 26883193; doi: 10.18632/oncotarget.7317; GPMDB: 6.
  1136. Zufferey A, et al. (2016) "New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach." Hum Genet 135(4):403–414; PMID: 26883867; doi: 10.1007/s00439-016-1642-1; GPMDB: 13.
  1137. Huebner AR, et al. (2016) "Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation." Mol Cell Proteomics 15(5):1556–71; PMID: 26884507; doi: 10.1074/mcp.M115.054965; GPMDB: 64.
  1138. Ramallo Guevara C, et al. (2016) "Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging." Mol Cell Proteomics 15(5):1692–709; PMID: 26884511; doi: 10.1074/mcp.M115.055616; GPMDB: 17.
  1139. Lee HL, et al. (2016) "Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane." Mol Cell Proteomics 15(5):1572–83; PMID: 26889046; doi: 10.1074/mcp.M115.053603; GPMDB: 4.
  1140. Hiramatsu K, et al. (2016) "Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas." Br J Cancer 114(5):554–61; PMID: 26889980; doi: 10.1038/bjc.2016.27; GPMDB: 6.
  1141. Adav SS, et al. (2016) "Dementia-linked amyloidosis is associated with brain protein deamidation as revealed by proteomic profiling of human brain tissues." Mol Brain 9:20; PMID: 26892330; doi: 10.1186/s13041-016-0200-z; GPMDB: 4.
  1142. Sieber J, et al. (2016) "Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay." Mol Cell Proteomics 15(5):1584–97; PMID: 26896796; doi: 10.1074/mcp.M115.054056; GPMDB: 4.
  1143. Zilkenat S, et al. (2016) "Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach." Mol Cell Proteomics 15(5):1598–609; PMID: 26900162; doi: 10.1074/mcp.M115.056598; GPMDB: 18.
  1144. Zhao L, et al. (2016) "Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes." Genome Res 26(5):660–9; PMID: 26912414; doi: 10.1101/gr.198911.115; GPMDB: 26.
  1145. Abelin JG, et al. (2016) "Reduced-representation Phosphosignatures Measured by Quantitative Targeted MS Capture Cellular States and Enable Large-scale Comparison of Drug-induced Phenotypes." Mol Cell Proteomics 15(5):1622–41; PMID: 26912667; doi: 10.1074/mcp.M116.058354; GPMDB: 4.
  1146. Chen JX, et al. (2016) "In Vivo Interaction Proteomics in Caenorhabditis elegans Embryos Provides New Insights into P Granule Dynamics." Mol Cell Proteomics 15(5):1642–57; PMID: 26912668; doi: 10.1074/mcp.M115.053975; GPMDB: 66.
  1147. Mostafa I, et al. (2016) "New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants." J Proteomics 138:1–19; PMID: 26915584; doi: 10.1016/j.jprot.2016.02.012; GPMDB: 24.
  1148. Xu B, et al. (2016) "Quantitative protein profiling of hippocampus during human aging." Neurobiol Aging 39:46–56; PMID: 26923401; doi: 10.1016/j.neurobiolaging.2015.11.029; GPMDB: 20.
  1149. Reddy RJ, et al. (2016) "Early signaling dynamics of the epidermal growth factor receptor." Proc Natl Acad Sci U S A 113(11):3114–9; PMID: 26929352; doi: 10.1073/pnas.1521288113; GPMDB: 30.
  1150. Bigenzahn JW, et al. (2016) "An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client." Mol Cell Proteomics 15(3):1139–50; PMID: 26933192; doi: 10.1074/mcp.o115.055350; GPMDB: 16.
  1151. Oh DY, et al. (2016) "Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures." Mol Cell Proteomics 15(6):1877–94; PMID: 26933193; doi: 10.1074/mcp.M115.055541; GPMDB: 86.
  1152. de Torre-Minguela C, et al. (2016) "Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process." Sci Rep 6:22586; PMID: 26935289; doi: 10.1038/srep22586; GPMDB: 118.
  1153. Ly A, et al. (2016) "Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the rd10 Mouse Model." J Proteome Res 15(4):1350–9; PMID: 26939627; doi: 10.1021/acs.jproteome.6b00111; GPMDB: 24.
  1154. Salih M, et al. (2016) "Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease." J Am Soc Nephrol 27(10):3079–3092; PMID: 26940098; doi: 10.1681/ASN.2015090994; GPMDB: 7.
  1155. Kamkina P, et al. (2016) "Natural Genetic Variation Differentially Affects the Proteome and Transcriptome in Caenorhabditis elegans." Mol Cell Proteomics 15(5):1670–80; PMID: 26944343; doi: 10.1074/mcp.M115.052548; GPMDB: 12.
  1156. Zhang T, et al. (2016) "Global Analysis of Cellular Protein Flux Quantifies the Selectivity of Basal Autophagy." Cell Rep 14(10):2426–39; PMID: 26947064; doi: 10.1016/j.celrep.2016.02.040; GPMDB: 13.
  1157. Xin L, et al. (2016) "Proteomics study reveals that the dysregulation of focal adhesion and ribosome contribute to early pregnancy loss." Proteomics Clin Appl 10(5):554–63; PMID: 26947931; doi: 10.1002/prca.201500136; GPMDB: 1.
  1158. Adewole OO, et al. (2016) "Proteomic profiling of eccrine sweat reveals its potential as a diagnostic biofluid for active tuberculosis." Proteomics Clin Appl 10(5):547–53; PMID: 26948146; doi: 10.1002/prca.201500071; GPMDB: 10.
  1159. Lai ZW, et al. (2016) "Characterization of various cell lines from different ampullary cancer subtypes and cancer associated fibroblast-mediated responses." BMC Cancer 16:195; PMID: 26951071; doi: 10.1186/s12885-016-2193-5; GPMDB: 5.
  1160. De Marchi T, et al. (2016) "Targeted MS Assay Predicting Tamoxifen Resistance in Estrogen-Receptor-Positive Breast Cancer Tissues and Sera." J Proteome Res 15(4):1230–42; PMID: 26958999; doi: 10.1021/acs.jproteome.5b01119; GPMDB: 78.
  1161. Jo DH, et al. (2016) "Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability." Mol Cell Proteomics 15(5):1681–91; PMID: 26969716; doi: 10.1074/mcp.M115.053249; GPMDB: 72.
  1162. Lau E, et al. (2016) "A large dataset of protein dynamics in the mammalian heart proteome." Sci Data 3:160015; PMID: 26977904; doi: 10.1038/sdata.2016.15; GPMDB: 257.
  1163. Gallart-Palau X, et al. (2016) "Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer's disease with cerebrovascular disease." Mol Brain 9:27; PMID: 26983404; doi: 10.1186/s13041-016-0205-7; GPMDB: 10.
  1164. Bonn F, et al. (2016) "Global analysis of the impact of linezolid onto virulence factor production in S. aureus USA300." Int J Med Microbiol 306(3):131–40; PMID: 26996810; doi: 10.1016/j.ijmm.2016.02.004; GPMDB: 300.
  1165. He JJ, et al. (2016) "Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection." PLoS One 11(3):e0152022; PMID: 27003162; doi: 10.1371/journal.pone.0152022; GPMDB: 1.
  1166. Liñeiro E, et al. (2016) "Phosphoproteome analysis of B. cinerea in response to different plant-based elicitors." J Proteomics 139:84–94; PMID: 27003611; doi: 10.1016/j.jprot.2016.03.019; GPMDB: 8.
  1167. Wilkerson EM, et al. (2016) "The Peripheral Blood Eosinophil Proteome." J Proteome Res 15(5):1524–33; PMID: 27005946; doi: 10.1021/acs.jproteome.6b00006; GPMDB: 45.
  1168. Wilson MC, et al. (2016) "Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation." Mol Cell Proteomics 15(6):1938–46; PMID: 27006477; doi: 10.1074/mcp.M115.057315; GPMDB: 2.
  1169. Sunitha B, et al. (2016) "Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function." J Neurochem 138(1):174–91; PMID: 27015874; doi: 10.1111/jnc.13626; GPMDB: 1.
  1170. Huang D, et al. (2016) "DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae." Genetics 203(1):353–68; PMID: 27017623; doi: 10.1534/genetics.115.185231; GPMDB: 4.
  1171. Lawrence RT, et al. (2016) "Plug-and-play analysis of the human phosphoproteome by targeted high-resolution mass spectrometry." Nat Methods 13(5):431–4; PMID: 27018578; doi: 10.1038/nmeth.3811; GPMDB: 6.
  1172. Slany A, et al. (2016) "Contribution of Human Fibroblasts and Endothelial Cells to the Hallmarks of Inflammation as Determined by Proteome Profiling." Mol Cell Proteomics 15(6):1982–97; PMID: 27025457; doi: 10.1074/mcp.M116.058099; GPMDB: 104.
  1173. Osinalde N, et al. (2016) "Changes in Gab2 phosphorylation and interaction partners in response to interleukin (IL)-2 stimulation in T-lymphocytes." Sci Rep 6:23530; PMID: 27025927; doi: 10.1038/srep23530; GPMDB: 22.
  1174. Xu G, et al. (2016) "Vulnerability of newly synthesized proteins to proteostasis stress." J Cell Sci 129(9):1892–901; PMID: 27026526; doi: 10.1242/jcs.176479; GPMDB: 55.
  1175. Lo Sasso G, et al. (2016) "Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in Apoe -/- mice--a systems toxicology analysis." Inhal Toxicol 28(5):226–40; PMID: 27027324; doi: 10.3109/08958378.2016.1150368; GPMDB: 80.
  1176. Chen Z, et al. (2016) "Proteomic Analysis Reveals a Novel Mutator S (MutS) Partner Involved in Mismatch Repair Pathway." Mol Cell Proteomics 15(4):1299–308; PMID: 27037360; doi: 10.1074/mcp.M115.056093 ; GPMDB: 22.
  1177. Goldman-Pinkovich A, et al. (2016) "An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion." PLoS Pathog 12(4):e1005494; PMID: 27043018; doi: 10.1371/journal.ppat.1005494; GPMDB: 8.
  1178. Salvetti A, et al. (2016) "Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches." J Proteome Res 15(5):1659–69; PMID: 27049334; doi: 10.1021/acs.jproteome.6b00126; GPMDB: 7.
  1179. Zhou S, et al. (2016) "Proteome Modification in Tomato Plants upon Long-Term Aluminum Treatment." J Proteome Res 15(5):1670–84; PMID: 27052409; doi: 10.1021/acs.jproteome.6b00128; GPMDB: 68.
  1180. Slomnicki LP, et al. (2016) "Nucleolar Enrichment of Brain Proteins with Critical Roles in Human Neurodevelopment." Mol Cell Proteomics 15(6):2055–75; PMID: 27053602; doi: 10.1074/mcp.M115.051920; GPMDB: 18.
  1181. Packialakshmi B, et al. (2016) "Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides." Proteomics Insights 7:1–9; PMID: 27053921; doi: 10.4137/PRI.S31609; GPMDB: 6.
  1182. Liberton M, et al. (2016) "Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium." Mol Cell Proteomics 15(6):2021–32; PMID: 27056914; doi: 10.1074/mcp.M115.057240; GPMDB: 2.
  1183. Kähne T, et al. (2016) "Proteome rearrangements after auditory learning: high-resolution profiling of synapse-enriched protein fractions from mouse brain." J Neurochem 138(1):124–38; PMID: 27062398; doi: 10.1111/jnc.13636; GPMDB: 15.
  1184. Litholdo CG Jr, et al. (2016) "Proteomic Identification of Putative MicroRNA394 Target Genes in Arabidopsis thaliana Identifies Major Latex Protein Family Members Critical for Normal Development." Mol Cell Proteomics 15(6):2033–47; PMID: 27067051; doi: 10.1074/mcp.M115.053124; GPMDB: 21.
  1185. Hoernstein SN, et al. (2016) "Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens." Mol Cell Proteomics 15(6):1808–22; PMID: 27067052; doi: 10.1074/mcp.M115.057190; GPMDB: 134.
  1186. Drabovich AP, et al. (2016) "Dynamics of Protein Expression Reveals Primary Targets and Secondary Messengers of Estrogen Receptor Alpha Signaling in MCF-7 Breast Cancer Cells." Mol Cell Proteomics 15(6):2093–107; PMID: 27067054; doi: 10.1074/mcp.M115.057257; GPMDB: 12.
  1187. Osinalde N, et al. (2016) "Nuclear Phosphoproteomic Screen Uncovers ACLY as Mediator of IL-2-induced Proliferation of CD4+ T lymphocytes." Mol Cell Proteomics 15(6):2076–92; PMID: 27067055; doi: 10.1074/mcp.M115.057158; GPMDB: 19.
  1188. Xu B, et al. (2016) "Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury." Brain Res 1642:344–352; PMID: 27067185; doi: 10.1016/j.brainres.2016.04.008; GPMDB: 20.
  1189. Rider MA, et al. (2016) "ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles." Sci Rep 6:23978; PMID: 27068479; doi: 10.1038/srep23978; GPMDB: 3.
  1190. Barallobre-Barreiro J, et al. (2016) "Extracellular matrix remodelling in response to venous hypertension: proteomics of human varicose veins." Cardiovasc Res 110(3):419–30; PMID: 27068509; doi: 10.1093/cvr/cvw075; GPMDB: 12.
  1191. Sarhan AR, et al. (2016) "Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study." Mol Cell Proteomics 15(6):1823–36; PMID: 27074791; doi: 10.1074/mcp.M115.053652; GPMDB: 17.
  1192. Lochmatter C, et al. (2016) "Integrative Phosphoproteomics Links IL-23R Signaling with Metabolic Adaptation in Lymphocytes." Sci Rep 6:24491; PMID: 27080861; doi: 10.1038/srep24491; GPMDB: 7.
  1193. Arts IS, et al. (2016) "Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control." Mol Cell Proteomics 15(6):2125–40; PMID: 27081212; doi: 10.1074/mcp.M115.056440; GPMDB: 103.
  1194. Tape CJ, et al. (2016) "Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation." Cell 165(4):910–20; PMID: 27087446; doi: 10.1016/j.cell.2016.03.029; GPMDB: 374.
  1195. Stoehr A, et al. (2016) "Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes." Cardiovasc Res 110(3):346–58; PMID: 27095734; doi: 10.1093/cvr/cvw081; GPMDB: 12.
  1196. Grassl N, et al. (2016) "Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome." Genome Med 8(1):44; PMID: 27102203; doi: 10.1186/s13073-016-0293-0; GPMDB: 89.
  1197. Aasebø E, et al. (2016) "Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows." J Proteomics 145:214–225; PMID: 27107777; doi: 10.1016/j.jprot.2016.03.049; GPMDB: 163.
  1198. Larance M, et al. (2016) "Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling." Mol Cell Proteomics 15(7):2476–90; PMID: 27114452; doi: 10.1074/mcp.O115.055467; GPMDB: 396.
  1199. Laghmani K, et al. (2016) "Polyhydramnios, Transient Antenatal Bartter's Syndrome, and MAGED2 Mutations." N Engl J Med 374(19):1853–63; PMID: 27120771; doi: 10.1056/NEJMoa1507629; GPMDB: 21.
  1200. Hoehenwarter W, et al. (2016) "Comparative expression profiling reveals a role of the root apoplast in local phosphate response." BMC Plant Biol 16:106; PMID: 27121119; doi: 10.1186/s12870-016-0790-8; GPMDB: 23.
  1201. Eyckerman S, et al. (2016) "Trapping mammalian protein complexes in viral particles." Nat Commun 7:11416; PMID: 27122307; doi: 10.1038/ncomms11416; GPMDB: 58.
  1202. Ono M, et al. (2016) "Enhanced snoMEN Vectors Facilitate Establishment of GFP-HIF-1α Protein Replacement Human Cell Lines." PLoS One 11(4):e0154759; PMID: 27128805; doi: 10.1371/journal.pone.0154759; GPMDB: 72.
  1203. Petrone A, et al. (2016) "Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics." Mol Cell Proteomics 15(7):2448–61; PMID: 27134283; doi: 10.1074/mcp.M116.059394; GPMDB: 90.
  1204. Pozniak Y, et al. (2016) "System-wide Clinical Proteomics of Breast Cancer Reveals Global Remodeling of Tissue Homeostasis." Cell Syst 2(3):172–84; PMID: 27135363; doi: 10.1016/j.cels.2016.02.001; GPMDB: 126.
  1205. Ori A, et al. (2015) "Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats." Cell Syst 1(3):224–37; PMID: 27135913; doi: 10.1016/j.cels.2015.08.012; GPMDB: 190.
  1206. Francavilla C, et al. (2016) "Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking." Nat Struct Mol Biol 23(6):608–18; PMID: 27136326; doi: 10.1038/nsmb.3218; GPMDB: 19.
  1207. Ulrich V, et al. (2016) "Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice." EMBO Mol Med 8(6):643–53; PMID: 27137489; doi: 10.15252/emmm.201506031; GPMDB: 120.
  1208. Zielke RA, et al. (2016) "Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea." Mol Cell Proteomics 15(7):2338–55; PMID: 27141096; doi: 10.1074/mcp.M116.058800; GPMDB: 3.
  1209. Masuishi Y, et al. (2016) "Data for identification of GPI-anchored peptides and ω-sites in cancer cell lines." Data Brief 7:1302–5; PMID: 27141528; doi: 10.1016/j.dib.2016.04.001; GPMDB: 42.
  1210. Ziganshin RH, et al. (2016) "The Pathogenesis of the Demyelinating Form of Guillain-Barre Syndrome (GBS): Proteo-peptidomic and Immunological Profiling of Physiological Fluids." Mol Cell Proteomics 15(7):2366–78; PMID: 27143409; doi: 10.1074/mcp.M115.056036; GPMDB: 28.
  1211. Kempf SJ, et al. (2016) "An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model." Oncotarget 7(23):33627–48; PMID: 27144524; doi: 10.18632/oncotarget.9092; GPMDB: 104.
  1212. Dørum S, et al. (2016) "Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes." Sci Rep 6:25565; PMID: 27146306; doi: 10.1038/srep25565; GPMDB: 27.
  1213. Chen R, et al. (2016) "Detergent-Assisted Glycoprotein Capture: A Versatile Tool for In-Depth N-Glycoproteome Analysis." J Proteome Res 15(6):2080–6; PMID: 27147131; doi: 10.1021/acs.jproteome.6b00056; GPMDB: 36.
  1214. Packialakshmi B, et al. (2016) "Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis." Biomark Insights 11:55–62; PMID: 27147818; doi: 10.4137/BMI.S38291; GPMDB: 6.
  1215. Jhingan GD, et al. (2016) "Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns." J Biol Chem 291(27):14257–14273; PMID: 27151218; doi: 10.1074/jbc.M115.666123; GPMDB: 16.
  1216. Toriyama M, et al. (2016) "The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery." Nat Genet 48(6):648–56; PMID: 27158779; doi: 10.1038/ng.3558; GPMDB: 44.
  1217. Hsu CH, et al. (2016) "Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma." Mol Cell Proteomics 15(7):2396–410; PMID: 27161446; doi: 10.1074/mcp.M115.057026; GPMDB: 60.
  1218. Sigdel TK, et al. (2016) "Mining the human urine proteome for monitoring renal transplant injury." Kidney Int 89(6):1244–52; PMID: 27165815; doi: 10.1016/j.kint.2015.12.049; GPMDB: 227.
  1219. Taha MK, et al. (2016) "Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men." PLoS One 11(5):e0154047; PMID: 27167067; doi: 10.1371/journal.pone.0154047; GPMDB: 12.
  1220. Tuveng TR, et al. (2016) "Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin." Proteomics 16(13):1904–14; PMID: 27169553; doi: 10.1002/pmic.201500419; GPMDB: 18.
  1221. Rao SR, et al. (2016) "The Clathrin-dependent Spindle Proteome." Mol Cell Proteomics 15(8):2537–53; PMID: 27174698; doi: 10.1074/mcp.M115.054809; GPMDB: 130.
  1222. Gupta I, et al. (2016) "Translational Capacity of a Cell Is Determined during Transcription Elongation via the Ccr4-Not Complex." Cell Rep 15(8):1782–94; PMID: 27184853; doi: 10.1016/j.celrep.2016.04.055; GPMDB: 4.
  1223. Zvezdova E, et al. (2016) "Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability." Sci Signal 9(428):ra51; PMID: 27188442; doi: 10.1126/scisignal.aad1576; GPMDB: 54.
  1224. Kliuchnikova AA, et al. (2016) "Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome." Proteomics 16(13):1938–46; PMID: 27193151; doi: 10.1002/pmic.201500423; GPMDB: 86.
  1225. Heaven MR, et al. (2016) "Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease." J Proteome Res 15(7):2265–82; PMID: 27193225; doi: 10.1021/acs.jproteome.6b00316; GPMDB: 8.
  1226. Yang W, et al. (2016) "Identification of glycoproteins associated with HIV latently infected cells using quantitative glycoproteomics." Proteomics 16(13):1872–80; PMID: 27195445; doi: 10.1002/pmic.201500215; GPMDB: 12.
  1227. Liang W, et al. (2016) "Distinctive proteomic profiles among different regions of human carotid plaques in men and women." Sci Rep 6:26231; PMID: 27198765; doi: 10.1038/srep26231; GPMDB: 60.
  1228. Arshid S, et al. (2017) "Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning." J Proteomics 151:162–173; PMID: 27208787; doi: 10.1016/j.jprot.2016.05.016; GPMDB: 5.
  1229. Virant-Klun I, et al. (2016) "Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes." Mol Cell Proteomics 15(8):2616–27; PMID: 27215607; doi: 10.1074/mcp.M115.056887; GPMDB: 18.
  1230. Yu J, et al. (2016) "Biomarker Panel for Chronic Graft-Versus-Host Disease." J Clin Oncol 34(22):2583–90; PMID: 27217465; doi: 10.1200/JCO.2015.65.9615; GPMDB: 3.
  1231. Wang B, et al. (2016) "Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells." J Proteome Res 15(8):2407–21; PMID: 27225728; doi: 10.1021/acs.jproteome.5b01083; GPMDB: 14.
  1232. Lidbury ID, et al. (2016) "Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria." Environ Microbiol 18(10):3535–3549; PMID: 27233093; doi: 10.1111/1462-2920.13390; GPMDB: 162.
  1233. Lobas AA, et al. (2016) "Exome-based proteogenomics of HEK-293 human cell line: Coding genomic variants identified at the level of shotgun proteome." Proteomics 16(14):1980–91; PMID: 27233776; doi: 10.1002/pmic.201500349; GPMDB: 7.
  1234. Lodrini M, et al. (2016) "Minichromosome Maintenance Complex Is a Critical Node in the miR-183 Signaling Network of MYCN-Amplified Neuroblastoma Cells." J Proteome Res 15(7):2178–86; PMID: 27239679; doi: 10.1021/acs.jproteome.6b00134; GPMDB: 12.
  1235. Bullen JW, et al. (2016) "Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1." Sci Signal 9(430):ra56; PMID: 27245613; doi: 10.1126/scisignal.aaf0583; GPMDB: 14.
  1236. Patella F, et al. (2016) "In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability." J Proteome Res 15(7):2187–97; PMID: 27246970; doi: 10.1021/acs.jproteome.6b00166; GPMDB: 25.
  1237. Rai AN, et al. (2016) "Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia." Sci Rep 6:26964; PMID: 27247105; doi: 10.1038/srep26964; GPMDB: 21.
  1238. Mertins P, et al. (2016) "Proteogenomics connects somatic mutations to signalling in breast cancer." Nature 534(7605):55–62; PMID: 27251275; doi: 10.1038/nature18003; GPMDB: 1265.
  1239. Humphrey ES, et al. (2016) "Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling." Mol Cell Proteomics 15(8):2671–85; PMID: 27259358; doi: 10.1074/mcp.M116.058313; GPMDB: 112.
  1240. Hintermair C, et al. (2016) "Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression." Sci Rep 6:27401; PMID: 27264542; doi: 10.1038/srep27401; GPMDB: 63.
  1241. Xu L, et al. (2016) "Quantitative proteomics reveals that distant recurrence-associated protein R-Ras and Transgelin predict post-surgical survival in patients with Stage III colorectal cancer." Oncotarget 7(28):43868–43893; PMID: 27270312; doi: 10.18632/oncotarget.9701; GPMDB: 2.
  1242. Gnad F, et al. (2016) "Phosphoproteome analysis of the MAPK pathway reveals previously undetected feedback mechanisms." Proteomics 16(14):1998–2004; PMID: 27273156; doi: 10.1002/pmic.201600119; GPMDB: 56.
  1243. Gnad F, et al. (2016) "Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network." Proteomics 16(14):1992–7; PMID: 27282143; doi: 10.1002/pmic.201600118; GPMDB: 72.
  1244. Prendergast L, et al. (2016) "The CENP-T/-W complex is a binding partner of the histone chaperone FACT." Genes Dev 30(11):1313–26; PMID: 27284163; doi: 10.1101/gad.275073.115; GPMDB: 47.
  1245. Wiśniewski JR, et al. (2016) "A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting." J Proteome Res 15(7):2321–6; PMID: 27297043; doi: 10.1021/acs.jproteome.6b00403; GPMDB: 64.
  1246. Narasimhan PB, et al. (2016) "Microfilariae of Brugia malayi Inhibit the mTOR Pathway and Induce Autophagy in Human Dendritic Cells." Infect Immun 84(9):2463–72; PMID: 27297394; doi: 10.1128/IAI.00174-16; GPMDB: 233.
  1247. Rakus D, et al. (2016) "Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles." J Proteome Res 15(8):2479–90; PMID: 27302655; doi: 10.1021/acs.jproteome.5b01149; GPMDB: 60.
  1248. Chick JM, et al. (2016) "Defining the consequences of genetic variation on a proteome-wide scale." Nature 534(7608):500–5; PMID: 27309819; doi: 10.1038/nature18270; GPMDB: 27.
  1249. Madeira JP, et al. (2016) "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics." J Proteomics 146:25–33; PMID: 27321915; doi: 10.1016/j.jprot.2016.06.022; GPMDB: 26.
  1250. Szklanna PB, et al. (2016) "Analysis of the proteins associated with platelet detergent resistant membranes." Proteomics 16(17):2345–50; PMID: 27329341; doi: 10.1002/pmic.201500309; GPMDB: 18.
  1251. Ahrné E, et al. (2016) "Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments." J Proteome Res 15(8):2537–47; PMID: 27345528; doi: 10.1021/acs.jproteome.6b00066; GPMDB: 41.
  1252. Chaubey PM, et al. (2016) "Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver." PLoS One 11(6):e0158033; PMID: 27347675; doi: 10.1371/journal.pone.0158033; GPMDB: 60.
  1253. Bespyatykh J, et al. (2016) "Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster." Sci Rep 6:28985; PMID: 27356881; doi: 10.1038/srep28985; GPMDB: 23.
  1254. Monks J, et al. (2016) "Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion." J Physiol 594(20):5899–5921; PMID: 27357166; doi: 10.1113/JP272390; GPMDB: 16.
  1255. Rinschen MM, et al. (2016) "Quantitative deep mapping of the cultured podocyte proteome uncovers shifts in proteostatic mechanisms during differentiation." Am J Physiol Cell Physiol 311(3):C404–17; PMID: 27357545; doi: 10.1152/ajpcell.00121.2016; GPMDB: 3.
  1256. Dudekula K, et al. (2016) "Data from quantitative label free proteomics analysis of rat spleen." Data Brief 8:494–500; PMID: 27358910; doi: 10.1016/j.dib.2016.05.058; GPMDB: 17.
  1257. Carrier M, et al. (2016) "Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines." PLoS One 11(6):e0157290; PMID: 27362937; doi: 10.1371/journal.pone.0157290; GPMDB: 6.
  1258. Pettersen VK, et al. (2016) "Coordination of Metabolism and Virulence Factors Expression of Extraintestinal Pathogenic Escherichia coli Purified from Blood Cultures of Patients with Sepsis." Mol Cell Proteomics 15(9):2890–907; PMID: 27364158; doi: 10.1074/mcp.M116.060582; GPMDB: 90.
  1259. Zhang H, et al. (2016) "Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer." Cell 166(3):755–765; PMID: 27372738; doi: 10.1016/j.cell.2016.05.069; GPMDB: 1996.
  1260. Luo Y, et al. (2016) "HIV-host interactome revealed directly from infected cells." Nat Microbiol 1(7):16068; PMID: 27375898; doi: 10.1038/nmicrobiol.2016.68; GPMDB: 53.
  1261. Carabetta VJ, et al. (2016) "Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth." mSystems 1(3):; PMID: 27376153; doi: 10.1128/mSystems.00005-16; GPMDB: 30.
  1262. Sysoev VO, et al. (2016) "Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila." Nat Commun 7:12128; PMID: 27378189; doi: 10.1038/ncomms12128; GPMDB: 25.
  1263. Barasa BA, et al. (2016) "Proteomics reveals reduced expression of transketolase in pyrimidine 5'-nucleotidase deficient patients." Proteomics Clin Appl 10(8):859–69; PMID: 27381654; doi: 10.1002/prca.201500130; GPMDB: 8.
  1264. Ashford P, et al. (2016) "HVint: A Strategy for Identifying Novel Protein-Protein Interactions in Herpes Simplex Virus Type 1." Mol Cell Proteomics 15(9):2939–53; PMID: 27384951; doi: 10.1074/mcp.M116.058552; GPMDB: 19.
  1265. Picariello G, et al. (2016) "Antibody-independent identification of bovine milk-derived peptides in breast-milk." Food Funct 7(8):3402–9; PMID: 27396729; doi: 10.1039/c6fo00731g; GPMDB: 12.
  1266. Hampoelz B, et al. (2016) "Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development." Cell 166(3):664–678; PMID: 27397507; doi: 10.1016/j.cell.2016.06.015; GPMDB: 18.
  1267. Konstantinell A, et al. (2016) "Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines." Proteomics 16(19):2587–2591; PMID: 27402257; doi: 10.1002/pmic.201600223; GPMDB: 28.
  1268. Xue L, et al. (2016) "Valosin-containing protein (VCP)-Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor." Mol Cell Proteomics 15(9):2970–86; PMID: 27406709; doi: 10.1074/mcp.M116.061036; GPMDB: 148.
  1269. Shraibman B, et al. (2016) "Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy." Mol Cell Proteomics 15(9):3058–70; PMID: 27412690; doi: 10.1074/mcp.M116.060350; GPMDB: 60.
  1270. Müller S, et al. (2016) "Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways." Sci Rep 6:30030; PMID: 27418403; doi: 10.1038/srep30030; GPMDB: 32.
  1271. Rice RH, et al. (2016) "Proteomic Analysis of Loricrin Knockout Mouse Epidermis." J Proteome Res 15(8):2560–6; PMID: 27418529; doi: 10.1021/acs.jproteome.6b00108; GPMDB: 42.
  1272. Wojtowicz EE, et al. (2016) "Ectopic miR-125a Expression Induces Long-Term Repopulating Stem Cell Capacity in Mouse and Human Hematopoietic Progenitors." Cell Stem Cell 19(3):383–96; PMID: 27424784; doi: 10.1016/j.stem.2016.06.008; GPMDB: 36.
  1273. Petrera A, et al. (2016) "Proteomic Profiling of Cardiomyocyte-Specific Cathepsin A Overexpression Links Cathepsin A to the Oxidative Stress Response." J Proteome Res 15(9):3188–95; PMID: 27432266; doi: 10.1021/acs.jproteome.6b00413; GPMDB: 3.
  1274. Zhou Y, et al. (2016) "Quantitative proteomics identifies myoferlin as a novel regulator of A Disintegrin and Metalloproteinase 12 in HeLa cells." J Proteomics 148:94–104; PMID: 27432471; doi: 10.1016/j.jprot.2016.07.015; GPMDB: 14.
  1275. Li X, et al. (2016) "Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family." Mol Cell Proteomics 15(9):3030–44; PMID: 27432908; doi: 10.1074/mcp.M116.060277; GPMDB: 88.
  1276. Suárez-Cortés P, et al. (2016) "Comparative Proteomics and Functional Analysis Reveal a Role of Plasmodium falciparum Osmiophilic Bodies in Malaria Parasite Transmission." Mol Cell Proteomics 15(10):3243–3255; PMID: 27432909; doi: 10.1074/mcp.M116.060681; GPMDB: 162.
  1277. Vandenbrouck Y, et al. (2016) "Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update." J Proteome Res 15(11):3998–4019; PMID: 27444420; doi: 10.1021/acs.jproteome.6b00400; GPMDB: 108.
  1278. Martinez-Val A, et al. (2016) "On the Statistical Significance of Compressed Ratios in Isobaric Labeling: A Cross-Platform Comparison." J Proteome Res 15(9):3029–38; PMID: 27452035; doi: 10.1021/acs.jproteome.6b00151; GPMDB: 18.
  1279. Gautier EF, et al. (2016) "Comprehensive Proteomic Analysis of Human Erythropoiesis." Cell Rep 16(5):1470–1484; PMID: 27452463; doi: 10.1016/j.celrep.2016.06.085; GPMDB: 235.
  1280. Liao Y, et al. (2016) "The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease." Cell Rep 16(5):1456–1469; PMID: 27452465; doi: 10.1016/j.celrep.2016.06.084; GPMDB: 7.
  1281. Castello A, et al. (2016) "Comprehensive Identification of RNA-Binding Domains in Human Cells." Mol Cell 63(4):696–710; PMID: 27453046; doi: 10.1016/j.molcel.2016.06.029; GPMDB: 12.
  1282. Thomsen MS, et al. (2017) "Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier." J Neurochem 140(5):741–754; PMID: 27456748; doi: 10.1111/jnc.13747; GPMDB: 12.
  1283. Zhao Y, et al. (2016) "Integrative proteomic analysis reveals reprograming tumor necrosis factor signaling in epithelial mesenchymal transition." J Proteomics 148:126–38; PMID: 27461979; doi: 10.1016/j.jprot.2016.07.014; GPMDB: 30.
  1284. Osinalde N, et al. (2017) "Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines." J Proteome Res 16(1):106–121; PMID: 27463037; doi: 10.1021/acs.jproteome.6b00233; GPMDB: 55.
  1285. Liu Z, et al. (2016) "Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy." J Chromatogr A 1461:35–41; PMID: 27470094; doi: 10.1016/j.chroma.2016.07.042; GPMDB: 9.
  1286. Voisinne G, et al. (2016) "Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation." Mol Syst Biol 12(7):876; PMID: 27474268; doi: 10.15252/msb.20166837; GPMDB: 178.
  1287. Uyy E, et al. (2016) "Endoplasmic Reticulum Chaperones Are Potential Active Factors in Thyroid Tumorigenesis." J Proteome Res 15(9):3377–87; PMID: 27480176; doi: 10.1021/acs.jproteome.6b00567; GPMDB: 100.
  1288. Söderholm S, et al. (2016) "Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages." Mol Cell Proteomics 15(10):3203–3219; PMID: 27486199; doi: 10.1074/mcp.M116.057984; GPMDB: 20.
  1289. Deslyper G, et al. (2016) "A Proteomic Investigation of Hepatic Resistance to Ascaris in a Murine Model." PLoS Negl Trop Dis 10(8):e0004837; PMID: 27490109; doi: 10.1371/journal.pntd.0004837; GPMDB: 12.
  1290. Peltier J, et al. (2016) "Quantitative proteomic analysis exploring progression of colorectal cancer: Modulation of the serpin family." J Proteomics 148:139–48; PMID: 27492143; doi: 10.1016/j.jprot.2016.07.031; GPMDB: 2.
  1291. Roberts AJ, et al. (2016) "The N-myristoylome of Trypanosoma cruzi." Sci Rep 6:31078; PMID: 27492267; doi: 10.1038/srep31078; GPMDB: 12.
  1292. Dubois ML, et al. (2016) "Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry." J Proteome Res 15(9):2924–34; PMID: 27494197; doi: 10.1021/acs.jproteome.5b01081; GPMDB: 109.
  1293. Lachén-Montes M, et al. (2016) "An early dysregulation of FAK and MEK/ERK signaling pathways precedes the β-amyloid deposition in the olfactory bulb of APP/PS1 mouse model of Alzheimer's disease." J Proteomics 148:149–58; PMID: 27498392; doi: 10.1016/j.jprot.2016.07.032; GPMDB: 20.
  1294. Drake JM, et al. (2016) "Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer." Cell 166(4):1041–1054; PMID: 27499020; doi: 10.1016/j.cell.2016.07.007; GPMDB: 69.
  1295. Marino F, et al. (2017) "Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07." J Proteome Res 16(1):34–44; PMID: 27503676; doi: 10.1021/acs.jproteome.6b00528; GPMDB: 31.
  1296. Budayeva HG, et al. (2016) "Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking." Mol Cell Proteomics 15(10):3107–3125; PMID: 27503897; doi: 10.1074/mcp.M116.061333; GPMDB: 15.
  1297. Gat-Yablonski G, et al. (2016) "Quantitative proteomics of rat livers shows that unrestricted feeding is stressful for proteostasis with implications on life span." Aging (Albany NY) 8(8):1735–58; PMID: 27508340; doi: 10.18632/aging.101009; GPMDB: 18.
  1298. Swenson JM, et al. (2016) "The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic." Elife; PMID: 27514026; doi: 10.7554/eLife.16096; GPMDB: 4.
  1299. Naboulsi W, et al. (2016) "Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation." Biochim Biophys Acta 1864(11):1579–85; PMID: 27519163; doi: 10.1016/j.bbapap.2016.08.005; GPMDB: 36.
  1300. Hoare M, et al. (2016) "NOTCH1 mediates a switch between two distinct secretomes during senescence." Nat Cell Biol 18(9):979–92; PMID: 27525720; doi: 10.1038/ncb3397; GPMDB: 4.
  1301. Rasmussen MH, et al. (2016) "miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells." Nat Commun 7:12436; PMID: 27526785; doi: 10.1038/ncomms12436; GPMDB: 24.
  1302. Chatterjee S, et al. (2016) "A comprehensive and scalable database search system for metaproteomics." BMC Genomics 17(1):642; PMID: 27528457; doi: 10.1186/s12864-016-2855-3; GPMDB: 28.
  1303. Liu L, et al. (2016) "Homo- and Heterotypic Association Regulates Signaling by the SgK269/PEAK1 and SgK223 Pseudokinases." J Biol Chem 291(41):21571–21583; PMID: 27531744; doi: 10.1074/jbc.M116.748897; GPMDB: 6.
  1304. Mattei B, et al. (2016) "Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana." Front Plant Sci 7:1107; PMID: 27532006; doi: 10.3389/fpls.2016.01107; GPMDB: 12.
  1305. Zacharias LG, et al. (2016) "HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells." J Proteome Res 15(10):3624–3634; PMID: 27533485; doi: 10.1021/acs.jproteome.6b00429; GPMDB: 36.
  1306. Solari FA, et al. (2016) "Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome." Mol Cell Proteomics 15(10):3154–3169; PMID: 27535140; doi: 10.1074/mcp.M116.060368; GPMDB: 23.
  1307. Wei W, et al. (2016) "Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer." J Proteome Res 15(11):3988–3997; PMID: 27535590; doi: 10.1021/acs.jproteome.6b00390; GPMDB: 150.
  1308. Dobó J, et al. (2016) "MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked." Sci Rep 6:31877; PMID: 27535802; doi: 10.1038/srep31877; GPMDB: 6.
  1309. Zhang P, et al. (2016) "The proteome of normal human retrobulbar optic nerve and sclera." Proteomics 16(19):2592–2596; PMID: 27538499; doi: 10.1002/pmic.201600229; GPMDB: 65.
  1310. Walley JW, et al. (2016) "Integration of omic networks in a developmental atlas of maize." Science 353(6301):814–8; PMID: 27540173; doi: 10.1126/science.aag1125; GPMDB: 10350.
  1311. Xie Y, et al. (2016) "Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells." Sci Rep 6:31811; PMID: 27554326; doi: 10.1038/srep31811; GPMDB: 6.
  1312. He PH, et al. (2016) "The cellular proteome is affected by a gelsolin (BbGEL1) during morphological transitions in aerobic surface versus liquid growth in the entomopathogenic fungus Beauveria bassiana." Environ Microbiol 18(11):4153–4169; PMID: 27554994; doi: 10.1111/1462-2920.13500; GPMDB: 34.
  1313. Viktorovskaya OV, et al. (2016) "Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements." PLoS Negl Trop Dis 10(8):e0004921; PMID: 27556644; doi: 10.1371/journal.pntd.0004921; GPMDB: 7.
  1314. Cassidy L, et al. (2016) "Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei." J Proteome Res 15(10):3773–3783; PMID: 27557128; doi: 10.1021/acs.jproteome.6b00569; GPMDB: 12.
  1315. Häupl B, et al. (2016) "Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry." J Proteome Res 15(10):3686–3699; PMID: 27559607; doi: 10.1021/acs.jproteome.6b00513; GPMDB: 81.
  1316. Jiang Y, et al. (2016) "The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins." Autophagy 12(11):2197–2212; PMID: 27560450; doi: 10.1080/15548627.2016.1222991; GPMDB: 2.
  1317. Hesse AM, et al. (2016) "hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data." J Proteome Res 15(10):3896–3903; PMID: 27560970; doi: 10.1021/acs.jproteome.5b00853; GPMDB: 142.
  1318. Ross SH, et al. (2016) "Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells." Immunity 45(3):685–700; PMID: 27566939; doi: 10.1016/j.immuni.2016.07.022; GPMDB: 208.
  1319. Moulos P, et al. (2016) "Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands." Sci Data 3:160073; PMID: 27576083; doi: 10.1038/sdata.2016.73; GPMDB: 6.
  1320. Larsen SC, et al. (2016) "Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells." Sci Signal 9(443):rs9; PMID: 27577262; doi: 10.1126/scisignal.aaf7329; GPMDB: 10.
  1321. Delaveau T, et al. (2016) "Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae." Nucleic Acids Res 44(18):8826–8841; PMID: 27580715; doi: 10.1093/nar/gkw732; GPMDB: 19.
  1322. Lee H, et al. (2016) "Comprehensive Proteome Profiling of Platelet Identified a Protein Profile Predictive of Responses to An Antiplatelet Agent Sarpogrelate." Mol Cell Proteomics 15(11):3461–3472; PMID: 27601597; doi: 10.1074/mcp.M116.059154; GPMDB: 96.
  1323. Treitz C, et al. (2016) "Differential quantitative proteome analysis of Escherichia coli grown on acetate versus glucose." Proteomics 16(21):2742–2746; PMID: 27604403; doi: 10.1002/pmic.201600303; GPMDB: 42.
  1324. Mauri M, et al. (2017) "Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution." Nucleic Acids Res 45(2):938–950; PMID: 27604873; doi: 10.1093/nar/gkw792; GPMDB: 35.
  1325. Lee J, et al. (2016) "Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis." Clin Chim Acta 462:118–126; PMID: 27609124; doi: 10.1016/j.cca.2016.09.001; GPMDB: 24.
  1326. Mulvaney KM, et al. (2016) "Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate." J Biol Chem 291(45):23719–23733; PMID: 27621311; doi: 10.1074/jbc.M116.729418; GPMDB: 22.
  1327. Subramanian S, et al. (2016) "Proteomic Studies on the Effects of Lipo-Chitooligosaccharide and Thuricin 17 under Unstressed and Salt Stressed Conditions in Arabidopsis thaliana." Front Plant Sci 7:1314; PMID: 27625672; doi: 10.3389/fpls.2016.01314; GPMDB: 36.
  1328. Stroud DA, et al. (2016) "Accessory subunits are integral for assembly and function of human mitochondrial complex I." Nature 538(7623):123–126; PMID: 27626371; doi: 10.1038/nature19754; GPMDB: 10.
  1329. Worah K, et al. (2016) "Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function." Cell Rep 16(11):2953–2966; PMID: 27626665; doi: 10.1016/j.celrep.2016.08.023; GPMDB: 719.
  1330. Bennike TB, et al. (2017) "Proteome Analysis of Rheumatoid Arthritis Gut Mucosa." J Proteome Res 16(1):346–354; PMID: 27627584; doi: 10.1021/acs.jproteome.6b00598; GPMDB: 33.
  1331. Altmann C, et al. (2016) "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy." Neurobiol Dis 96:294–311; PMID: 27629805; doi: 10.1016/j.nbd.2016.09.010; GPMDB: 12.
  1332. Musunuri S, et al. (2016) "Increased Levels of Extracellular Microvesicle Markers and Decreased Levels of Endocytic/Exocytic Proteins in the Alzheimer's Disease Brain." J Alzheimers Dis 54(4):1671–1686; PMID: 27636840; doi: 10.3233/JAD-160271; GPMDB: 107.
  1333. Eyckerman S, et al. (2016) "Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry." J Proteome Res 15(10):3929–3937; PMID: 27640904; doi: 10.1021/acs.jproteome.6b00517; GPMDB: 95.
  1334. Jean Beltran PM, et al. (2016) "A Portrait of the Human Organelle Proteome In Space and Time during Cytomegalovirus Infection." Cell Syst 3(4):361–373.e6; PMID: 27641956; doi: 10.1016/j.cels.2016.08.012; GPMDB: 45.
  1335. Athanason MG, et al. (2016) "Hepatic SILAC proteomic data from PANDER transgenic model." Data Brief 9:159–62; PMID: 27642623; doi: 10.1016/j.dib.2016.08.017; GPMDB: 18.
  1336. Bian Y, et al. (2016) "Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder." Nat Chem Biol 12(11):959–966; PMID: 27642862; doi: 10.1038/nchembio.2178; GPMDB: 215.
  1337. Vu LD, et al. (2016) "Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves." J Proteome Res 15(12):4304–4317; PMID: 27643528; doi: 10.1021/acs.jproteome.6b00348; GPMDB: 28.
  1338. Kubicek-Sutherland JZ, et al. (2017) "Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides." J Antimicrob Chemother 72(1):115–127; PMID: 27650186; doi: 10.1093/jac/dkw381; GPMDB: 42.
  1339. Goldman AR, et al. (2016) "The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level." Mol Cell Proteomics 15(11):3348–3360; PMID: 27654507; doi: 10.1074/mcp.M116.062539; GPMDB: 12.
  1340. Radzikowski JL, et al. (2016) "Bacterial persistence is an active σS stress response to metabolic flux limitation." Mol Syst Biol 12(9):882; PMID: 27655400; doi: 10.15252/msb.20166998; GPMDB: 30.
  1341. Rose CM, et al. (2016) "Highly Multiplexed Quantitative Mass Spectrometry Analysis of Ubiquitylomes." Cell Syst 3(4):395–403.e4; PMID: 27667366; doi: 10.1016/j.cels.2016.08.009; GPMDB: 26.
  1342. Abad MA, et al. (2016) "Ska3 Ensures Timely Mitotic Progression by Interacting Directly With Microtubules and Ska1 Microtubule Binding Domain." Sci Rep 6:34042; PMID: 27667719; doi: 10.1038/srep34042; GPMDB: 10.
  1343. Dörfel MJ, et al. (2017) "Proteomic and genomic characterization of a yeast model for Ogden syndrome." Yeast 34(1):19–37; PMID: 27668839; doi: 10.1002/yea.3211; GPMDB: 1.
  1344. Lee A, et al. (2016) "Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress." J Proteome Res 15(12):4318–4336; PMID: 27669760; doi: 10.1021/acs.jproteome.6b00369; GPMDB: 14.
  1345. Smirnov A, et al. (2016) "Grad-seq guides the discovery of ProQ as a major small RNA-binding protein." Proc Natl Acad Sci U S A 113(41):11591–11596; PMID: 27671629; doi: 10.1073/pnas.1609981113; GPMDB: 200.
  1346. Lyon SM, et al. (2016) "A method for whole protein isolation from human cranial bone." Anal Biochem 515:33–39; PMID: 27677936; doi: 10.1016/j.ab.2016.09.021; GPMDB: 10.
  1347. Larkin SE, et al. (2016) "Detection of candidate biomarkers of prostate cancer progression in serum: a depletion-free 3D LC/MS quantitative proteomics pilot study." Br J Cancer 115(9):1078–1086; PMID: 27685442; doi: 10.1038/bjc.2016.291; GPMDB: 8.
  1348. Martello R, et al. (2016) "Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue." Nat Commun 7:12917; PMID: 27686526; doi: 10.1038/ncomms12917; GPMDB: 15.
  1349. Mathieu AA, et al. (2016) "Subcellular proteomics analysis of different stages of colorectal cancer cell lines." Proteomics 16(23):3009–3018; PMID: 27689624; doi: 10.1002/pmic.201600314; GPMDB: 52.
  1350. Greenwood EJ, et al. (2016) "Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants." Elife; PMID: 27690223; doi: 10.7554/eLife.18296; GPMDB: 10.
  1351. Gautier V, et al. (2016) "Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells." Sci Rep 6:34255; PMID: 27694941; doi: 10.1038/srep34255; GPMDB: 252.
  1352. Kwon OK, et al. (2016) "Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos." Electrophoresis 37(23-24):3137–3145; PMID: 27696471; doi: 10.1002/elps.201600210; GPMDB: 2.
  1353. Witzke KE, et al. (2017) "Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins." J Proteome Res 16(1):137–146; PMID: 27696881; doi: 10.1021/acs.jproteome.6b00575; GPMDB: 82.
  1354. Baas R, et al. (2016) "Quantitative Proteomics of the SMAD (Suppressor of Mothers against Decapentaplegic) Transcription Factor Family Identifies Importin 5 as a Bone Morphogenic Protein Receptor SMAD-specific Importin." J Biol Chem 291(46):24121–24132; PMID: 27703004; doi: 10.1074/jbc.M116.748582; GPMDB: 108.
  1355. Hughes CS, et al. (2016) "Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational research." Sci Rep 6:34949; PMID: 27713570; doi: 10.1038/srep34949; GPMDB: 172.
  1356. McShane E, et al. (2016) "Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation." Cell 167(3):803–815.e21; PMID: 27720452; doi: 10.1016/j.cell.2016.09.015; GPMDB: 153.
  1357. Sivadasan R, et al. (2016) "C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons." Nat Neurosci 19(12):1610–1618; PMID: 27723745; doi: 10.1038/nn.4407; GPMDB: 6.
  1358. Wang Q, et al. (2017) "Immunogenic HLA-DR-Presented Self-Peptides Identified Directly from Clinical Samples of Synovial Tissue, Synovial Fluid, or Peripheral Blood in Patients with Rheumatoid Arthritis or Lyme Arthritis." J Proteome Res 16(1):122–136; PMID: 27726376; doi: 10.1021/acs.jproteome.6b00386; GPMDB: 61.
  1359. Al-Daghri NM, et al. (2016) "Sex-specific vitamin D effects on blood coagulation among overweight adults." Eur J Clin Invest 46(12):1031–1040; PMID: 27727459; doi: 10.1111/eci.12688; GPMDB: 50.
  1360. Kroksveen AC, et al. (2017) "In-Depth Cerebrospinal Fluid Quantitative Proteome and Deglycoproteome Analysis: Presenting a Comprehensive Picture of Pathways and Processes Affected by Multiple Sclerosis." J Proteome Res 16(1):179–194; PMID: 27728768; doi: 10.1021/acs.jproteome.6b00659; GPMDB: 26.
  1361. Streeter I, et al. (2017) "The human-induced pluripotent stem cell initiative-data resources for cellular genetics." Nucleic Acids Res 45(D1):D691–D697; PMID: 27733501; doi: 10.1093/nar/gkw928; GPMDB: 20.
  1362. Kuzmanov U, et al. (2016) "Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy." Proc Natl Acad Sci U S A 113(44):12592–12597; PMID: 27742792; doi: 10.1073/pnas.1606444113; GPMDB: 126.
  1363. Sebé-Pedrós A, et al. (2016) "High-Throughput Proteomics Reveals the Unicellular Roots of Animal Phosphosignaling and Cell Differentiation." Dev Cell 39(2):186–197; PMID: 27746046; doi: 10.1016/j.devcel.2016.09.019; GPMDB: 30.
  1364. Varano M, et al. (2016) "Temperature-dependent regulation of the Ochrobactrum anthropi proteome." Proteomics 16(23):3019–3024; PMID: 27753207; doi: 10.1002/pmic.201600048; GPMDB: 12.
  1365. Liljedahl L, et al. (2016) "N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models." Clin Proteomics 13:22; PMID: 27757071; doi: 10.1186/s12014-016-9123-z; GPMDB: 48.
  1366. Zammit CM, et al. (2016) "Proteomic responses to gold(iii)-toxicity in the bacterium Cupriavidus metallidurans CH34." Metallomics 8(11):1204–1216; PMID: 27757465; doi: 10.1039/c6mt00142d; GPMDB: 56.
  1367. Sialana FJ, et al. (2016) "Mass spectrometric analysis of synaptosomal membrane preparations for the determination of brain receptors, transporters and channels." Proteomics 16(22):2911–2920; PMID: 27759936; doi: 10.1002/pmic.201600234; GPMDB: 86.
  1368. Duteil D, et al. (2016) "Lsd1 Ablation Triggers Metabolic Reprogramming of Brown Adipose Tissue." Cell Rep 17(4):1008–1021; PMID: 27760309; doi: 10.1016/j.celrep.2016.09.053; GPMDB: 142.
  1369. Sarvaiya HA, et al. (2016) "Insulin stimulated MCF7 breast cancer cells: Proteome dataset." Data Brief 9:579–584; PMID: 27761513; doi: 10.1016/j.dib.2016.09.025; GPMDB: 1.
  1370. Richter E, et al. (2016) "Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus." J Proteome Res 15(12):4369–4386; PMID: 27762562; doi: 10.1021/acs.jproteome.6b00421; GPMDB: 75.
  1371. Assoni A, et al. (2017) "Different Donors Mesenchymal Stromal Cells Secretomes Reveal Heterogeneous Profile of Relevance for Therapeutic Use." Stem Cells Dev 26(3):206–214; PMID: 27762666; doi: 10.1089/scd.2016.0218; GPMDB: 48.
  1372. Schanzenbächer CT, et al. (2016) "Nascent Proteome Remodeling following Homeostatic Scaling at Hippocampal Synapses." Neuron 92(2):358–371; PMID: 27764671; doi: 10.1016/j.neuron.2016.09.058; GPMDB: 80.
  1373. Yu P, et al. (2017) "Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics." Anal Bioanal Chem 409(4):1049–1057; PMID: 27766361; doi: 10.1007/s00216-016-0023-x; GPMDB: 147.
  1374. Isogai T, et al. (2016) "Quantitative Proteomics Illuminates a Functional Interaction between mDia2 and the Proteasome." J Proteome Res 15(12):4624–4637; PMID: 27769112; doi: 10.1021/acs.jproteome.6b00718; GPMDB: 44.
  1375. Peng J, et al. (2017) "Pseudomonas aeruginosa develops Ciprofloxacin resistance from low to high level with distinctive proteome changes." J Proteomics 152:75–87; PMID: 27771372; doi: 10.1016/j.jprot.2016.10.005; GPMDB: 25.
  1376. Rafiee MR, et al. (2016) "Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins." Mol Cell 64(3):624–635; PMID: 27773674; doi: 10.1016/j.molcel.2016.09.019; GPMDB: 13.
  1377. Duncan O, et al. (2017) "Resource: Mapping the Triticum aestivum proteome." Plant J 89(3):601–616; PMID: 27775198; doi: 10.1111/tpj.13402; GPMDB: 28.
  1378. Maleki S, et al. (2016) "Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves." Sci Rep 6:35712; PMID: 27779199; doi: 10.1038/srep35712; GPMDB: 6.
  1379. Ward JA, et al. (2016) "Quantitative Chemical Proteomic Profiling of Ubiquitin Specific Proteases in Intact Cancer Cells." ACS Chem Biol 11(12):3268–3272; PMID: 27779380; doi: 10.1021/acschembio.6b00766; GPMDB: 18.
  1380. Cunsolo V, et al. (2017) "Polyphemus, Odysseus and the ovine milk proteome." J Proteomics 152:58–74; PMID: 27784645; doi: 10.1016/j.jprot.2016.10.007; GPMDB: 40.
  1381. Weisser H, et al. (2016) "Flexible Data Analysis Pipeline for High-Confidence Proteogenomics." J Proteome Res 15(12):4686–4695; PMID: 27786492; doi: 10.1021/acs.jproteome.6b00765; GPMDB: 35.
  1382. Shishkova E, et al. (2016) "Now, More Than Ever, Proteomics Needs Better Chromatography." Cell Syst 3(4):321–324; PMID: 27788355; doi: 10.1016/j.cels.2016.10.007; GPMDB: 35.
  1383. Zhao M, et al. (2016) "iTRAQ-Based Membrane Proteomics Reveals Plasma Membrane Proteins Change During HepaRG Cell Differentiation." J Proteome Res 15(12):4245–4257; PMID: 27790907; doi: 10.1021/acs.jproteome.6b00305; GPMDB: 1.
  1384. Ren Y, et al. (2016) "Irradiation of Epithelial Carcinoma Cells Upregulates Calcium-Binding Proteins That Promote Survival under Hypoxic Conditions." J Proteome Res 15(12):4258–4264; PMID: 27790916; doi: 10.1021/acs.jproteome.6b00340; GPMDB: 3.
  1385. Lundquist PK, et al. (2017) "Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts." Mol Plant 10(1):197–211; PMID: 27794502; doi: 10.1016/j.molp.2016.10.011; GPMDB: 42.
  1386. Fournier M, et al. (2016) "KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification." Nat Commun 7:13227; PMID: 27796307; doi: 10.1038/ncomms13227; GPMDB: 114.
  1387. Kentache T, et al. (2017) "Global Dynamic Proteome Study of a Pellicle-forming Acinetobacter baumannii Strain." Mol Cell Proteomics 16(1):100–112; PMID: 27799293; doi: 10.1074/mcp.M116.061044; GPMDB: 35.
  1388. Danda R, et al. (2016) "Proteomic profiling of retinoblastoma by high resolution mass spectrometry." Clin Proteomics 13:29; PMID: 27799869; doi: 10.1186/s12014-016-9128-7; GPMDB: 1.
  1389. Fahrmann JF, et al. (2016) "Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival." Clin Proteomics 13:31; PMID: 27799870; doi: 10.1186/s12014-016-9132-y; GPMDB: 234.
  1390. Michalak M, et al. (2016) "Detection of Proteome Changes in Human Colon Cancer Induced by Cell Surface Binding of Growth-Inhibitory Human Galectin-4 Using Quantitative SILAC-Based Proteomics." J Proteome Res 15(12):4412–4422; PMID: 27801591; doi: 10.1021/acs.jproteome.6b00473; GPMDB: 6.
  1391. Karunakaran KP, et al. (2017) "Identification of MHC-Bound Peptides from Dendritic Cells Infected with Salmonella enterica Strain SL1344: Implications for a Nontyphoidal Salmonella Vaccine." J Proteome Res 16(1):298–306; PMID: 27802388; doi: 10.1021/acs.jproteome.6b00926; GPMDB: 3.
  1392. Borziak K, et al. (2016) "The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication." Sci Rep 6:35864; PMID: 27804984; doi: 10.1038/srep35864; GPMDB: 144.
  1393. Roberts JH, et al. (2016) "Discovery of Age-Related Protein Folding Stability Differences in the Mouse Brain Proteome." J Proteome Res 15(12):4731–4741; PMID: 27806573; doi: 10.1021/acs.jproteome.6b00927; GPMDB: 48.
  1394. Mardakheh FK, et al. (2016) "RHO binding to FAM65A regulates Golgi reorientation during cell migration." J Cell Sci 129(24):4466–4479; PMID: 27807006; doi: 10.1242/jcs.198614; GPMDB: 18.
  1395. Leach MD, et al. (2017) "Candida albicans Is Resistant to Polyglutamine Aggregation and Toxicity." G3 (Bethesda) 7(1):95–108; PMID: 27807047; doi: 10.1534/g3.116.035675; GPMDB: 6.
  1396. Chen Y, et al. (2017) "Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics." Int J Cancer 140(4):900–913; PMID: 27813080; doi: 10.1002/ijc.30496; GPMDB: 1.
  1397. Wang J, et al. (2017) "Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver." Cell Metab 25(1):102–117; PMID: 27818260; doi: 10.1016/j.cmet.2016.10.003; GPMDB: 28.
  1398. Kogel U, et al. (2016) "Evaluation of the Tobacco Heating System 2.2. Part 7: Systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke." Regul Toxicol Pharmacol 81 Suppl 2:S123–S138; PMID: 27818347; doi: 10.1016/j.yrtph.2016.11.001; GPMDB: 36.
  1399. Hansen RK, et al. (2016) "SCAI promotes DNA double-strand break repair in distinct chromosomal contexts." Nat Cell Biol 18(12):1357–1366; PMID: 27820601; doi: 10.1038/ncb3436; GPMDB: 12.
  1400. Schmitt K, et al. (2017) "Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling." Mol Cell Biol 37(3):; PMID: 27821475; doi: 10.1128/MCB.00279-16; GPMDB: 274.
  1401. Mardakheh FK, et al. (2016) "Proteomics profiling of interactome dynamics by colocalisation analysis (COLA)." Mol Biosyst 13(1):92–105; PMID: 27824369; doi: 10.1039/c6mb00701e; GPMDB: 16.
  1402. Warpman Berglund U, et al. (2016) "Validation and development of MTH1 inhibitors for treatment of cancer." Ann Oncol 27(12):2275–2283; PMID: 27827301; doi: 10.1093/annonc/mdw429; GPMDB: 4.
  1403. Liu Y, et al. (2016) "Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans." Sci Rep 6:36832; PMID: 27833098; doi: 10.1038/srep36832; GPMDB: 20.
  1404. Doll S, et al. (2017) "Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma." Mol Cell Proteomics 16(1):39–56; PMID: 27834733; doi: 10.1074/mcp.M116.063883; GPMDB: 14.
  1405. Valdés A, et al. (2017) "Nano-liquid Chromatography-orbitrap MS-based Quantitative Proteomics Reveals Differences Between the Mechanisms of Action of Carnosic Acid and Carnosol in Colon Cancer Cells." Mol Cell Proteomics 16(1):8–22; PMID: 27834734; doi: 10.1074/mcp.M116.061481; GPMDB: 54.
  1406. Plum S, et al. (2016) "Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection." Sci Rep 6:37139; PMID: 27841354; doi: 10.1038/srep37139; GPMDB: 9.
  1407. Eisenberg T, et al. (2016) "Cardioprotection and lifespan extension by the natural polyamine spermidine." Nat Med 22(12):1428–1438; PMID: 27841876; doi: 10.1038/nm.4222; GPMDB: 9.
  1408. Villoria MT, et al. (2017) "Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair." EMBO J 36(1):79–101; PMID: 27852625; doi: 10.15252/embj.201593540; GPMDB: 12.
  1409. Schmitges FW, et al. (2016) "Multiparameter functional diversity of human C2H2 zinc finger proteins." Genome Res 26(12):1742–1752; PMID: 27852650; doi: 10.1101/gr.209643.116; GPMDB: 224.
  1410. Beringer M, et al. (2016) "EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells." Mol Cell 64(4):645–658; PMID: 27863225; doi: 10.1016/j.molcel.2016.10.018; GPMDB: 12.
  1411. Bassani-Sternberg M, et al. (2016) "Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry." Nat Commun 7:13404; PMID: 27869121; doi: 10.1038/ncomms13404; GPMDB: 138.
  1412. Wallace PW, et al. (2017) "PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes." Appl Microbiol Biotechnol 101(6):2291–2303; PMID: 27872998; doi: 10.1007/s00253-016-7992-8; GPMDB: 28.
  1413. Muqaku B, et al. (2017) "Multi-omics Analysis of Serum Samples Demonstrates Reprogramming of Organ Functions Via Systemic Calcium Mobilization and Platelet Activation in Metastatic Melanoma." Mol Cell Proteomics 16(1):86–99; PMID: 27879288; doi: 10.1074/mcp.M116.063313; GPMDB: 18.
  1414. St-Denis N, et al. (2016) "Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators." Cell Rep 17(9):2488–2501; PMID: 27880917; doi: 10.1016/j.celrep.2016.10.078; GPMDB: 315.
  1415. Sheppard C, et al. (2016) "Repression of RNA polymerase by the archaeo-viral regulator ORF145/RIP." Nat Commun 7:13595; PMID: 27882920; doi: 10.1038/ncomms13595; GPMDB: 9.
  1416. Mossina A, et al. (2017) "Cigarette smoke alters the secretome of lung epithelial cells." Proteomics 17(1-2):; PMID: 27891773; doi: 10.1002/pmic.201600243; GPMDB: 24.
  1417. Hurwitz SN, et al. (2016) "Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers." Oncotarget 7(52):86999–87015; PMID: 27894104; doi: 10.18632/oncotarget.13569; GPMDB: 898.
  1418. Gonneaud A, et al. (2016) "A SILAC-Based Method for Quantitative Proteomic Analysis of Intestinal Organoids." Sci Rep 6:38195; PMID: 27901089; doi: 10.1038/srep38195; GPMDB: 38.
  1419. Song L, et al. (2017) "Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide." J Proteomics 154:49–58; PMID: 27903465; doi: 10.1016/j.jprot.2016.11.018; GPMDB: 6.
  1420. Sundberg M, et al. (2016) "Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry." PLoS One 11(12):e0167138; PMID: 27907059; doi: 10.1371/journal.pone.0167138; GPMDB: 3.
  1421. Tatham MH, et al. (2017) "A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome." Mol Cell Proteomics 16(2):310–326; PMID: 27913581; doi: 10.1074/mcp.O116.065219; GPMDB: 40.
  1422. Beaumont V, et al. (2016) "Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models." Neuron 92(6):1220–1237; PMID: 27916455; doi: 10.1016/j.neuron.2016.10.064; GPMDB: 377.
  1423. Tiberti N, et al. (2016) "Exploring experimental cerebral malaria pathogenesis through the characterisation of host-derived plasma microparticle protein content." Sci Rep 6:37871; PMID: 27917875; doi: 10.1038/srep37871; GPMDB: 4.
  1424. Tedeschi G, et al. (2017) "Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality." J Assist Reprod Genet 34(2):225–238; PMID: 27924460; doi: 10.1007/s10815-016-0842-x; GPMDB: 10.
  1425. Sharma R, et al. (2016) "Activity-Based Protein Profiling Shows Heterogeneous Signaling Adaptations to BRAF Inhibition." J Proteome Res 15(12):4476–4489; PMID: 27934295; doi: 10.1021/acs.jproteome.6b00613; GPMDB: 18.
  1426. Zhao H, et al. (2017) "Posttranscriptional Regulation in Adenovirus Infected Cells." J Proteome Res 16(2):872–888; PMID: 27959563; doi: 10.1021/acs.jproteome.6b00834; GPMDB: 6.
  1427. Seidel G, et al. (2017) "Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes." J Proteome Res 16(2):504–515; PMID: 27966978; doi: 10.1021/acs.jproteome.6b00647; GPMDB: 27.
  1428. Dauden MI, et al. (2017) "Architecture of the yeast Elongator complex." EMBO Rep 18(2):264–279; PMID: 27974378; doi: 10.15252/embr.201643353; GPMDB: 44.
  1429. Herfs M, et al. (2017) "Proteomic signatures reveal a dualistic and clinically relevant classification of anal canal carcinoma." J Pathol 241(4):522–533; PMID: 27976366; doi: 10.1002/path.4858; GPMDB: 60.
  1430. Zhang S, et al. (2017) "Phosphatase POPX2 Exhibits Dual Regulatory Functions in Cancer Metastasis." J Proteome Res 16(2):698–711; PMID: 27976581; doi: 10.1021/acs.jproteome.6b00748; GPMDB: 60.
  1431. Schunter AJ, et al. (2017) "Phosphoproteomics of colon cancer metastasis: comparative mass spectrometric analysis of the isogenic primary and metastatic cell lines SW480 and SW620." Anal Bioanal Chem 409(7):1749–1763; PMID: 27987026; doi: 10.1007/s00216-016-0125-5; GPMDB: 35.
  1432. Choi M, et al. (2017) "ABRF Proteome Informatics Research Group (iPRG) 2015 Study: Detection of Differentially Abundant Proteins in Label-Free Quantitative LC-MS/MS Experiments." J Proteome Res 16(2):945–957; PMID: 27990823; doi: 10.1021/acs.jproteome.6b00881; GPMDB: 12.
  1433. Bertile F, et al. (2016) "The Safety Limits Of An Extended Fast: Lessons from a Non-Model Organism." Sci Rep 6:39008; PMID: 27991520; doi: 10.1038/srep39008; GPMDB: 194.
  1434. Evans IM, et al. (2017) "Vascular Endothelial Growth Factor (VEGF) Promotes Assembly of the p130Cas Interactome to Drive Endothelial Chemotactic Signaling and Angiogenesis." Mol Cell Proteomics 16(2):168–180; PMID: 28007913; doi: 10.1074/mcp.M116.064428; GPMDB: 89.
  1435. Geyer PE, et al. (2016) "Proteomics reveals the effects of sustained weight loss on the human plasma proteome." Mol Syst Biol 12(12):901; PMID: 28007936; doi: 10.15252/msb.20167357; GPMDB: 1145.
  1436. Reimann L, et al. (2017) "Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics." Mol Cell Proteomics 16(3):346–367; PMID: 28028127; doi: 10.1074/mcp.M116.065425; GPMDB: 278.
  1437. Rougemont B, et al. (2017) "Scout-MRM: Multiplexed Targeted Mass Spectrometry-Based Assay without Retention Time Scheduling Exemplified by Dickeya dadantii Proteomic Analysis during Plant Infection." Anal Chem 89(3):1421–1426; PMID: 28029036; doi: 10.1021/acs.analchem.6b03201; GPMDB: 8.
  1438. Hickox AE, et al. (2017) "Global Analysis of Protein Expression of Inner Ear Hair Cells." J Neurosci 37(5):1320–1339; PMID: 28039372; doi: 10.1523/JNEUROSCI.2267-16.2016; GPMDB: 71.
  1439. Hansson KT, et al. (2017) "Expanding the cerebrospinal fluid endopeptidome." Proteomics 17(5):; PMID: 28044435; doi: 10.1002/pmic.201600384; GPMDB: 36.
  1440. Chen J, et al. (2017) "Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics." Cell Rep 18(1):237–247; PMID: 28052253; doi: 10.1016/j.celrep.2016.12.013; GPMDB: 128.
  1441. Cristobal A, et al. (2017) "Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer." Cell Rep 18(1):263–274; PMID: 28052255; doi: 10.1016/j.celrep.2016.12.016; GPMDB: 175.
  1442. Degroote RL, et al. (2017) "Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis." J Proteomics 154:102–108; PMID: 28057602; doi: 10.1016/j.jprot.2016.12.015; GPMDB: 6.
  1443. Braakman RB, et al. (2017) "Proteomic characterization of microdissected breast tissue environment provides a protein-level overview of malignant transformation." Proteomics 17(5):; PMID: 28058811; doi: 10.1002/pmic.201600213; GPMDB: 70.
  1444. Beck F, et al. (2017) "Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition." Blood 129(2):e1–e12; PMID: 28060719; doi: 10.1182/blood-2016-05-714048; GPMDB: 12.
  1445. Clotet S, et al. (2017) "Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease." Mol Cell Proteomics 16(3):368–385; PMID: 28062795; doi: 10.1074/mcp.M116.061903; GPMDB: 11.
  1446. Johnston HE, et al. (2017) "Integrated Cellular and Plasma Proteomics of Contrasting B-cell Cancers Reveals Common, Unique and Systemic Signatures." Mol Cell Proteomics 16(3):386–406; PMID: 28062796; doi: 10.1074/mcp.M116.063511; GPMDB: 166.
  1447. Diaz-Vera J, et al. (2017) "A proteomic approach to identify endosomal cargoes controlling cancer invasiveness." J Cell Sci 130(4):697–711; PMID: 28062852; doi: 10.1242/jcs.190835; GPMDB: 106.
  1448. Pietzner M, et al. (2017) "Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model." BMC Med 15(1):6; PMID: 28065164; doi: 10.1186/s12916-016-0770-8; GPMDB: 80.
  1449. Kreutz D, et al. (2017) "Response Profiling Using Shotgun Proteomics Enables Global Metallodrug Mechanisms of Action To Be Established." Chemistry 23(8):1881–1890; PMID: 28071820; doi: 10.1002/chem.201604516; GPMDB: 6.
  1450. Xing F, et al. (2017) "The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes." Cell Rep 18(2):468–481; PMID: 28076790; doi: 10.1016/j.celrep.2016.12.037; GPMDB: 60.
  1451. Loroch S, et al. (2017) "Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B." Thromb Haemost 117(3):556–569; PMID: 28078347; doi: 10.1160/TH16-07-0515; GPMDB: 20.
  1452. Scott NE, et al. (2017) "Interactome disassembly during apoptosis occurs independent of caspase cleavage." Mol Syst Biol 13(1):906; PMID: 28082348; doi: 10.15252/msb.20167067; GPMDB: 521.
  1453. Emmott E, et al. (2017) "Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors." Mol Cell Proteomics 16(4 suppl 1):S215–S229; PMID: 28087593; doi: 10.1074/mcp.M116.062448; GPMDB: 3.
  1454. Niklasson M, et al. (2017) "Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses." Cancer Res 77(7):1741–1752; PMID: 28087597; doi: 10.1158/0008-5472.CAN-16-2274; GPMDB: 6.
  1455. Gao Y, et al. (2017) "Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses." Oncotarget 8(5):7420–7440; PMID: 28088779; doi: 10.18632/oncotarget.14558; GPMDB: 2.
  1456. Riesner K, et al. (2017) "Initiation of acute graft-versus-host disease by angiogenesis." Blood 129(14):2021–2032; PMID: 28096092; doi: 10.1182/blood-2016-08-736314; GPMDB: 1.
  1457. Princz LN, et al. (2017) "Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis." EMBO J 36(5):664–678; PMID: 28096179; doi: 10.15252/embj.201694831; GPMDB: 130.
  1458. Chymkowitch P, et al. (2017) "TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity." Proc Natl Acad Sci U S A 114(5):1039–1044; PMID: 28096404; doi: 10.1073/pnas.1615093114; GPMDB: 21.
  1459. Reckel S, et al. (2017) "Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics." Leukemia 31(7):1502–1512; PMID: 28111465; doi: 10.1038/leu.2017.36; GPMDB: 10.
  1460. Tsiatsiani L, et al. (2017) "Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X)n and (X)nK/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics." J Proteome Res 16(2):852–861; PMID: 28111955; doi: 10.1021/acs.jproteome.6b00825; GPMDB: 28.
  1461. Hendriks IA, et al. (2017) "Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation." Nat Struct Mol Biol 24(3):325–336; PMID: 28112733; doi: 10.1038/nsmb.3366; GPMDB: 311.
  1462. Badalato N, et al. (2017) "Whole Proteome Analyses on Ruminiclostridium cellulolyticum Show a Modulation of the Cellulolysis Machinery in Response to Cellulosic Materials with Subtle Differences in Chemical and Structural Properties." PLoS One 12(1):e0170524; PMID: 28114419; doi: 10.1371/journal.pone.0170524; GPMDB: 24.
  1463. Glisovic-Aplenc T, et al. (2017) "Improved surfaceome coverage with a label-free nonaffinity-purified workflow." Proteomics 17(7):; PMID: 28116781; doi: 10.1002/pmic.201600344; GPMDB: 41.
  1464. Baker MS, et al. (2017) "Accelerating the search for the missing proteins in the human proteome." Nat Commun 8:14271; PMID: 28117396; doi: 10.1038/ncomms14271; GPMDB: 12.
  1465. Kulak NA, et al. (2017) "Loss-less Nano-fractionator for High Sensitivity, High Coverage Proteomics." Mol Cell Proteomics 16(4):694–705; PMID: 28126900; doi: 10.1074/mcp.O116.065136; GPMDB: 60.
  1466. Yu Y, et al. (2017) "Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections." PLoS Pathog 13(1):e1006151; PMID: 28129394; doi: 10.1371/journal.ppat.1006151; GPMDB: 72.
  1467. Tuveng TR, et al. (2017) "Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200." Biochim Biophys Acta Proteins Proteom 1865(4):414–421; PMID: 28130068; doi: 10.1016/j.bbapap.2017.01.007; GPMDB: 54.
  1468. Lorenz C, et al. (2017) "Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders." Cell Stem Cell 20(5):659–674.e9; PMID: 28132834; doi: 10.1016/j.stem.2016.12.013; GPMDB: 14.
  1469. Godfrey M, et al. (2017) "PP2ACdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation." Mol Cell 65(3):393–402.e3; PMID: 28132839; doi: 10.1016/j.molcel.2016.12.018; GPMDB: 120.
  1470. Liu X, et al. (2017) "Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes." Nat Commun 8:14286; PMID: 28134249; doi: 10.1038/ncomms14286; GPMDB: 5.
  1471. Zolg DP, et al. (2017) "Building ProteomeTools based on a complete synthetic human proteome." Nat Methods 14(3):259–262; PMID: 28135259; doi: 10.1038/nmeth.4153; GPMDB: 1095.
  1472. Zhang F, et al. (2017) "SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells." Chem Res Toxicol 30(4):1006–1014; PMID: 28140569; doi: 10.1021/acs.chemrestox.6b00416; GPMDB: 66.
  1473. Abe Y, et al. (2017) "Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters." J Proteome Res 16(2):1077–1086; PMID: 28152594; doi: 10.1021/acs.jproteome.6b00576; GPMDB: 41.
  1474. Jung SY, et al. (2017) "An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways." Mol Cell Proteomics 16(4):581–593; PMID: 28153913; doi: 10.1074/mcp.M116.061440; GPMDB: 610.
  1475. Diering GH, et al. (2017) "Homer1a drives homeostatic scaling-down of excitatory synapses during sleep." Science 355(6324):511–515; PMID: 28154077; doi: 10.1126/science.aai8355; GPMDB: 25.
  1476. Nuzzo D, et al. (2017) "A Shotgun Proteomics Approach Reveals a New Toxic Role for Alzheimer's Disease Aβ Peptide: Spliceosome Impairment." J Proteome Res 16(4):1526–1541; PMID: 28157316; doi: 10.1021/acs.jproteome.6b00925; GPMDB: 8.
  1477. Park YJ, et al. (2017) "Uncovering stem cell differentiation factors for salivary gland regeneration by quantitative analysis of differential proteomes." PLoS One 12(2):e0169677; PMID: 28158262; doi: 10.1371/journal.pone.0169677; GPMDB: 2.
  1478. Davis S, et al. (2017) "Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis." J Proteome Res 16(3):1288–1299; PMID: 28164708; doi: 10.1021/acs.jproteome.6b00915; GPMDB: 7.
  1479. Petrovic V, et al. (2017) "On-column trypsinization allows for re-use of matrix in modified multiplexed inhibitor beads assay." Anal Biochem 523:10–16; PMID: 28167071; doi: 10.1016/j.ab.2017.01.027; GPMDB: 3.
  1480. Worthington J, et al. (2017) "Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells." Mol Cell Proteomics 16(4):608–621; PMID: 28174229; doi: 10.1074/mcp.M116.061267; GPMDB: 190.
  1481. Li X, et al. (2017) "Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-coupled Affinity Purification/Mass Spectrometry Analysis Revealed a Novel Role of Neurofibromin in mTOR Signaling." Mol Cell Proteomics 16(4):594–607; PMID: 28174230; doi: 10.1074/mcp.M116.064543; GPMDB: 44.
  1482. Kalkan T, et al. (2017) "Tracking the embryonic stem cell transition from ground state pluripotency." Development 144(7):1221–1234; PMID: 28174249; doi: 10.1242/dev.142711; GPMDB: 24.
  1483. Cantù C, et al. (2017) "A cytoplasmic role of Wnt/β-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation." Sci Signal 10(465):; PMID: 28174279; doi: 10.1126/scisignal.aah4598; GPMDB: 3.
  1484. Massafra V, et al. (2017) "Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation." PLoS One 12(2):e0171185; PMID: 28178326; doi: 10.1371/journal.pone.0171185; GPMDB: 9.
  1485. Kulej K, et al. (2017) "Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection." Mol Cell Proteomics 16(4 suppl 1):S92–S107; PMID: 28179408; doi: 10.1074/mcp.M116.065987; GPMDB: 63.
  1486. Schmölders J, et al. (2017) "Comparative Proteomics of Purified Pathogen Vacuoles Correlates Intracellular Replication of Legionella pneumophila with the Small GTPase Ras-related protein 1 (Rap1)." Mol Cell Proteomics 16(4):622–641; PMID: 28183814; doi: 10.1074/mcp.M116.063453; GPMDB: 118.
  1487. Greseth MD, et al. (2017) "Proteomic Screen for Cellular Targets of the Vaccinia Virus F10 Protein Kinase Reveals that Phosphorylation of mDia Regulates Stress Fiber Formation." Mol Cell Proteomics 16(4 suppl 1):S124–S143; PMID: 28183815; doi: 10.1074/mcp.M116.065003; GPMDB: 9.
  1488. Fielding CA, et al. (2017) "Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation." Elife; PMID: 28186488; doi: 10.7554/eLife.22206; GPMDB: 9.
  1489. Barnea E, et al. (2017) "The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion." Mol Cell Proteomics 16(4):642–662; PMID: 28188227; doi: 10.1074/mcp.M116.066241; GPMDB: 49.
  1490. Howie D, et al. (2017) "Foxp3 drives oxidative phosphorylation and protection from lipotoxicity." JCI Insight 2(3):e89160; PMID: 28194435; doi: 10.1172/jci.insight.89160; GPMDB: 7.
  1491. Liu NQ, et al. (2017) "The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression." Nat Commun 8:14418; PMID: 28195176; doi: 10.1038/ncomms14418; GPMDB: 250.
  1492. Stewart PA, et al. (2017) "Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms." Proteomics 17(6):; PMID: 28195392; doi: 10.1002/pmic.201600300; GPMDB: 36.
  1493. Lorey MB, et al. (2017) "Global Characterization of Protein Secretion from Human Macrophages Following Non-canonical Caspase-4/5 Inflammasome Activation." Mol Cell Proteomics 16(4 suppl 1):S187–S199; PMID: 28196878; doi: 10.1074/mcp.M116.064840; GPMDB: 60.
  1494. Suh MJ, et al. (2017) "Antibiotic-dependent perturbations of extended spectrum beta-lactamase producing Klebsiella pneumoniae proteome." Proteomics 17(9):; PMID: 28198105; doi: 10.1002/pmic.201700003; GPMDB: 24.
  1495. Potu H, et al. (2017) "Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma." Nat Commun 8:14449; PMID: 28198367; doi: 10.1038/ncomms14449; GPMDB: 6.
  1496. Tahir A, et al. (2017) "Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation." Anal Chem 89(3):1945–1954; PMID: 28208246; doi: 10.1021/acs.analchem.6b04433; GPMDB: 32.
  1497. Cutler JA, et al. (2017) "Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis." Leukemia 31(7):1513–1524; PMID: 28210003; doi: 10.1038/leu.2017.61; GPMDB: 20.
  1498. Hartwig T, et al. (2017) "The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2." Mol Cell 65(4):730–742.e5; PMID: 28212753; doi: 10.1016/j.molcel.2017.01.021; GPMDB: 6.
  1499. Al Shweiki MR, et al. (2017) "Assessment of Label-Free Quantification in Discovery Proteomics and Impact of Technological Factors and Natural Variability of Protein Abundance." J Proteome Res 16(4):1410–1424; PMID: 28217993; doi: 10.1021/acs.jproteome.6b00645; GPMDB: 54.
  1500. Swertfeger DK, et al. (2017) "Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma." Mol Cell Proteomics 16(4):680–693; PMID: 28223350; doi: 10.1074/mcp.M116.066290; GPMDB: 180.
  1501. Abelin JG, et al. (2017) "Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction." Immunity 46(2):315–326; PMID: 28228285; doi: 10.1016/j.immuni.2017.02.007; GPMDB: 87.
  1502. Groves JA, et al. (2017) "Fatty acid synthase inhibits the O-GlcNAcase during oxidative stress." J Biol Chem 292(16):6493–6511; PMID: 28232487; doi: 10.1074/jbc.M116.760785; GPMDB: 2.
  1503. Funnell T, et al. (2017) "CLK-dependent exon recognition and conjoined gene formation revealed with a novel small molecule inhibitor." Nat Commun 8(1):7; PMID: 28232751; doi: 10.1038/s41467-016-0008-7; GPMDB: 3.
  1504. Koppenol-Raab M, et al. (2017) "Proteome and Secretome Analysis Reveals Differential Post-transcriptional Regulation of Toll-like Receptor Responses." Mol Cell Proteomics 16(4 suppl 1):S172–S186; PMID: 28235783; doi: 10.1074/mcp.M116.064261; GPMDB: 629.
  1505. Arend KC, et al. (2017) "Kinome Profiling Identifies Druggable Targets for Novel Human Cytomegalovirus (HCMV) Antivirals." Mol Cell Proteomics 16(4 suppl 1):S263–S276; PMID: 28237943; doi: 10.1074/mcp.M116.065375; GPMDB: 14.
  1506. Jia X, et al. (2017) "Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line." Mol Cell Proteomics 16(4 suppl 1):S144–S160; PMID: 28242843; doi: 10.1074/mcp.M116.063503; GPMDB: 12.
  1507. Bayés À, et al. (2017) "Evolution of complexity in the zebrafish synapse proteome." Nat Commun 8:14613; PMID: 28252024; doi: 10.1038/ncomms14613; GPMDB: 17.
  1508. Liberton M, et al. (2017) "Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803." PLoS One 12(3):e0173251; PMID: 28253354; doi: 10.1371/journal.pone.0173251; GPMDB: 36.
  1509. Ibáñez MI, et al. (2017) "Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS)." PLoS One 12(3):e0172908; PMID: 28253357; doi: 10.1371/journal.pone.0172908; GPMDB: 8.
  1510. Weinert BT, et al. (2017) "Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E. coli Acetylome." Mol Cell Proteomics 16(5):759–769; PMID: 28254776; doi: 10.1074/mcp.M117.067587; GPMDB: 140.
  1511. Casanovas A, et al. (2017) "Large-Scale Filter-Aided Sample Preparation Method for the Analysis of the Ubiquitinome." Anal Chem 89(7):3840–3846; PMID: 28260372; doi: 10.1021/acs.analchem.6b04804; GPMDB: 76.
  1512. Giddey AD, et al. (2017) "A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations." Sci Rep 7:43858; PMID: 28262820; doi: 10.1038/srep43858; GPMDB: 18.
  1513. Rieckmann JC, et al. (2017) "Social network architecture of human immune cells unveiled by quantitative proteomics." Nat Immunol 18(5):583–593; PMID: 28263321; doi: 10.1038/ni.3693; GPMDB: 454.
  1514. Kanshin E, et al. (2017) "Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates." Mol Cell Proteomics 16(5):786–798; PMID: 28265048; doi: 10.1074/mcp.M116.066233; GPMDB: 32.
  1515. Espadas G, et al. (2017) "Evaluation of different peptide fragmentation types and mass analyzers in data-dependent methods using an Orbitrap Fusion Lumos Tribrid mass spectrometer." Proteomics 17(9):; PMID: 28266123; doi: 10.1002/pmic.201600416; GPMDB: 57.
  1516. Rapisarda V, et al. (2017) "Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway." Cell Rep 18(10):2480–2493; PMID: 28273461; doi: 10.1016/j.celrep.2017.02.012; GPMDB: 32.
  1517. Zhang T, et al. (2017) "Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury." Int J Mol Sci 18(1):; PMID: 28275217; doi: 10.3390/ijms18010167; GPMDB: 4.
  1518. Sadewasser A, et al. (2017) "Quantitative Proteomic Approach Identifies Vpr Binding Protein as Novel Host Factor Supporting Influenza A Virus Infections in Human Cells." Mol Cell Proteomics 16(5):728–742; PMID: 28289176; doi: 10.1074/mcp.M116.065904; GPMDB: 20.
  1519. Blattner M, et al. (2017) "SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling." Cancer Cell 31(3):436–451; PMID: 28292441; doi: 10.1016/j.ccell.2017.02.004; GPMDB: 96.
  1520. Bundy JL, et al. (2017) "Sex differences in the molecular signature of the developing mouse hippocampus." BMC Genomics 18(1):237; PMID: 28302071; doi: 10.1186/s12864-017-3608-7; GPMDB: 51.
  1521. Winter M, et al. (2017) "Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions." Mol Cell Proteomics 16(5):855–872; PMID: 28302921; doi: 10.1074/mcp.M116.066597; GPMDB: 269.
  1522. Langley SR, et al. (2017) "Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques." J Clin Invest 127(4):1546–1560; PMID: 28319050; doi: 10.1172/JCI86924; GPMDB: 936.
  1523. Kliza K, et al. (2017) "Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry." Nat Methods 14(5):504–512; PMID: 28319114; doi: 10.1038/nmeth.4228; GPMDB: 32.
  1524. Khodadoust MS, et al. (2017) "Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens." Nature 543(7647):723–727; PMID: 28329770; doi: 10.1038/nature21433; GPMDB: 147.
  1525. Yadav L, et al. (2017) "Systematic Analysis of Human Protein Phosphatase Interactions and Dynamics." Cell Syst 4(4):430–444.e5; PMID: 28330616; doi: 10.1016/j.cels.2017.02.011; GPMDB: 512.
  1526. Zhang X, et al. (2017) "Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response." Mol Cell Proteomics 16(5):891–910; PMID: 28331001; doi: 10.1074/mcp.M117.067439; GPMDB: 41.
  1527. Nathan A, et al. (2017) "The Wilms tumor protein Wt1 contributes to female fertility by regulating oviductal proteostasis." Hum Mol Genet 26(9):1694–1705; PMID: 28334862; doi: 10.1093/hmg/ddx075; GPMDB: 48.
  1528. Tien JF, et al. (2017) "CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion." Nucleic Acids Res 45(11):6698–6716; PMID: 28334900; doi: 10.1093/nar/gkx187; GPMDB: 11.
  1529. O'Neill JR, et al. (2017) "Quantitative Shotgun Proteomics Unveils Candidate Novel Esophageal Adenocarcinoma (EAC)-specific Proteins." Mol Cell Proteomics 16(6):1138–1150; PMID: 28336725; doi: 10.1074/mcp.M116.065078; GPMDB: 7.
  1530. Francavilla C, et al. (2017) "Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer." Cell Rep 18(13):3242–3256; PMID: 28355574; doi: 10.1016/j.celrep.2017.03.015; GPMDB: 59.
  1531. Casanova R, et al. (2017) "Morphoproteomic Characterization of Lung Squamous Cell Carcinoma Fragmentation, a Histological Marker of Increased Tumor Invasiveness." Cancer Res 77(10):2585–2593; PMID: 28364001; doi: 10.1158/0008-5472.CAN-16-2363; GPMDB: 49.
  1532. Chatzinikolaou G, et al. (2017) "ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes." Nat Cell Biol 19(5):421–432; PMID: 28368372; doi: 10.1038/ncb3499; GPMDB: 146.
  1533. Schaible B, et al. (2017) "Hypoxia Reduces the Pathogenicity of Pseudomonas aeruginosa by Decreasing the Expression of Multiple Virulence Factors." J Infect Dis 215(9):1459–1467; PMID: 28368464; doi: 10.1093/infdis/jix139; GPMDB: 18.
  1534. Duguet F, et al. (2017) "Proteomic Analysis of Regulatory T Cells Reveals the Importance of Themis1 in the Control of Their Suppressive Function." Mol Cell Proteomics 16(8):1416–1432; PMID: 28373295; doi: 10.1074/mcp.M116.062745; GPMDB: 26.
  1535. Namuduri AV, et al. (2017) "A Proteomic Approach to Identify Alterations in the Small Ubiquitin-like Modifier (SUMO) Network during Controlled Mechanical Ventilation in Rat Diaphragm Muscle." Mol Cell Proteomics 16(6):1081–1097; PMID: 28373296; doi: 10.1074/mcp.M116.066159; GPMDB: 80.
  1536. Anderson KA, et al. (2017) "SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion." Cell Metab 25(4):838–855.e15; PMID: 28380376; doi: 10.1016/j.cmet.2017.03.003; GPMDB: 4.
  1537. Casas-Vila N, et al. (2017) "The developmental proteome of Drosophila melanogaster." Genome Res 27(7):1273–1285; PMID: 28381612; doi: 10.1101/gr.213694.116; GPMDB: 124.
  1538. Chiang CK, et al. (2017) "Phosphoproteome Profiling Reveals Circadian Clock Regulation of Posttranslational Modifications in the Murine Hippocampus." Front Neurol 8:110; PMID: 28382018; doi: 10.3389/fneur.2017.00110; GPMDB: 299.
  1539. Young C, et al. (2017) "Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature." J Proteome Res 16(6):2307–2317; PMID: 28387123; doi: 10.1021/acs.jproteome.6b01055; GPMDB: 12.
  1540. Beach RR, et al. (2017) "Aneuploidy Causes Non-genetic Individuality." Cell 169(2):229–242.e21; PMID: 28388408; doi: 10.1016/j.cell.2017.03.021; GPMDB: 3.
  1541. Lobingier BT, et al. (2017) "An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells." Cell 169(2):350–360.e12; PMID: 28388416; doi: 10.1016/j.cell.2017.03.022; GPMDB: 45.
  1542. Worst TS, et al. (2017) "Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker." Mol Cell Proteomics 16(6):998–1008; PMID: 28396511; doi: 10.1074/mcp.M117.068577; GPMDB: 17.
  1543. Mohr S, et al. (2017) "Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia." Cancer Cell 31(4):549–562.e11; PMID: 28399410; doi: 10.1016/j.ccell.2017.03.001; GPMDB: 30.
  1544. Rinschen MM, et al. (2017) "YAP-mediated mechanotransduction determines the podocyte's response to damage." Sci Signal 10(474):; PMID: 28400537; doi: 10.1126/scisignal.aaf8165; GPMDB: 23.
  1545. Müller MM, et al. (2017) "Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression." Sci Rep 7(1):838; PMID: 28404994; doi: 10.1038/s41598-017-00828-y; GPMDB: 138.
  1546. Wang M, et al. (2017) "The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation." Mol Cell Proteomics 16(6):982–997; PMID: 28408662; doi: 10.1074/mcp.M116.065797; GPMDB: 21.
  1547. Shen X, et al. (2017) "An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts." J Proteome Res 16(7):2445–2456; PMID: 28412812; doi: 10.1021/acs.jproteome.7b00061; GPMDB: 20.
  1548. Kathiriya JJ, et al. (2017) "Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis." Cell Death Discov 3:17010; PMID: 28417017; doi: 10.1038/cddiscovery.2017.10; GPMDB: 3.
  1549. Perl K, et al. (2017) "Reduced changes in protein compared to mRNA levels across non-proliferating tissues." BMC Genomics 18(1):305; PMID: 28420336; doi: 10.1186/s12864-017-3683-9; GPMDB: 6.
  1550. Mendoza-Viveros L, et al. (2017) "miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock." Cell Rep 19(3):505–520; PMID: 28423315; doi: 10.1016/j.celrep.2017.03.057; GPMDB: 128.
  1551. Maus RLG, et al. (2017) "Human Melanoma-Derived Extracellular Vesicles Regulate Dendritic Cell Maturation." Front Immunol 8:358; PMID: 28424693; doi: 10.3389/fimmu.2017.00358; GPMDB: 18.
  1552. Treiber T, et al. (2017) "A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis." Mol Cell 66(2):270–284.e13; PMID: 28431233; doi: 10.1016/j.molcel.2017.03.014; GPMDB: 3033.
  1553. Beyene GT, et al. (2017) "Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis." BMC Microbiol 17(1):96; PMID: 28431522; doi: 10.1186/s12866-017-1004-8; GPMDB: 108.
  1554. Xu B, et al. (2017) "Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections." Mol Immunol 87:122–131; PMID: 28433889; doi: 10.1016/j.molimm.2017.04.002; GPMDB: 2.
  1555. Clulow JA, et al. (2017) "Competition-based, quantitative chemical proteomics in breast cancer cells identifies new target profiles for sulforaphane." Chem Commun (Camb) 53(37):5182–5185; PMID: 28439590; doi: 10.1039/c6cc08797c; GPMDB: 32.
  1556. Yeung ATY, et al. (2017) "Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis." Nat Commun 8:15013; PMID: 28440293; doi: 10.1038/ncomms15013; GPMDB: 1.
  1557. Labots M, et al. (2017) "Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection." J Proteomics 162:99–107; PMID: 28442448; doi: 10.1016/j.jprot.2017.04.014; GPMDB: 40.
  1558. Arntzen MØ, et al. (2017) "Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity." Environ Microbiol 19(7):2701–2714; PMID: 28447389; doi: 10.1111/1462-2920.13770; GPMDB: 20.
  1559. Nguyen EV, et al. (2017) "Hyper-phosphorylation of Sequestosome-1 Distinguishes Resistance to Cisplatin in Patient Derived High Grade Serous Ovarian Cancer Cells." Mol Cell Proteomics 16(7):1377–1392; PMID: 28455291; doi: 10.1074/mcp.M116.058321; GPMDB: 60.
  1560. Aviner R, et al. (2017) "Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis." Nucleic Acids Res 45(10):5945–5957; PMID: 28460002; doi: 10.1093/nar/gkx326; GPMDB: 15.
  1561. Tran TT, et al. (2017) "Quantitative phosphoproteome analysis of cisplatin-induced apoptosis in Jurkat T cells." Proteomics 17(11):; PMID: 28464451; doi: 10.1002/pmic.201600470; GPMDB: 32.
  1562. Ooi JD, et al. (2017) "Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells." Nature 545(7653):243–247; PMID: 28467828; doi: 10.1038/nature22329; GPMDB: 30.
  1563. van Aalderen MC, et al. (2017) "Label-free Analysis of CD8+ T Cell Subset Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells." Cell Rep 19(5):1068–1079; PMID: 28467900; doi: 10.1016/j.celrep.2017.04.014; GPMDB: 84.
  1564. Tello-Lafoz M, et al. (2017) "Sorting nexin 27 interactome in T-lymphocytes identifies zona occludens-2 dynamic redistribution at the immune synapse." Traffic 18(8):491–504; PMID: 28477369; doi: 10.1111/tra.12492; GPMDB: 57.
  1565. Ozdian T, et al. (2017) "Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells." J Proteomics 162:73–85; PMID: 28478306; doi: 10.1016/j.jprot.2017.05.005; GPMDB: 63.
  1566. Murr A, et al. (2017) "Cross-Sectional Association of Salivary Proteins with Age, Sex, Body Mass Index, Smoking, and Education." J Proteome Res 16(6):2273–2281; PMID: 28481548; doi: 10.1021/acs.jproteome.7b00133; GPMDB: 209.
  1567. Kilpinen H, et al. (2017) "Common genetic variation drives molecular heterogeneity in human iPSCs." Nature 546(7658):370–375; PMID: 28489815; doi: 10.1038/nature22403; GPMDB: 72.
  1568. Jahn A, et al. (2017) "ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator." EMBO Rep 18(6):929–946; PMID: 28500257; doi: 10.15252/embr.201744095; GPMDB: 35.
  1569. Kramer DA, et al. (2017) "Proteomic characterization of EL4 lymphoma-derived tumors upon chemotherapy treatment reveals potential roles for lysosomes and caspase-6 during tumor cell death in vivo." Proteomics 17(12):; PMID: 28508578; doi: 10.1002/pmic.201700060; GPMDB: 150.
  1570. Peng W, et al. (2017) "Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis." Electrophoresis 38(17):2124–2134; PMID: 28523741; doi: 10.1002/elps.201700027; GPMDB: 18.
  1571. Zai X, et al. (2017) "A comprehensive proteogenomic study of the human Brucella vaccine strain 104 M." BMC Genomics 18(1):402; PMID: 28535754; doi: 10.1186/s12864-017-3800-9; GPMDB: 90.
  1572. Yimer SA, et al. (2017) "Comparative Proteomic Analysis of Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains Reveals Differentially Abundant Proteins Linked to Slow Growth and Virulence." Front Microbiol 8:795; PMID: 28536560; doi: 10.3389/fmicb.2017.00795; GPMDB: 158.
  1573. Smallwood HS, et al. (2017) "Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention." Cell Rep 19(8):1640–1653; PMID: 28538182; doi: 10.1016/j.celrep.2017.04.039; GPMDB: 11.
  1574. Elmasri WA, et al. (2017) "Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus aureus: A Proteomic Characterization." J Proteome Res 16(7):2579–2586; PMID: 28541047; doi: 10.1021/acs.jproteome.7b00137; GPMDB: 12.
  1575. Fijalkowska D, et al. (2017) "eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs." Nucleic Acids Res 45(13):7997–8013; PMID: 28541577; doi: 10.1093/nar/gkx469; GPMDB: 19.
  1576. Hakimi O, et al. (2017) "A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue." PLoS One 12(5):e0177656; PMID: 28542244; doi: 10.1371/journal.pone.0177656; GPMDB: 116.
  1577. Wu PW, et al. (2017) "Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically variant peptides." Proteomics 17(13-14):; PMID: 28544375; doi: 10.1002/pmic.201600462; GPMDB: 24.
  1578. Kume K, et al. (2017) "A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control." PLoS Genet 13(5):e1006767; PMID: 28545058; doi: 10.1371/journal.pgen.1006767; GPMDB: 192.
  1579. Meier SM, et al. (2017) "An Organoruthenium Anticancer Agent Shows Unexpected Target Selectivity For Plectin." Angew Chem Int Ed Engl 56(28):8267–8271; PMID: 28547791; doi: 10.1002/anie.201702242; GPMDB: 4.
  1580. Hou J, et al. (2017) "Temporal Transcriptomic and Proteomic Landscapes of Deteriorating Pancreatic Islets in Type 2 Diabetic Rats." Diabetes 66(8):2188–2200; PMID: 28559245; doi: 10.2337/db16-1305; GPMDB: 12.
  1581. Li JY, et al. (2017) "Comparative Proteomic Analysis of Posterior Silk Glands of Wild and Domesticated Silkworms Reveals Functional Evolution during Domestication." J Proteome Res 16(7):2495–2507; PMID: 28569067; doi: 10.1021/acs.jproteome.7b00077; GPMDB: 72.
  1582. Sanchez-Quiles V, et al. (2017) "Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor." Mol Cell Proteomics 16(8):1433–1446; PMID: 28572092; doi: 10.1074/mcp.M116.066423; GPMDB: 108.
  1583. Bj Rås KØ, et al. (2017) "Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication." Nucleic Acids Res 45(14):8291–8301; PMID: 28575236; doi: 10.1093/nar/gkx476; GPMDB: 31.
  1584. Obermann J, et al. (2017) "Proteome-wide Identification of Glycosylation-dependent Interactors of Galectin-1 and Galectin-3 on Mesenchymal Retinal Pigment Epithelial (RPE) Cells." Mol Cell Proteomics 16(8):1528–1546; PMID: 28576849; doi: 10.1074/mcp.M116.066381; GPMDB: 193.
  1585. Sun C, et al. (2017) "Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function." Stem Cells 35(8):1958–1972; PMID: 28589555; doi: 10.1002/stem.2652; GPMDB: 36.
  1586. Zhang J, et al. (2017) "Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes." Proteomics 17(13-14):; PMID: 28590090; doi: 10.1002/pmic.201700103; GPMDB: 6.
  1587. Jensen SR, et al. (2017) "Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors." Endocrinology 158(8):2470–2485; PMID: 28591806; doi: 10.1210/en.2017-00194; GPMDB: 10.
  1588. Pearson LJ, et al. (2017) "Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers." PLoS One 12(6):e0178601; PMID: 28594924; doi: 10.1371/journal.pone.0178601; GPMDB: 90.
  1589. Bekker-Jensen DB, et al. (2017) "An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes." Cell Syst 4(6):587–599.e4; PMID: 28601559; doi: 10.1016/j.cels.2017.05.009; GPMDB: 93.
  1590. Haas TL, et al. (2017) "Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma." Cell Stem Cell 21(1):35–50.e9; PMID: 28602620; doi: 10.1016/j.stem.2017.04.009; GPMDB: 3.
  1591. Lapek JD Jr, et al. (2017) "Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr." Mol Cell Proteomics 16(8):1447–1461; PMID: 28606917; doi: 10.1074/mcp.M116.066019; GPMDB: 4.
  1592. Brocard L, et al. (2017) "Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions." Front Plant Sci 8:894; PMID: 28611809; doi: 10.3389/fpls.2017.00894; GPMDB: 3.
  1593. Erdmann J, et al. (2017) "Glucosyltransferase-dependent and -independent effects of TcdB on the proteome of HEp-2 cells." Proteomics 17(15-16):; PMID: 28612519; doi: 10.1002/pmic.201600435; GPMDB: 36.
  1594. Murgia M, et al. (2017) "Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging." Cell Rep 19(11):2396–2409; PMID: 28614723; doi: 10.1016/j.celrep.2017.05.054; GPMDB: 174.
  1595. Plenker D, et al. (2017) "Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors." Sci Transl Med 9(394):; PMID: 28615362; doi: 10.1126/scitranslmed.aah6144; GPMDB: 17.
  1596. Marx H, et al. (2017) "Annotation of the Domestic Pig Genome by Quantitative Proteogenomics." J Proteome Res 16(8):2887–2898; PMID: 28625053; doi: 10.1021/acs.jproteome.7b00184; GPMDB: 181.
  1597. Wang J, et al. (2017) "Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity." Gastroenterology 153(4):1082–1095; PMID: 28625833; doi: 10.1053/j.gastro.2017.06.008; GPMDB: 44.
  1598. Taleb RSZ, et al. (2017) "Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma." Proteomics Clin Appl 11(11-12):; PMID: 28626882; doi: 10.1002/prca.201700014; GPMDB: 56.
  1599. Qin G, et al. (2017) "Deciphering the protein-protein interaction network regulating hepatocellular carcinoma metastasis." Biochim Biophys Acta Proteins Proteom 1865(9):1114–1122; PMID: 28627476; doi: 10.1016/j.bbapap.2017.06.005; GPMDB: 6.
  1600. Sung E, et al. (2017) "Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells." Electrophoresis 38(20):2638–2645; PMID: 28627741; doi: 10.1002/elps.201700052; GPMDB: 2.
  1601. Loke I, et al. (2017) "Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions." Mol Cell Proteomics 16(8):1507–1527; PMID: 28630087; doi: 10.1074/mcp.M116.066746; GPMDB: 118.
  1602. Ahsan N, et al. (2017) "Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction." J Proteomics 165:69–74; PMID: 28634120; doi: 10.1016/j.jprot.2017.06.013; GPMDB: 30.
  1603. Feil G, et al. (2017) "Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation." Mol Cell Proteomics 16(9):1563–1577; PMID: 28637836; doi: 10.1074/mcp.RA117.000001; GPMDB: 2.
  1604. Cosme J, et al. (2017) "Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice." J Proteome Res 16(8):2836–2847; PMID: 28641008; doi: 10.1021/acs.jproteome.7b00144; GPMDB: 39.
  1605. Belmont J, et al. (2017) "A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex." J Proteome Res 16(8):2729–2742; PMID: 28644030; doi: 10.1021/acs.jproteome.6b01026; GPMDB: 60.
  1606. Henriet E, et al. (2017) "Argininosuccinate synthase 1 (ASS1): A marker of unclassified hepatocellular adenoma and high bleeding risk." Hepatology 66(6):2016–2028; PMID: 28646562; doi: 10.1002/hep.29336; GPMDB: 124.
  1607. Gu Y, et al. (2017) "mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT." Mol Cell 67(1):128–138.e7; PMID: 28648777; doi: 10.1016/j.molcel.2017.05.030; GPMDB: 2.
  1608. Flury V, et al. (2017) "The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1." Mol Cell 67(2):294–307.e9; PMID: 28648780; doi: 10.1016/j.molcel.2017.05.026; GPMDB: 50.
  1609. Morgenstern M, et al. (2017) "Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale." Cell Rep 19(13):2836–2852; PMID: 28658629; doi: 10.1016/j.celrep.2017.06.014; GPMDB: 697.
  1610. Offenburger SL, et al. (2017) "Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development." Sci Rep 7(1):4314; PMID: 28659600; doi: 10.1038/s41598-017-04375-4; GPMDB: 289.
  1611. Govaert E, et al. (2017) "Comparison of fractionation proteomics for local SWATH library building." Proteomics 17(15-16):; PMID: 28664598; doi: 10.1002/pmic.201700052; GPMDB: 4.
  1612. Sap KA, et al. (2017) "Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila." J Proteome Res 16(8):2848–2862; PMID: 28665616; doi: 10.1021/acs.jproteome.7b00156; GPMDB: 290.
  1613. Hulme CH, et al. (2017) "Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles." Arthritis Res Ther 19(1):150; PMID: 28666451; doi: 10.1186/s13075-017-1336-7; GPMDB: 37.
  1614. Yu Y, et al. (2017) "Quick 96FASP for high throughput quantitative proteome analysis." J Proteomics 166:1–7; PMID: 28669814; doi: 10.1016/j.jprot.2017.06.019; GPMDB: 15.
  1615. Kim JH, et al. (2017) "Mechanism Investigation of Rifampicin-Induced Liver Injury Using Comparative Toxicoproteomics in Mice." Int J Mol Sci 18(7):; PMID: 28671602; doi: 10.3390/ijms18071417; GPMDB: 10.
  1616. Liu F, et al. (2017) "Large-Scale Analysis of Breast Cancer-Related Conformational Changes in Proteins Using SILAC-SPROX." J Proteome Res 16(9):3277–3286; PMID: 28673085; doi: 10.1021/acs.jproteome.7b00283; GPMDB: 6.
  1617. Bleuyard JY, et al. (2017) "MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress." Proc Natl Acad Sci U S A 114(29):7671–7676; PMID: 28673974; doi: 10.1073/pnas.1620208114; GPMDB: 6.
  1618. Panizza E, et al. (2017) "Isoelectric point-based fractionation by HiRIEF coupled to LC-MS allows for in-depth quantitative analysis of the phosphoproteome." Sci Rep 7(1):4513; PMID: 28674419; doi: 10.1038/s41598-017-04798-z; GPMDB: 133.
  1619. Yang J, et al. (2017) "Genes essential for phototrophic growth by a purple alphaproteobacterium." Environ Microbiol 19(9):3567–3578; PMID: 28677146; doi: 10.1111/1462-2920.13852; GPMDB: 6.
  1620. Soman KV, et al. (2017) "Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study." J Proteome Res 16(8):2663–2679; PMID: 28679203; doi: 10.1021/acs.jproteome.6b00367; GPMDB: 47.
  1621. Miikkulainen P, et al. (2017) "HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma." Cancer Metab 5:5; PMID: 28680592; doi: 10.1186/s40170-017-0167-y; GPMDB: 12.
  1622. Zwittink RD, et al. (2017) "Metaproteomics reveals functional differences in intestinal microbiota development of preterm infants." Mol Cell Proteomics 16(9):1610–1620; PMID: 28684633; doi: 10.1074/mcp.RA117.000102; GPMDB: 65.
  1623. Djuric U, et al. (2017) "Spatiotemporal Proteomic Profiling of Human Cerebral Development." Mol Cell Proteomics 16(9):1548–1562; PMID: 28687556; doi: 10.1074/mcp.M116.066274; GPMDB: 99.
  1624. Bryk AH, et al. (2017) "Quantitative Analysis of Human Red Blood Cell Proteome." J Proteome Res 16(8):2752–2761; PMID: 28689405; doi: 10.1021/acs.jproteome.7b00025; GPMDB: 96.
  1625. Reid SE, et al. (2017) "Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium." EMBO J 36(16):2373–2389; PMID: 28694244; doi: 10.15252/embj.201694912; GPMDB: 19.
  1626. Ovelleiro D, et al. (2017) "Comparative proteomic study of early hypoxic response in the cerebral cortex of rats submitted to two different hypoxic models." Proteomics Clin Appl 11(11-12):; PMID: 28697276; doi: 10.1002/prca.201700058; GPMDB: 19.
  1627. Zhang X, et al. (2018) "Assessing the impact of protein extraction methods for human gut metaproteomics." J Proteomics 180:120–127; PMID: 28705725; doi: 10.1016/j.jprot.2017.07.001; GPMDB: 30.
  1628. Kohli P, et al. (2017) "The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia." EMBO Rep 18(9):1521–1535; PMID: 28710093; doi: 10.15252/embr.201643846; GPMDB: 20.
  1629. Liu H, et al. (2017) "Comprehensive Proteomic Analysis of PGC7-Interacting Proteins." J Proteome Res 16(9):3113–3123; PMID: 28712289; doi: 10.1021/acs.jproteome.6b00883; GPMDB: 10.
  1630. Chai H, et al. (2017) "Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence." Neuron 95(3):531–549.e9; PMID: 28712653; doi: 10.1016/j.neuron.2017.06.029; GPMDB: 4.
  1631. Vukotic M, et al. (2017) "Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria." Mol Cell 67(3):471–483.e7; PMID: 28712724; doi: 10.1016/j.molcel.2017.06.013; GPMDB: 59.
  1632. Alfieri A, et al. (2017) "Synaptic Interactome Mining Reveals p140Cap as a New Hub for PSD Proteins Involved in Psychiatric and Neurological Disorders." Front Mol Neurosci 10:212; PMID: 28713243; doi: 10.3389/fnmol.2017.00212; GPMDB: 12.
  1633. Poppleton DI, et al. (2017) "Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome." Front Microbiol 8:1215; PMID: 28713344; doi: 10.3389/fmicb.2017.01215; GPMDB: 16.
  1634. Lee HJ, et al. (2017) "Proteomic and Metabolomic Characterization of a Mammalian Cellular Transition from Quiescence to Proliferation." Cell Rep 20(3):721–736; PMID: 28723573; doi: 10.1016/j.celrep.2017.06.074; GPMDB: 2.
  1635. La Barbera G, et al. (2017) "Proteomic analysis and bioluminescent reporter gene assays to investigate effects of simulated microgravity on Caco-2 cells." Proteomics 17(15-16):; PMID: 28727291; doi: 10.1002/pmic.201700081; GPMDB: 13.
  1636. Mir SA, et al. (2017) "Altered signaling associated with chronic arsenic exposure in human skin keratinocytes." Proteomics Clin Appl 11(11-12):; PMID: 28731282; doi: 10.1002/prca.201700004; GPMDB: 2.
  1637. Maffioli E, et al. (2017) "Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines." J Proteomics 166:115–126; PMID: 28739509; doi: 10.1016/j.jprot.2017.07.012; GPMDB: 20.
  1638. Hau AC, et al. (2017) "MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1." J Cell Biol 216(9):2715–2729; PMID: 28739678; doi: 10.1083/jcb.201701154; GPMDB: 6.
  1639. Girardi T, et al. (2018) "The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling." Leukemia 32(3):809–819; PMID: 28744013; doi: 10.1038/leu.2017.225; GPMDB: 36.
  1640. D'Angelo G, et al. (2017) "Statistical Models for the Analysis of Isobaric Tags Multiplexed Quantitative Proteomics." J Proteome Res 16(9):3124–3136; PMID: 28745510; doi: 10.1021/acs.jproteome.6b01050; GPMDB: 5.
  1641. Komor MA, et al. (2017) "Identification of Differentially Expressed Splice Variants by the Proteogenomic Pipeline Splicify." Mol Cell Proteomics 16(10):1850–1863; PMID: 28747380; doi: 10.1074/mcp.TIR117.000056; GPMDB: 14.
  1642. Zhang X, et al. (2017) "Deep Metaproteomics Approach for the Study of Human Microbiomes." Anal Chem 89(17):9407–9415; PMID: 28749657; doi: 10.1021/acs.analchem.7b02224; GPMDB: 43.
  1643. Haderk F, et al. (2017) "Tumor-derived exosomes modulate PD-L1 expression in monocytes." Sci Immunol 2(13):; PMID: 28754746; doi: 10.1126/sciimmunol.aah5509; GPMDB: 32.
  1644. Singh KD, et al. (2017) "Differential regulation of germ line apoptosis and germ cell differentiation by CPEB family members in C. elegans." PLoS One 12(7):e0182270; PMID: 28759574; doi: 10.1371/journal.pone.0182270; GPMDB: 6.
  1645. Gómez-Baena G, et al. (2017) "Quantitative Proteomics of Cerebrospinal Fluid in Paediatric Pneumococcal Meningitis." Sci Rep 7(1):7042; PMID: 28765563; doi: 10.1038/s41598-017-07127-6; GPMDB: 28.
  1646. Wegler C, et al. (2017) "Variability in Mass Spectrometry-based Quantification of Clinically Relevant Drug Transporters and Drug Metabolizing Enzymes." Mol Pharm 14(9):3142–3151; PMID: 28767254; doi: 10.1021/acs.molpharmaceut.7b00364; GPMDB: 6.
  1647. Fabiani FD, et al. (2017) "A flagellum-specific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum." PLoS Biol 15(8):e2002267; PMID: 28771474; doi: 10.1371/journal.pbio.2002267; GPMDB: 26.
  1648. Nguyen AT, et al. (2017) "UBE2O remodels the proteome during terminal erythroid differentiation." Science 357(6350):; PMID: 28774900; doi: 10.1126/science.aan0218; GPMDB: 13.
  1649. Khan MH, et al. (2017) "The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex." J Cell Sci 130(18):3094–3107; PMID: 28775156; doi: 10.1242/jcs.200329; GPMDB: 51.
  1650. Woo J, et al. (2017) "Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation." J Proteome Res 16(9):3419–3432; PMID: 28777000; doi: 10.1021/acs.jproteome.7b00445; GPMDB: 18.
  1651. Danielsen HN, et al. (2017) "Direct Identification of Functional Amyloid Proteins by Label-Free Quantitative Mass Spectrometry." Biomolecules 7(3):; PMID: 28777328; doi: 10.3390/biom7030058; GPMDB: 24.
  1652. Wang X, et al. (2017) "Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner." Sci Signal 10(491):; PMID: 28790197; doi: 10.1126/scisignal.aam8065; GPMDB: 10.
  1653. Dong M, et al. (2017) "Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis." Anal Chem 89(17):9307–9314; PMID: 28796482; doi: 10.1021/acs.analchem.7b02078; GPMDB: 24.
  1654. Anselm V, et al. (2017) "Re-adaption on Earth after Spaceflights Affects the Mouse Liver Proteome." Int J Mol Sci 18(8):; PMID: 28805685; doi: 10.3390/ijms18081763; GPMDB: 28.
  1655. Barbé C, et al. (2017) "Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy." J Proteome Res 16(10):3477–3490; PMID: 28810121; doi: 10.1021/acs.jproteome.7b00069; GPMDB: 72.
  1656. Cortes T, et al. (2017) "Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival." Sci Rep 7(1):8208; PMID: 28811595; doi: 10.1038/s41598-017-08306-1; GPMDB: 30.
  1657. Pardo M, et al. (2017) "Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells." Sci Rep 7(1):8157; PMID: 28811661; doi: 10.1038/s41598-017-08456-2; GPMDB: 236.
  1658. Park J, et al. (2017) "Proteome characterization of human pancreatic cyst fluid from intraductal papillary mucinous neoplasm by liquid chromatography/tandem mass spectrometry." Rapid Commun Mass Spectrom 31(20):1761–1772; PMID: 28815810; doi: 10.1002/rcm.7959; GPMDB: 60.
  1659. Dammalli M, et al. (2017) "Proteomic Analysis of the Human Olfactory Bulb." OMICS 21(8):440–453; PMID: 28816642; doi: 10.1089/omi.2017.0084; GPMDB: 2.
  1660. van den Eshof BL, et al. (2017) "Paradigm of Biased PAR1 (Protease-Activated Receptor-1) Activation and Inhibition in Endothelial Cells Dissected by Phosphoproteomics." Arterioscler Thromb Vasc Biol 37(10):1891–1902; PMID: 28818855; doi: 10.1161/ATVBAHA.117.309926; GPMDB: 57.
  1661. Ayre DC, et al. (2017) "CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo." Sci Rep 7(1):8642; PMID: 28819186; doi: 10.1038/s41598-017-08094-8; GPMDB: 146.
  1662. Singh H, et al. (2017) "Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function." Theranostics 7(10):2704–2717; PMID: 28819457; doi: 10.7150/thno.19679; GPMDB: 663.
  1663. Shen H, et al. (2017) "Effects of spaceflight on the muscles of the murine shoulder." FASEB J 31(12):5466–5477; PMID: 28821629; doi: 10.1096/fj.201700320R; GPMDB: 14.
  1664. Hung CL, et al. (2017) "Membrane Proteomics of Impaired Energetics and Cytoskeletal Disorganization in Elderly Diet-Induced Diabetic Mice." J Proteome Res 16(10):3504–3513; PMID: 28823169; doi: 10.1021/acs.jproteome.7b00148; GPMDB: 14.
  1665. Fu L, et al. (2017) "Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes." Mol Cell Proteomics 16(10):1815–1828; PMID: 28827280; doi: 10.1074/mcp.RA117.000108; GPMDB: 12.
  1666. Phillips TJ, et al. (2017) "Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development." Sci Rep 7(1):9079; PMID: 28831049; doi: 10.1038/s41598-017-06300-1; GPMDB: 1.
  1667. Vyse S, et al. (2018) "Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib." J Proteomics 170:130–140; PMID: 28842319; doi: 10.1016/j.jprot.2017.08.015; GPMDB: 42.
  1668. Wildburger NC, et al. (2017) "Diversity of Amyloid-beta Proteoforms in the Alzheimer's Disease Brain." Sci Rep 7(1):9520; PMID: 28842697; doi: 10.1038/s41598-017-10422-x; GPMDB: 22.
  1669. Andersen PR, et al. (2017) "A heterochromatin-dependent transcription machinery drives piRNA expression." Nature 549(7670):54–59; PMID: 28847004; doi: 10.1038/nature23482; GPMDB: 46.
  1670. Guo J, et al. (2017) "Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.)." J Proteomics 168:15–27; PMID: 28847649; doi: 10.1016/j.jprot.2017.08.013; GPMDB: 6.
  1671. Mohl BP, et al. (2017) "Phosphoproteomic Analysis Reveals the Importance of Kinase Regulation During Orbivirus Infection." Mol Cell Proteomics 16(11):1990–2005; PMID: 28851738; doi: 10.1074/mcp.M117.067355; GPMDB: 6.
  1672. Merkley ED, et al. (2017) "Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague." PLoS One 12(8):e0183478; PMID: 28854255; doi: 10.1371/journal.pone.0183478; GPMDB: 343.
  1673. Peng X, et al. (2017) "Identification of Missing Proteins in the Phosphoproteome of Kidney Cancer." J Proteome Res 16(12):4364–4373; PMID: 28857561; doi: 10.1021/acs.jproteome.7b00332; GPMDB: 17.
  1674. Subramanian K, et al. (2017) "Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease." Mol Cell Proteomics 16(11):1938–1957; PMID: 28860124; doi: 10.1074/mcp.M116.064949; GPMDB: 7.
  1675. Rossello J, et al. (2017) "The EAL-domain protein FcsR regulates flagella, chemotaxis and type III secretion system in Pseudomonas aeruginosa by a phosphodiesterase independent mechanism." Sci Rep 7(1):10281; PMID: 28860517; doi: 10.1038/s41598-017-09926-3; GPMDB: 21.
  1676. Mendes M, et al. (2017) "Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer." Proteomics 17(19):; PMID: 28861940; doi: 10.1002/pmic.201700094; GPMDB: 200.
  1677. Tanabe Y, et al. (2017) "IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2α." Nat Commun 8(1):408; PMID: 28864826; doi: 10.1038/s41467-017-00333-w; GPMDB: 32.
  1678. Kraner ME, et al. (2017) "Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves." Plant J 92(4):696–709; PMID: 28865150; doi: 10.1111/tpj.13702; GPMDB: 1.
  1679. Edupuganti RR, et al. (2017) "N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis." Nat Struct Mol Biol 24(10):870–878; PMID: 28869609; doi: 10.1038/nsmb.3462; GPMDB: 40.
  1680. Liu MQ, et al. (2017) "pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification." Nat Commun 8(1):438; PMID: 28874712; doi: 10.1038/s41467-017-00535-2; GPMDB: 4.
  1681. Dittus L, et al. (2017) "Differential Kinobeads Profiling for Target Identification of Irreversible Kinase Inhibitors." ACS Chem Biol 12(10):2515–2521; PMID: 28876896; doi: 10.1021/acschembio.7b00617; GPMDB: 154.
  1682. Kälin S, et al. (2017) "A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function." Cell Metab 26(3):475–492.e7; PMID: 28877454; doi: 10.1016/j.cmet.2017.08.008; GPMDB: 31.
  1683. Chen TW, et al. (2017) "APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism." Nat Commun 8(1):465; PMID: 28878238; doi: 10.1038/s41467-017-00493-9; GPMDB: 18.
  1684. Han B, et al. (2017) "Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers." J Proteome Res 16(10):3646–3663; PMID: 28879772; doi: 10.1021/acs.jproteome.7b00371; GPMDB: 47.
  1685. Phillips B, et al. (2017) "Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints." Food Chem Toxicol 109(Pt 1):315–332; PMID: 28882640; doi: 10.1016/j.fct.2017.09.001; GPMDB: 36.
  1686. Pawellek A, et al. (2017) "Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP." Elife; PMID: 28884683; doi: 10.7554/eLife.27402; GPMDB: 6.
  1687. Kishazi E, et al. (2018) "Thyroid-associated orbitopathy and tears: A proteomics study." J Proteomics 170:110–116; PMID: 28887209; doi: 10.1016/j.jprot.2017.09.001; GPMDB: 8.
  1688. Rijkers M, et al. (2017) "Monitoring storage induced changes in the platelet proteome employing label free quantitative mass spectrometry." Sci Rep 7(1):11045; PMID: 28887518; doi: 10.1038/s41598-017-11643-w; GPMDB: 21.
  1689. Bachofner M, et al. (2017) "Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration." Dev Cell 42(6):616–625.e8; PMID: 28890072; doi: 10.1016/j.devcel.2017.07.025; GPMDB: 20.
  1690. Lapek JD Jr, et al. (2017) "Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities." Nat Biotechnol 35(10):983–989; PMID: 28892078; doi: 10.1038/nbt.3955; GPMDB: 11.
  1691. McNally KE, et al. (2017) "Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling." Nat Cell Biol 19(10):1214–1225; PMID: 28892079; doi: 10.1038/ncb3610; GPMDB: 23.
  1692. Guccione EJ, et al. (2017) "Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability." Environ Microbiol 19(10):4326–4348; PMID: 28892295; doi: 10.1111/1462-2920.13930; GPMDB: 54.
  1693. Bardot P, et al. (2017) "The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo." Development 144(20):3808–3818; PMID: 28893950; doi: 10.1242/dev.146902; GPMDB: 30.
  1694. Avenarius MR, et al. (2017) "Heterodimeric capping protein is required for stereocilia length and width regulation." J Cell Biol 216(11):3861–3881; PMID: 28899994; doi: 10.1083/jcb.201704171; GPMDB: 52.
  1695. Rowland EA, et al. (2017) "Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes." mBio 8(5):; PMID: 28900027; doi: 10.1128/mBio.01096-17; GPMDB: 2.
  1696. Midgett M, et al. (2017) "Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium." Front Physiol 8:631; PMID: 28912723; doi: 10.3389/fphys.2017.00631; GPMDB: 1.
  1697. Hospital MA, et al. (2018) "RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia." Leukemia 32(3):597–605; PMID: 28914261; doi: 10.1038/leu.2017.284; GPMDB: 17.
  1698. Tain LS, et al. (2017) "A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance." Mol Syst Biol 13(9):939; PMID: 28916541; doi: 10.15252/msb.20177663; GPMDB: 92.
  1699. Mills RJ, et al. (2017) "Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest." Proc Natl Acad Sci U S A 114(40):E8372–E8381; PMID: 28916735; doi: 10.1073/pnas.1707316114; GPMDB: 8.
  1700. Martin-Perez M, et al. (2017) "Determinants and Regulation of Protein Turnover in Yeast." Cell Syst 5(3):283–294.e5; PMID: 28918244; doi: 10.1016/j.cels.2017.08.008; GPMDB: 12.
  1701. Weber A, et al. (2017) "A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN." Cell Chem Biol 24(10):1299–1313.e7; PMID: 28919039; doi: 10.1016/j.chembiol.2017.08.006; GPMDB: 16.
  1702. Kuboniwa M, et al. (2017) "Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection." Nat Microbiol 2(11):1493–1499; PMID: 28924191; doi: 10.1038/s41564-017-0021-6; GPMDB: 15.
  1703. Liao Y, et al. (2017) "Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation." J Proteome Res 16(11):4113–4121; PMID: 28925267; doi: 10.1021/acs.jproteome.7b00486; GPMDB: 93.
  1704. Lum KM, et al. (2017) "Mapping Protein Targets of Bioactive Small Molecules Using Lipid-Based Chemical Proteomics." ACS Chem Biol 12(10):2671–2681; PMID: 28930429; doi: 10.1021/acschembio.7b00581; GPMDB: 43.
  1705. Whiteley AM, et al. (2017) "Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins." Elife; PMID: 28933694; doi: 10.7554/eLife.26435; GPMDB: 4.
  1706. Mackinder LCM, et al. (2017) "A Spatial Interactome Reveals the Protein Organization of the Algal CO2-Concentrating Mechanism." Cell 171(1):133–147.e14; PMID: 28938113; doi: 10.1016/j.cell.2017.08.044; GPMDB: 168.
  1707. Velásquez E, et al. (2017) "Synaptosomal Proteome of the Orbitofrontal Cortex from Schizophrenia Patients Using Quantitative Label-Free and iTRAQ-Based Shotgun Proteomics." J Proteome Res 16(12):4481–4494; PMID: 28949146; doi: 10.1021/acs.jproteome.7b00422; GPMDB: 3.
  1708. Cuijpers SAG, et al. (2017) "Converging Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Signaling: Improved Methodology Identifies Co-modified Target Proteins." Mol Cell Proteomics 16(12):2281–2295; PMID: 28951443; doi: 10.1074/mcp.TIR117.000152; GPMDB: 102.
  1709. Seddigh P, et al. (2017) "Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection." Mol Cell Proteomics 16(12):2184–2198; PMID: 28951444; doi: 10.1074/mcp.RA117.000072; GPMDB: 18.
  1710. Yin X, et al. (2017) "Proteomes of Lactobacillus delbrueckii subsp. bulgaricus LBB.B5 Incubated in Milk at Optimal and Low Temperatures." mSystems 2(5):; PMID: 28951887; doi: 10.1128/mSystems.00027-17; GPMDB: 27.
  1711. Wang Q, et al. (2017) "Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling." Nat Commun 8(1):709; PMID: 28955033; doi: 10.1038/s41467-017-00767-2; GPMDB: 2.
  1712. Triana S, et al. (2017) "Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling." Front Microbiol 8:1772; PMID: 28959251; doi: 10.3389/fmicb.2017.01772; GPMDB: 37.
  1713. Megger DA, et al. (2017) "Deciphering of the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression." Front Immunol 8:1139; PMID: 28959263; doi: 10.3389/fimmu.2017.01139; GPMDB: 114.
  1714. Wang Y, et al. (2017) "Multi-Protease Strategy Identifies Three PE2 Missing Proteins in Human Testis Tissue." J Proteome Res 16(12):4352–4363; PMID: 28959888; doi: 10.1021/acs.jproteome.7b00340; GPMDB: 63.
  1715. Stadlmann J, et al. (2017) "Comparative glycoproteomics of stem cells identifies new players in ricin toxicity." Nature 549(7673):538–542; PMID: 28959962; doi: 10.1038/nature24015; GPMDB: 1.
  1716. Li S, et al. (2017) "Digging More Missing Proteins Using an Enrichment Approach with ProteoMiner." J Proteome Res 16(12):4330–4339; PMID: 28960076; doi: 10.1021/acs.jproteome.7b00353; GPMDB: 199.
  1717. Hauser DN, et al. (2017) "Hexokinases link DJ-1 to the PINK1/parkin pathway." Mol Neurodegener 12(1):70; PMID: 28962651; doi: 10.1186/s13024-017-0212-x; GPMDB: 6.
  1718. Zhang W, et al. (2017) "Detergent-Insoluble Proteome Analysis Revealed Aberrantly Aggregated Proteins in Human Preeclampsia Placentas." J Proteome Res 16(12):4468–4480; PMID: 28965414; doi: 10.1021/acs.jproteome.7b00352; GPMDB: 4.
  1719. Reyes ED, et al. (2017) "Identifying Host Factors Associated with DNA Replicated During Virus Infection." Mol Cell Proteomics 16(12):2079–2097; PMID: 28972080; doi: 10.1074/mcp.M117.067116; GPMDB: 164.
  1720. Isobe K, et al. (2017) "Systems-level identification of PKA-dependent signaling in epithelial cells." Proc Natl Acad Sci U S A 114(42):E8875–E8884; PMID: 28973931; doi: 10.1073/pnas.1709123114; GPMDB: 75.
  1721. Bjørkum AA, et al. (2017) "Fast hyperbaric decompression after heliox saturation altered the brain proteome in rats." PLoS One 12(10):e0185765; PMID: 28977037; doi: 10.1371/journal.pone.0185765; GPMDB: 19.
  1722. Kollipara L, et al. (2017) "In-depth phenotyping of lymphoblastoid cells suggests selective cellular vulnerability in Marinesco-Sjögren syndrome." Oncotarget 8(40):68493–68516; PMID: 28978133; doi: 10.18632/oncotarget.19663; GPMDB: 23.
  1723. Opitz N, et al. (2017) "Capturing the Asc1p/Receptor for Activated C Kinase 1 (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast." Mol Cell Proteomics 16(12):2199–2218; PMID: 28982715; doi: 10.1074/mcp.M116.066654; GPMDB: 268.
  1724. Parker BL, et al. (2017) "Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome." Mol Cell Proteomics 16(12):2055–2068; PMID: 28982716; doi: 10.1074/mcp.RA117.000020; GPMDB: 12.
  1725. Berger CN, et al. (2017) "Citrobacter rodentium Subverts ATP Flux and Cholesterol Homeostasis in Intestinal Epithelial Cells In Vivo." Cell Metab 26(5):738–752.e6; PMID: 28988824; doi: 10.1016/j.cmet.2017.09.003; GPMDB: 24.
  1726. Kuenzi BM, et al. (2017) "Polypharmacology-based ceritinib repurposing using integrated functional proteomics." Nat Chem Biol 13(12):1222–1231; PMID: 28991240; doi: 10.1038/nchembio.2489; GPMDB: 73.
  1727. Novikova SE, et al. (2017) "Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation." Eur J Mass Spectrom (Chichester) 23(4):202–208; PMID: 29028392; doi: 10.1177/1469066717719848; GPMDB: 25.
  1728. Saravanan R, et al. (2017) "Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo." Sci Rep 7(1):13136; PMID: 29030565; doi: 10.1038/s41598-017-13197-3; GPMDB: 43.
  1729. Grenga L, et al. (2017) "Analyzing the Complex Regulatory Landscape of Hfq - an Integrative, Multi-Omics Approach." Front Microbiol 8:1784; PMID: 29033902; doi: 10.3389/fmicb.2017.01784; GPMDB: 1.
  1730. Kugeratski FG, et al. (2018) "Mitogen-Activated Protein Kinase Kinase 5 Regulates Proliferation and Biosynthetic Processes in Procyclic Forms of Trypanosoma brucei." J Proteome Res 17(1):108–118; PMID: 29043805; doi: 10.1021/acs.jproteome.7b00415; GPMDB: 15.
  1731. Bartosova M, et al. (2018) "Complement Activation in Peritoneal Dialysis-Induced Arteriolopathy." J Am Soc Nephrol 29(1):268–282; PMID: 29046343; doi: 10.1681/ASN.2017040436; GPMDB: 2.
  1732. Fabrik I, et al. (2018) "The Early Dendritic Cell Signaling Induced by Virulent Francisella tularensis Strain Occurs in Phases and Involves the Activation of Extracellular Signal-Regulated Kinases (ERKs) and p38 In the Later Stage." Mol Cell Proteomics 17(1):81–94; PMID: 29046388; doi: 10.1074/mcp.RA117.000160; GPMDB: 364.
  1733. Raschdorf O, et al. (2018) "A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle." J Proteomics 172:89–99; PMID: 29054541; doi: 10.1016/j.jprot.2017.10.007; GPMDB: 127.
  1734. Karg E, et al. (2017) "Ubiquitome Analysis Reveals PCNA-Associated Factor 15 (PAF15) as a Specific Ubiquitination Target of UHRF1 in Embryonic Stem Cells." J Mol Biol 429(24):3814–3824; PMID: 29055779; doi: 10.1016/j.jmb.2017.10.014; GPMDB: 32.
  1735. Hartl M, et al. (2017) "Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis." Mol Syst Biol 13(10):949; PMID: 29061669; doi: 10.15252/msb.20177819; GPMDB: 44.
  1736. Graham LC, et al. (2017) "Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture." Mol Neurodegener 12(1):77; PMID: 29078798; doi: 10.1186/s13024-017-0221-9; GPMDB: 6.
  1737. Pan D, et al. (2017) "Quantitative proteomic Analysis Reveals up-regulation of caveolin-1 in FOXP3-overexpressed human gastric cancer cells." Sci Rep 7(1):14460; PMID: 29089565; doi: 10.1038/s41598-017-14453-2; GPMDB: 10.
  1738. Schuster H, et al. (2017) "The immunopeptidomic landscape of ovarian carcinomas." Proc Natl Acad Sci U S A 114(46):E9942–E9951; PMID: 29093164; doi: 10.1073/pnas.1707658114; GPMDB: 275.
  1739. Naumenko N, et al. (2017) "INA complex liaises the F1Fo-ATP synthase membrane motor modules." Nat Commun 8(1):1237; PMID: 29093463; doi: 10.1038/s41467-017-01437-z; GPMDB: 82.
  1740. Chu TTT, et al. (2018) "Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation." Br J Haematol 180(1):118–133; PMID: 29094334; doi: 10.1111/bjh.14976; GPMDB: 3.
  1741. Frejno M, et al. (2017) "Pharmacoproteomic characterisation of human colon and rectal cancer." Mol Syst Biol 13(11):951; PMID: 29101300; doi: 10.15252/msb.20177701; GPMDB: 184.
  1742. Awazawa M, et al. (2017) "A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle." Nat Med 23(12):1466–1473; PMID: 29106399; doi: 10.1038/nm.4420; GPMDB: 8.
  1743. Alvarez-Castelao B, et al. (2017) "Cell-type-specific metabolic labeling of nascent proteomes in vivo." Nat Biotechnol 35(12):1196–1201; PMID: 29106408; doi: 10.1038/nbt.4016; GPMDB: 98.
  1744. Gialitakis M, et al. (2017) "Activation of the Aryl Hydrocarbon Receptor Interferes with Early Embryonic Development." Stem Cell Reports 9(5):1377–1386; PMID: 29107595; doi: 10.1016/j.stemcr.2017.09.025; GPMDB: 108.
  1745. Nielsen M, et al. (2018) "Improved Prediction of Bovine Leucocyte Antigens (BoLA) Presented Ligands by Use of Mass-Spectrometry-Determined Ligand and in Vitro Binding Data." J Proteome Res 17(1):559–567; PMID: 29115832; doi: 10.1021/acs.jproteome.7b00675; GPMDB: 10.
  1746. van der Wal L, et al. (2018) "Improvement of ubiquitylation site detection by Orbitrap mass spectrometry." J Proteomics 172:49–56; PMID: 29122726; doi: 10.1016/j.jprot.2017.10.014; GPMDB: 86.
  1747. Steger M, et al. (2017) "Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis." Elife; PMID: 29125462; doi: 10.7554/eLife.31012; GPMDB: 667.
  1748. Malty RH, et al. (2017) "A Map of Human Mitochondrial Protein Interactions Linked to Neurodegeneration Reveals New Mechanisms of Redox Homeostasis and NF-κB Signaling." Cell Syst 5(6):564–577.e12; PMID: 29128334; doi: 10.1016/j.cels.2017.10.010; GPMDB: 109.
  1749. Ju Lee H, et al. (2017) "A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells." Nat Commun 8(1):1456; PMID: 29129916; doi: 10.1038/s41467-017-01744-5; GPMDB: 6.
  1750. García-Berrocoso T, et al. (2018) "Single Cell Immuno-Laser Microdissection Coupled to Label-Free Proteomics to Reveal the Proteotypes of Human Brain Cells After Ischemia." Mol Cell Proteomics 17(1):175–189; PMID: 29133510; doi: 10.1074/mcp.RA117.000419; GPMDB: 102.
  1751. Negretti NM, et al. (2017) "The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species." Sci Rep 7(1):15455; PMID: 29133896; doi: 10.1038/s41598-017-15379-5; GPMDB: 8.
  1752. Doll S, et al. (2017) "Region and cell-type resolved quantitative proteomic map of the human heart." Nat Commun 8(1):1469; PMID: 29133944; doi: 10.1038/s41467-017-01747-2; GPMDB: 159.
  1753. Anders F, et al. (2017) "The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model." Int J Mol Sci 18(11):; PMID: 29135941; doi: 10.3390/ijms18112418; GPMDB: 8.
  1754. Geis-Asteggiante L, et al. (2018) "Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions." J Proteome Res 17(1):486–498; PMID: 29139296; doi: 10.1021/acs.jproteome.7b00646; GPMDB: 60.
  1755. Worzfeld T, et al. (2018) "Proteotranscriptomics Reveal Signaling Networks in the Ovarian Cancer Microenvironment." Mol Cell Proteomics 17(2):270–289; PMID: 29141914; doi: 10.1074/mcp.RA117.000400; GPMDB: 121.
  1756. Raffel S, et al. (2017) "BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation." Nature 551(7680):384–388; PMID: 29144447; doi: 10.1038/nature24294; GPMDB: 10.
  1757. Yilmaz O, et al. (2017) "Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio)." PLoS One 12(11):e0188084; PMID: 29145436; doi: 10.1371/journal.pone.0188084; GPMDB: 57.
  1758. Cherry JD, et al. (2018) "Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy." J Neuropathol Exp Neurol 77(1):40–49; PMID: 29145658; doi: 10.1093/jnen/nlx100; GPMDB: 4.
  1759. Le Guerroué F, et al. (2017) "Autophagosomal Content Profiling Reveals an LC3C-Dependent Piecemeal Mitophagy Pathway." Mol Cell 68(4):786–796.e6; PMID: 29149599; doi: 10.1016/j.molcel.2017.10.029; GPMDB: 138.
  1760. Hu D, et al. (2018) "Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells." Proteomics 18(1):; PMID: 29150924; doi: 10.1002/pmic.201700133; GPMDB: 8.
  1761. Korkmaz AG, et al. (2018) "Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states." J Proteomics 180:11–24; PMID: 29155090; doi: 10.1016/j.jprot.2017.11.008; GPMDB: 21.
  1762. Föll MC, et al. (2018) "Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas." Matrix Biol 66:1–21; PMID: 29158163; doi: 10.1016/j.matbio.2017.11.004; GPMDB: 24.
  1763. Hoffman MA, et al. (2018) "Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer." J Proteome Res 17(1):63–75; PMID: 29164889; doi: 10.1021/acs.jproteome.7b00329; GPMDB: 18.
  1764. Hosp F, et al. (2017) "Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function." Cell Rep 21(8):2291–2303; PMID: 29166617; doi: 10.1016/j.celrep.2017.10.097; GPMDB: 196.
  1765. Babu M, et al. (2018) "Global landscape of cell envelope protein complexes in Escherichia coli." Nat Biotechnol 36(1):103–112; PMID: 29176613; doi: 10.1038/nbt.4024; GPMDB: 2972.
  1766. Kelstrup CD, et al. (2018) "Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics." J Proteome Res 17(1):727–738; PMID: 29183128; doi: 10.1021/acs.jproteome.7b00602; GPMDB: 107.
  1767. Winter DL, et al. (2018) "Characterization of Protein Methyltransferases Rkm1, Rkm4, Efm4, Efm7, Set5 and Hmt1 Reveals Extensive Post-Translational Modification." J Mol Biol 430(1):102–118; PMID: 29183786; doi: 10.1016/j.jmb.2017.11.009; GPMDB: 18.
  1768. Carlyle BC, et al. (2017) "A multiregional proteomic survey of the postnatal human brain." Nat Neurosci 20(12):1787–1795; PMID: 29184206; doi: 10.1038/s41593-017-0011-2; GPMDB: 196.
  1769. Lacombe M, et al. (2018) "Proteomic characterization of human exhaled breath condensate." J Breath Res 12(2):021001; PMID: 29189203; doi: 10.1088/1752-7163/aa9e71; GPMDB: 4.
  1770. Klaeger S, et al. (2017) "The target landscape of clinical kinase drugs." Science 358(6367):; PMID: 29191878; doi: 10.1126/science.aan4368; GPMDB: 3032.
  1771. Mayer RL, et al. (2018) "Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia." Mol Cell Proteomics 17(2):290–303; PMID: 29196338; doi: 10.1074/mcp.RA117.000425; GPMDB: 6.
  1772. Smith MC, et al. (2018) "Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome." J Proteomics 173:89–98; PMID: 29208510; doi: 10.1016/j.jprot.2017.11.025; GPMDB: 72.
  1773. Herzog R, et al. (2018) "Effects of Alanyl-Glutamine Treatment on the Peritoneal Dialysis Effluent Proteome Reveal Pathomechanism-Associated Molecular Signatures." Mol Cell Proteomics 17(3):516–532; PMID: 29208752; doi: 10.1074/mcp.RA117.000186; GPMDB: 10.
  1774. Wierer M, et al. (2018) "Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression." Mol Cell Proteomics 17(2):321–334; PMID: 29208753; doi: 10.1074/mcp.RA117.000315; GPMDB: 156.
  1775. Stachowicz A, et al. (2017) "Optimization of quantitative proteomic analysis of clots generated from plasma of patients with venous thromboembolism." Clin Proteomics 14:38; PMID: 29209155; doi: 10.1186/s12014-017-9173-x; GPMDB: 36.
  1776. Muth T, et al. (2018) "MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go." Anal Chem 90(1):685–689; PMID: 29215871; doi: 10.1021/acs.analchem.7b03544; GPMDB: 3.
  1777. Sciuto MR, et al. (2018) "Two-Step Coimmunoprecipitation (TIP) Enables Efficient and Highly Selective Isolation of Native Protein Complexes." Mol Cell Proteomics 17(5):993–1009; PMID: 29217617; doi: 10.1074/mcp.O116.065920; GPMDB: 36.
  1778. Sobocińska J, et al. (2018) "Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies." Mol Cell Proteomics 17(2):233–254; PMID: 29217618; doi: 10.1074/mcp.RA117.000050; GPMDB: 12.
  1779. Holthoff ER, et al. (2017) "Vulvar squamous cell carcinoma aggressiveness is associated with differential expression of collagen and STAT1." Clin Proteomics 14:40; PMID: 29225558; doi: 10.1186/s12014-017-9175-8; GPMDB: 414.
  1780. Stewart NA, et al. (2017) "Sex determination of human remains from peptides in tooth enamel." Proc Natl Acad Sci U S A 114(52):13649–13654; PMID: 29229823; doi: 10.1073/pnas.1714926115; GPMDB: 13.
  1781. Bizzotto S, et al. (2017) "Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex." Sci Rep 7(1):17308; PMID: 29229923; doi: 10.1038/s41598-017-15253-4; GPMDB: 28.
  1782. Alli-Shaik A, et al. (2017) "Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells." Breast Cancer Res 19(1):132; PMID: 29233185; doi: 10.1186/s13058-017-0924-4; GPMDB: 263.
  1783. Maumus M, et al. (2017) "Thrombospondin-1 Partly Mediates the Cartilage Protective Effect of Adipose-Derived Mesenchymal Stem Cells in Osteoarthritis." Front Immunol 8:1638; PMID: 29238343; doi: 10.3389/fimmu.2017.01638; GPMDB: 120.
  1784. Chong C, et al. (2018) "High-throughput and Sensitive Immunopeptidomics Platform Reveals Profound Interferonγ-Mediated Remodeling of the Human Leukocyte Antigen (HLA) Ligandome." Mol Cell Proteomics 17(3):533–548; PMID: 29242379; doi: 10.1074/mcp.TIR117.000383; GPMDB: 121.
  1785. Müller AK, et al. (2018) "Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases." Neoplasia 20(2):140–151; PMID: 29248718; doi: 10.1016/j.neo.2017.10.009; GPMDB: 15.
  1786. Brumbaugh J, et al. (2018) "Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling." Cell 172(1-2):106–120.e21; PMID: 29249356; doi: 10.1016/j.cell.2017.11.023; GPMDB: 24.
  1787. Krogager TP, et al. (2018) "Labeling and identifying cell-specific proteomes in the mouse brain." Nat Biotechnol 36(2):156–159; PMID: 29251727; doi: 10.1038/nbt.4056; GPMDB: 33.
  1788. Mackmull MT, et al. (2017) "Landscape of nuclear transport receptor cargo specificity." Mol Syst Biol 13(12):962; PMID: 29254951; doi: 10.15252/msb.20177608; GPMDB: 315.
  1789. Bielecka ZF, et al. (2017) "Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells." Cell Biosci 7:71; PMID: 29270287; doi: 10.1186/s13578-017-0197-8; GPMDB: 12.
  1790. Gao Y, et al. (2017) "Protein Expression Landscape of Mouse Embryos during Pre-implantation Development." Cell Rep 21(13):3957–3969; PMID: 29281840; doi: 10.1016/j.celrep.2017.11.111; GPMDB: 2.
  1791. Abdelmegid S, et al. (2017) "Identification of Host Defense-Related Proteins Using Label-Free Quantitative Proteomic Analysis of Milk Whey from Cows with Staphylococcus aureus Subclinical Mastitis." Int J Mol Sci 19(1):; PMID: 29283389; doi: 10.3390/ijms19010078; GPMDB: 11.
  1792. Kelley RC, et al. (2018) "Advanced aging causes diaphragm functional abnormalities, global proteome remodeling, and loss of mitochondrial cysteine redox flexibility in mice." Exp Gerontol 103:69–79; PMID: 29289553; doi: 10.1016/j.exger.2017.12.017; GPMDB: 24.
  1793. Behr M, et al. (2018) "Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl." BMC Plant Biol 18(1):1; PMID: 29291729; doi: 10.1186/s12870-017-1213-1; GPMDB: 20.
  1794. Ritz D, et al. (2018) "Membranal and Blood-Soluble HLA Class II Peptidome Analyses Using Data-Dependent and Independent Acquisition." Proteomics 18(12):e1700246; PMID: 29314611; doi: 10.1002/pmic.201700246; GPMDB: 27.
  1795. Kooijman S, et al. (2018) "Novel identified aluminum hydroxide-induced pathways prove monocyte activation and pro-inflammatory preparedness." J Proteomics 175:144–155; PMID: 29317357; doi: 10.1016/j.jprot.2017.12.021; GPMDB: 55.
  1796. Pavkova I, et al. (2017) "The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant." Front Cell Infect Microbiol 7:503; PMID: 29322032; doi: 10.3389/fcimb.2017.00503; GPMDB: 9.
  1797. Grube L, et al. (2018) "Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach To Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis." J Proteome Res 17(2):879–890; PMID: 29322779; doi: 10.1021/acs.jproteome.7b00684; GPMDB: 20.
  1798. Nassa G, et al. (2018) "Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications." Sci Rep 8(1):498; PMID: 29323256; doi: 10.1038/s41598-017-18985-5; GPMDB: 1.
  1799. Thriene K, et al. (2018) "Combinatorial Omics Analysis Reveals Perturbed Lysosomal Homeostasis in Collagen VII-deficient Keratinocytes." Mol Cell Proteomics 17(4):565–579; PMID: 29326176; doi: 10.1074/mcp.RA117.000437; GPMDB: 14.
  1800. Ashley J, et al. (2018) "Retrovirus-like Gag Protein Arc1 Binds RNA and Traffics across Synaptic Boutons." Cell 172(1-2):262–274.e11; PMID: 29328915; doi: 10.1016/j.cell.2017.12.022; GPMDB: 6.
  1801. Khan SY, et al. (2018) "Proteome Profiling of Developing Murine Lens Through Mass Spectrometry." Invest Ophthalmol Vis Sci 59(1):100–107; PMID: 29332127; doi: 10.1167/iovs.17-21601; GPMDB: 3.
  1802. Meng H, et al. (2018) "Proteome-Wide Characterization of Phosphorylation-Induced Conformational Changes in Breast Cancer." J Proteome Res 17(3):1129–1137; PMID: 29332387; doi: 10.1021/acs.jproteome.7b00795; GPMDB: 36.
  1803. Kim DK, et al. (2018) "Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics." Mol Neurodegener 13(1):2; PMID: 29338754; doi: 10.1186/s13024-017-0234-4; GPMDB: 8.
  1804. Sousa DZ, et al. (2018) "The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways." Nat Commun 9(1):239; PMID: 29339722; doi: 10.1038/s41467-017-02518-9; GPMDB: 84.
  1805. Vranka JA, et al. (2018) "Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures." Invest Ophthalmol Vis Sci 59(1):246–259; PMID: 29340639; doi: 10.1167/iovs.17-22759; GPMDB: 2.
  1806. Drabikowski K, et al. (2018) "Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling." Sci Rep 8(1):1139; PMID: 29348603; doi: 10.1038/s41598-018-19424-9; GPMDB: 37.
  1807. Gao Y, et al. (2018) "The histone methyltransferase DOT1L inhibits osteoclastogenesis and protects against osteoporosis." Cell Death Dis 9(2):33; PMID: 29348610; doi: 10.1038/s41419-017-0040-5; GPMDB: 2.
  1808. Phuyal S, et al. (2018) "Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes." Nanotoxicology 12(2):138–152; PMID: 29350075; doi: 10.1080/17435390.2018.1425500; GPMDB: 24.
  1809. Mustafa DAM, et al. (2018) "T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression." Acta Neuropathol 135(4):581–599; PMID: 29350274; doi: 10.1007/s00401-018-1806-2; GPMDB: 6.
  1810. Schönke M, et al. (2018) "Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition." Proteomics 18(5-6):e1700375; PMID: 29350465; doi: 10.1002/pmic.201700375; GPMDB: 22.
  1811. Ongay S, et al. (2018) "Cleavable Crosslinkers as Tissue Fixation Reagents for Proteomic Analysis." Chembiochem 19(7):736–743; PMID: 29356267; doi: 10.1002/cbic.201700625; GPMDB: 15.
  1812. Topf U, et al. (2018) "Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species." Nat Commun 9(1):324; PMID: 29358734; doi: 10.1038/s41467-017-02694-8; GPMDB: 96.
  1813. Kelly AC, et al. (2018) "Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells." Mol Cell Endocrinol 473:136–145; PMID: 29360563; doi: 10.1016/j.mce.2018.01.012; GPMDB: 9.
  1814. Walheim E, et al. (2018) "Respiromics - An integrative analysis linking mitochondrial bioenergetics to molecular signatures." Mol Metab 9:4–14; PMID: 29361498; doi: 10.1016/j.molmet.2018.01.002; GPMDB: 32.
  1815. Kosicek M, et al. (2018) "N-glycome of the Lysosomal Glycocalyx is Altered in Niemann-Pick Type C Disease (NPC) Model Cells." Mol Cell Proteomics 17(4):631–642; PMID: 29367433; doi: 10.1074/mcp.RA117.000129; GPMDB: 6.
  1816. Johnston HE, et al. (2018) "Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation." Mol Cell Proteomics 17(4):776–791; PMID: 29367434; doi: 10.1074/mcp.RA117.000539; GPMDB: 2.
  1817. Kostas M, et al. (2018) "Protein Tyrosine Phosphatase Receptor Type G (PTPRG) Controls Fibroblast Growth Factor Receptor (FGFR) 1 Activity and Influences Sensitivity to FGFR Kinase Inhibitors." Mol Cell Proteomics 17(5):850–870; PMID: 29371290; doi: 10.1074/mcp.RA117.000538; GPMDB: 54.
  1818. Adav SS, et al. (2018) "Studies on the Proteome of Human Hair - Identification of Histones and Deamidated Keratins." Sci Rep 8(1):1599; PMID: 29371649; doi: 10.1038/s41598-018-20041-9; GPMDB: 18.
  1819. Zhou Y, et al. (2018) "Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach." Anal Chem 90(4):2434–2439; PMID: 29376338; doi: 10.1021/acs.analchem.7b03710; GPMDB: 24.
  1820. Grossegesse M, et al. (2018) "Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores." Sci Rep 8(1):1807; PMID: 29379051; doi: 10.1038/s41598-018-20130-9; GPMDB: 16.
  1821. Hawkins AG, et al. (2018) "The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling." Mol Cell Proteomics 17(5):901–912; PMID: 29386236; doi: 10.1074/mcp.RA118.000596; GPMDB: 12.
  1822. Yair-Sabag S, et al. (2018) "The Peptide Repertoire of HLA-B27 may include Ligands with Lysine at P2 Anchor Position." Proteomics 18(9):e1700249; PMID: 29393594; doi: 10.1002/pmic.201700249; GPMDB: 87.
  1823. La Favor JD, et al. (2018) "Molecular Profile of Priapism Associated with Low Nitric Oxide Bioavailability." J Proteome Res 17(3):1031–1040; PMID: 29394072; doi: 10.1021/acs.jproteome.7b00657; GPMDB: 12.
  1824. Karayel Ö, et al. (2018) "Comparative phosphoproteomic analysis reveals signaling networks regulating monopolar and bipolar cytokinesis." Sci Rep 8(1):2269; PMID: 29396449; doi: 10.1038/s41598-018-20231-5; GPMDB: 16.
  1825. Ikoma M, et al. (2018) "KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite." PLoS One 13(2):e0192659; PMID: 29425228; doi: 10.1371/journal.pone.0192659; GPMDB: 3.
  1826. Vornhagen J, et al. (2018) "Human Cervical Mucus Plugs Exhibit Insufficiencies in Antimicrobial Activity Towards Group B Streptococcus." J Infect Dis 217(10):1626–1636; PMID: 29425317; doi: 10.1093/infdis/jiy076; GPMDB: 1.
  1827. Sandow JJ, et al. (2018) "Discovery and Validation of Novel Protein Biomarkers in Ovarian Cancer Patient Urine." Proteomics Clin Appl 12(3):e1700135; PMID: 29426060; doi: 10.1002/prca.201700135; GPMDB: 10.
  1828. De Muyt A, et al. (2018) "A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation." Genes Dev 32(3-4):283–296; PMID: 29440262; doi: 10.1101/gad.308510.117; GPMDB: 19.
  1829. Schanzenbächer CT, et al. (2018) "Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses." Elife; PMID: 29447110; doi: 10.7554/eLife.33322; GPMDB: 78.
  1830. Mathieson T, et al. (2018) "Systematic analysis of protein turnover in primary cells." Nat Commun 9(1):689; PMID: 29449567; doi: 10.1038/s41467-018-03106-1; GPMDB: 883.
  1831. Lan J, et al. (2018) "Systematic Evaluation of the Use of Human Plasma and Serum for Mass-Spectrometry-Based Shotgun Proteomics." J Proteome Res 17(4):1426–1435; PMID: 29451788; doi: 10.1021/acs.jproteome.7b00788; GPMDB: 36.
  1832. Bergmann TJ, et al. (2018) "Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides." J Biol Chem 293(15):5600–5612; PMID: 29453283; doi: 10.1074/jbc.RA117.001484; GPMDB: 39.
  1833. Eckersley A, et al. (2018) "Structural and compositional diversity of fibrillin microfibrils in human tissues." J Biol Chem 293(14):5117–5133; PMID: 29453284; doi: 10.1074/jbc.RA117.001483; GPMDB: 19.
  1834. Das CK, et al. (2018) "BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells." Neoplasia 20(3):263–279; PMID: 29462756; doi: 10.1016/j.neo.2018.01.001; GPMDB: 12.
  1835. Gulati T, et al. (2018) "Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells." Mol Cell Proteomics 17(6):1170–1183; PMID: 29463595; doi: 10.1074/mcp.RA117.000504; GPMDB: 3.
  1836. Smestad J, et al. (2018) "Characterization and metabolic synthetic lethal testing in a new model of SDH-loss familial pheochromocytoma and paraganglioma." Oncotarget 9(5):6109–6127; PMID: 29464059; doi: 10.18632/oncotarget.23639; GPMDB: 20.
  1837. Velez G, et al. (2018) "Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases." PLoS One 13(2):e0193250; PMID: 29466423; doi: 10.1371/journal.pone.0193250; GPMDB: 9.
  1838. Laria AE, et al. (2018) "Secretome Analysis of Hypoxia-Induced 3T3-L1 Adipocytes Uncovers Novel Proteins Potentially Involved in Obesity." Proteomics 18(7):e1700260; PMID: 29466620; doi: 10.1002/pmic.201700260; GPMDB: 8.
  1839. O'Loughlin T, et al. (2018) "The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics." EMBO Rep 19(4):; PMID: 29467281; doi: 10.15252/embr.201744884; GPMDB: 34.
  1840. Di Costanzo A, et al. (2018) "The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia." Oncogene 37(19):2559–2572; PMID: 29467492; doi: 10.1038/s41388-018-0143-1; GPMDB: 6.
  1841. Lee SE, et al. (2018) "Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines." Proteomics 18(8):e1700386; PMID: 29474001; doi: 10.1002/pmic.201700386; GPMDB: 200.
  1842. Chen D, et al. (2018) "Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics." Anal Chim Acta 1012:1–9; PMID: 29475469; doi: 10.1016/j.aca.2018.01.037; GPMDB: 2.
  1843. Hermanns T, et al. (2018) "A family of unconventional deubiquitinases with modular chain specificity determinants." Nat Commun 9(1):799; PMID: 29476094; doi: 10.1038/s41467-018-03148-5; GPMDB: 18.
  1844. Zhan Y, et al. (2018) "Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii." PLoS One 13(2):e0185039; PMID: 29481573; doi: 10.1371/journal.pone.0185039; GPMDB: 16.
  1845. Zeiner PS, et al. (2018) "CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival." Acta Neuropathol Commun 6(1):18; PMID: 29490700; doi: 10.1186/s40478-018-0521-5; GPMDB: 20.
  1846. Marquez J, et al. (2018) "Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver." Int J Cancer 143(3):709–719; PMID: 29492958; doi: 10.1002/ijc.31343; GPMDB: 39.
  1847. Olsson N, et al. (2018) "T-Cell Immunopeptidomes Reveal Cell Subtype Surface Markers Derived From Intracellular Proteins." Proteomics 18(12):e1700410; PMID: 29493099; doi: 10.1002/pmic.201700410; GPMDB: 30.
  1848. Goel RK, et al. (2018) "Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src-related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS)." Mol Cell Proteomics 17(5):925–947; PMID: 29496907; doi: 10.1074/mcp.RA118.000643; GPMDB: 4.
  1849. Azimi A, et al. (2018) "Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors." Mol Syst Biol 14(3):e7858; PMID: 29507054; doi: 10.15252/msb.20177858; GPMDB: 16.
  1850. Lanoix J, et al. (2018) "Comparison of the MHC I Immunopeptidome Repertoire of B-Cell Lymphoblasts Using Two Isolation Methods." Proteomics 18(12):e1700251; PMID: 29508533; doi: 10.1002/pmic.201700251; GPMDB: 48.
  1851. Carette X, et al. (2018) "Multisystem Analysis of Mycobacterium tuberculosis Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface." mBio 9(2):; PMID: 29511081; doi: 10.1128/mBio.02333-17; GPMDB: 48.
  1852. Iradi MCG, et al. (2018) "Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy." Sci Rep 8(1):4049; PMID: 29511296; doi: 10.1038/s41598-018-21371-4; GPMDB: 23.
  1853. Evans PR, et al. (2018) "Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca2+/CaM) and CaM Kinase II (CaMKII) Binding Partner." J Proteome Res 17(4):1700–1711; PMID: 29518331; doi: 10.1021/acs.jproteome.8b00027; GPMDB: 6.
  1854. Ge S, et al. (2018) "A proteomic landscape of diffuse-type gastric cancer." Nat Commun 9(1):1012; PMID: 29520031; doi: 10.1038/s41467-018-03121-2; GPMDB: 164.
  1855. Ojalill M, et al. (2018) "The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis." Prostate 78(8):583–594; PMID: 29520855; doi: 10.1002/pros.23503; GPMDB: 62.
  1856. Chen JT, et al. (2018) "Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells." J Proteomics 188:139–151; PMID: 29524648; doi: 10.1016/j.jprot.2018.02.031; GPMDB: 4.
  1857. Deeke SA, et al. (2018) "Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis." Am J Gastroenterol 113(5):713–724; PMID: 29531307; doi: 10.1038/s41395-018-0024-9; GPMDB: 112.
  1858. Costanza B, et al. (2018) "Innovative methodology for the identification of soluble biomarkers in fresh tissues." Oncotarget 9(12):10665–10680; PMID: 29535834; doi: 10.18632/oncotarget.24366; GPMDB: 15.
  1859. Zila N, et al. (2018) "Proteomics-based insights into mitogen-activated protein kinase inhibitor resistance of cerebral melanoma metastases." Clin Proteomics 15:13; PMID: 29541007; doi: 10.1186/s12014-018-9189-x; GPMDB: 36.
  1860. Huang X, et al. (2018) "Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p." J Biol Chem 293(18):6693–6706; PMID: 29549123; doi: 10.1074/jbc.RA118.001689; GPMDB: 1.
  1861. Savitski MM, et al. (2018) "Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis." Cell 173(1):260–274.e25; PMID: 29551266; doi: 10.1016/j.cell.2018.02.030; GPMDB: 5.
  1862. Salunkhe V, et al. (2019) "A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology." Platelets 30(3):368–379; PMID: 29553857; doi: 10.1080/09537104.2018.1447658; GPMDB: 27.
  1863. Liang P, et al. (2018) "Detection of salivary protein biomarkers of saliva secretion disorder in a primary Sjögren syndrome murine model." J Pharm Biomed Anal 154:252–262; PMID: 29558726; doi: 10.1016/j.jpba.2018.03.023; GPMDB: 2.
  1864. Saei AA, et al. (2018) "Comparative Proteomics of Dying and Surviving Cancer Cells Improves the Identification of Drug Targets and Sheds Light on Cell Life/Death Decisions." Mol Cell Proteomics 17(6):1144–1155; PMID: 29572246; doi: 10.1074/mcp.RA118.000610; GPMDB: 90.
  1865. Cai Q, et al. (2018) "Essential role of Rpd3-dependent lysine modification in the growth, development and virulence of Beauveria bassiana." Environ Microbiol 20(4):1590–1606; PMID: 29575704; doi: 10.1111/1462-2920.14100; GPMDB: 5.
  1866. Zhang C, et al. (2018) "Urine Proteome Profiling Predicts Lung Cancer from Control Cases and Other Tumors." EBioMedicine 30:120–128; PMID: 29576497; doi: 10.1016/j.ebiom.2018.03.009; GPMDB: 557.
  1867. Haller C, et al. (2018) "Insights into Islet Differentiation and Maturation through Proteomic Characterization of a Human iPSC-Derived Pancreatic Endocrine Model." Proteomics Clin Appl 12(5):e1600173; PMID: 29578310; doi: 10.1002/prca.201600173; GPMDB: 218.
  1868. Tucher C, et al. (2018) "Extracellular Vesicle Subtypes Released From Activated or Apoptotic T-Lymphocytes Carry a Specific and Stimulus-Dependent Protein Cargo." Front Immunol 9:534; PMID: 29599781; doi: 10.3389/fimmu.2018.00534; GPMDB: 24.
  1869. Klont F, et al. (2018) "Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics." Anal Chem 90(8):5405–5413; PMID: 29608294; doi: 10.1021/acs.analchem.8b00600; GPMDB: 80.
  1870. Bostanci N, et al. (2018) "Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease." Mol Cell Proteomics 17(7):1392–1409; PMID: 29610270; doi: 10.1074/mcp.RA118.000718; GPMDB: 54.
  1871. Sipilä KH, et al. (2018) "Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms." J Biol Chem 293(20):7645–7658; PMID: 29615493; doi: 10.1074/jbc.RA118.002200; GPMDB: 54.
  1872. Lobas AA, et al. (2018) "Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics." J Proteome Res 17(5):1801–1811; PMID: 29619825; doi: 10.1021/acs.jproteome.7b00841; GPMDB: 48.
  1873. Lim S, et al. (2018) "Glioblastoma-secreted soluble CD44 activates tau pathology in the brain." Exp Mol Med 50(4):1–11; PMID: 29622771; doi: 10.1038/s12276-017-0008-7; GPMDB: 2.
  1874. Sanz-Bravo A, et al. (2018) "Ranking the Contribution of Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) Polymorphisms to Shaping the HLA-B*27 Peptidome." Mol Cell Proteomics 17(7):1308–1323; PMID: 29632046; doi: 10.1074/mcp.RA117.000565; GPMDB: 15.
  1875. Azimi A, et al. (2018) "Differential proteomic analysis of actinic keratosis, Bowen's disease and cutaneous squamous cell carcinoma by label-free LC-MS/MS." J Dermatol Sci 91(1):69–78; PMID: 29665991; doi: 10.1016/j.jdermsci.2018.04.006; GPMDB: 31.
  1876. Wu W, et al. (2018) "CTGF/VEGFA-activated Fibroblasts Promote Tumor Migration Through Micro-environmental Modulation." Mol Cell Proteomics 17(8):1502–1514; PMID: 29669735; doi: 10.1074/mcp.RA118.000708; GPMDB: 57.
  1877. Mao F, et al. (2018) "Quantitative proteomics of Bombyx mori after BmNPV challenge." J Proteomics 181:142–151; PMID: 29674014; doi: 10.1016/j.jprot.2018.04.010; GPMDB: 18.
  1878. Johnston D, et al. (2018) "Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle." Theriogenology 114:301–307; PMID: 29677633; doi: 10.1016/j.theriogenology.2018.04.008; GPMDB: 63.
  1879. Zhang X, et al. (2018) "Comparative Proteome Analysis Reveals that Cuticular Proteins Analogous to Peritrophin-Motif Proteins are Involved in the Regeneration of Chitin Layer in the Silk Gland of Bombyx mori at the Molting Stage." Proteomics 18(19):e1700389; PMID: 29687606; doi: 10.1002/pmic.201700389; GPMDB: 6.
  1880. Komov L, et al. (2018) "Cell Surface MHC Class I Expression Is Limited by the Availability of Peptide-Receptive "Empty" Molecules Rather than by the Supply of Peptide Ligands." Proteomics 18(12):e1700248; PMID: 29707912; doi: 10.1002/pmic.201700248; GPMDB: 35.
  1881. Rosting C, et al. (2018) "High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots." J Proteome Res 17(6):1997–2004; PMID: 29707944; doi: 10.1021/acs.jproteome.7b00746; GPMDB: 42.
  1882. Chen X, et al. (2018) "A novel USP9X substrate TTK contributes to tumorigenesis in non-small-cell lung cancer." Theranostics 8(9):2348–2360; PMID: 29721084; doi: 10.7150/thno.22901; GPMDB: 1.
  1883. Zellner A, et al. (2018) "CADASIL brain vessels show a HTRA1 loss-of-function profile." Acta Neuropathol 136(1):111–125; PMID: 29725820; doi: 10.1007/s00401-018-1853-8; GPMDB: 12.
  1884. Van Quickelberghe E, et al. (2018) "Identification of Immune-Responsive Gene 1 (IRG1) as a Target of A20." J Proteome Res 17(6):2182–2191; PMID: 29733654; doi: 10.1021/acs.jproteome.8b00139; GPMDB: 30.
  1885. Meier F, et al. (2018) "BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes." Nat Methods 15(6):440–448; PMID: 29735998; doi: 10.1038/s41592-018-0003-5; GPMDB: 60.
  1886. Seltmann K, et al. (2018) "Humidity-regulated CLCA2 protects the epidermis from hyperosmotic stress." Sci Transl Med 10(440):; PMID: 29743348; doi: 10.1126/scitranslmed.aao4650; GPMDB: 24.
  1887. Malet JK, et al. (2018) "Rapid Remodeling of the Host Epithelial Cell Proteome by the Listeriolysin O (LLO) Pore-forming Toxin." Mol Cell Proteomics 17(8):1627–1636; PMID: 29752379; doi: 10.1074/mcp.RA118.000767; GPMDB: 4.
  1888. Aslebagh R, et al. (2018) "Comparative two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer." Electrophoresis; PMID: 29756217; doi: 10.1002/elps.201800025; GPMDB: 62.
  1889. Gaviard C, et al. (2018) "Lysine Succinylation and Acetylation in Pseudomonas aeruginosa." J Proteome Res 17(7):2449–2459; PMID: 29770699; doi: 10.1021/acs.jproteome.8b00210; GPMDB: 24.
  1890. Di Lorenzo G, et al. (2018) "Lysosomal Proteome and Secretome Analysis Identifies Missorted Enzymes and Their Nondegraded Substrates in Mucolipidosis III Mouse Cells." Mol Cell Proteomics 17(8):1612–1626; PMID: 29773673; doi: 10.1074/mcp.RA118.000720; GPMDB: 30.
  1891. Wang H, et al. (2018) "Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice." Mol Cell Proteomics 17(7):1354–1364; PMID: 29776966; doi: 10.1074/mcp.RA118.000620; GPMDB: 9.
  1892. Guo J, et al. (2018) "Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice." Proc Natl Acad Sci U S A 115(23):E5326–E5333; PMID: 29784807; doi: 10.1073/pnas.1800352115; GPMDB: 30.
  1893. Ternette N, et al. (2018) "Immunopeptidomic Profiling of HLA-A2-Positive Triple Negative Breast Cancer Identifies Potential Immunotherapy Target Antigens." Proteomics 18(12):e1700465; PMID: 29786170; doi: 10.1002/pmic.201700465; GPMDB: 66.
  1894. Löffler MW, et al. (2018) "Mapping the HLA Ligandome of Colorectal Cancer Reveals an Imprint of Malignant Cell Transformation." Cancer Res 78(16):4627–4641; PMID: 29789417; doi: 10.1158/0008-5472.CAN-17-1745; GPMDB: 530.
  1895. Souquet B, et al. (2018) "Nup133 Is Required for Proper Nuclear Pore Basket Assembly and Dynamics in Embryonic Stem Cells." Cell Rep 23(8):2443–2454; PMID: 29791854; doi: 10.1016/j.celrep.2018.04.070; GPMDB: 18.
  1896. Nieto R LM, et al. (2018) "Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways?" Mol Cell Proteomics 17(9):1685–1701; PMID: 29844232; doi: 10.1074/mcp.RA118.000821; GPMDB: 88.
  1897. Muller L, et al. (2018) "Extended investigation of tube-gel sample preparation: a versatile and simple choice for high throughput quantitative proteomics." Sci Rep 8(1):8260; PMID: 29844437; doi: 10.1038/s41598-018-26600-4; GPMDB: 40.
  1898. Mohammad I, et al. (2018) "Quantitative proteomic characterization and comparison of T helper 17 and induced regulatory T cells." PLoS Biol 16(5):e2004194; PMID: 29851958; doi: 10.1371/journal.pbio.2004194; GPMDB: 45.
  1899. Marín E, et al. (2018) "Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics." Front Microbiol 9:975; PMID: 29867878; doi: 10.3389/fmicb.2018.00975; GPMDB: 3.
  1900. Portela M, et al. (2018) "Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex." Sci Signal 11(533):; PMID: 29871910; doi: 10.1126/scisignal.aar1976; GPMDB: 11.
  1901. Serandour AA, et al. (2018) "TRPS1 regulates oestrogen receptor binding and histone acetylation at enhancers." Oncogene 37(39):5281–5291; PMID: 29895970; doi: 10.1038/s41388-018-0312-2; GPMDB: 7.
  1902. Madeira JP, et al. (2018) "Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579." Data Brief 18:394–398; PMID: 29896523; doi: 10.1016/j.dib.2018.03.030; GPMDB: 86.
  1903. He C, et al. (2018) "Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae." J Proteome Res 17(7):2335–2344; PMID: 29897761; doi: 10.1021/acs.jproteome.8b00032; GPMDB: 20.
  1904. Adav SS, et al. (2018) "Proteomic Analysis of Aqueous Humor from Primary Open Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade." J Proteome Res 17(7):2499–2510; PMID: 29901396; doi: 10.1021/acs.jproteome.8b00244; GPMDB: 80.
  1905. Ly T, et al. (2018) "Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells." Wellcome Open Res 3:51; PMID: 29904729; doi: 10.12688/wellcomeopenres.14392.1; GPMDB: 1953.
  1906. Steenbeek SC, et al. (2018) "Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles." EMBO J 37(15):; PMID: 29907695; doi: 10.15252/embj.201798357; GPMDB: 67.
  1907. Selvan LDN, et al. (2018) "Phosphoproteomics of Retinoblastoma: A Pilot Study Identifies Aberrant Kinases." Molecules 23(6):; PMID: 29914080; doi: 10.3390/molecules23061454; GPMDB: 12.
  1908. Huang H, et al. (2018) "Quantitative Proteomics and Phosphoproteomics Analysis Revealed Different Regulatory Mechanisms of Halothane and Rendement Napole Genes in Porcine Muscle Metabolism." J Proteome Res 17(8):2834–2849; PMID: 29916714; doi: 10.1021/acs.jproteome.8b00294; GPMDB: 6.
  1909. Rapino F, et al. (2018) "Codon-specific translation reprogramming promotes resistance to targeted therapy." Nature 558(7711):605–609; PMID: 29925953; doi: 10.1038/s41586-018-0243-7; GPMDB: 40.
  1910. Kim DS, et al. (2018) "Broad spectrum proteomics analysis of the inferior colliculus following acute hydrogen sulfide exposure." Toxicol Appl Pharmacol 355:28–42; PMID: 29932956; doi: 10.1016/j.taap.2018.06.001; GPMDB: 6.
  1911. Zhu Y, et al. (2018) "Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets." Mol Cell Proteomics 17(9):1864–1874; PMID: 29941660; doi: 10.1074/mcp.TIR118.000686; GPMDB: 24.
  1912. Drulis-Fajdasz D, et al. (2018) "Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue." Adv Biol Regul 69:35–42; PMID: 29958836; doi: 10.1016/j.jbior.2018.06.001; GPMDB: 72.
  1913. Pietras Z, et al. (2018) "Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria." Nat Commun 9(1):2558; PMID: 29967381; doi: 10.1038/s41467-018-05007-9; GPMDB: 18.
  1914. Akimov V, et al. (2018) "UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites." Nat Struct Mol Biol 25(7):631–640; PMID: 29967540; doi: 10.1038/s41594-018-0084-y; GPMDB: 136.
  1915. Tölle RC, et al. (2018) "Three-Dimensional Cell Culture Conditions Affect the Proteome of Cancer-Associated Fibroblasts." J Proteome Res 17(8):2780–2789; PMID: 29989826; doi: 10.1021/acs.jproteome.8b00237; GPMDB: 318.
  1916. Sureka R, et al. (2018) "Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold Proteins in Drosophila S2 Cells-Transmission of Hallmarks of Nuclear Organization Through Mitosis." Mol Cell Proteomics 17(10):1965–1978; PMID: 29991507; doi: 10.1074/mcp.RA118.000591; GPMDB: 6.
  1917. Kim D, et al. (2018) "ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells." Nucleic Acids Res 46(16):8311–8325; PMID: 30010936; doi: 10.1093/nar/gky625; GPMDB: 2.
  1918. Dragoi D, et al. (2018) "Proteomics Analysis of Monocyte-Derived Hepatocyte-Like Cells Identifies Integrin Beta 3 as a Specific Biomarker for Drug-Induced Liver Injury by Diclofenac." Front Pharmacol 9:699; PMID: 30022949; doi: 10.3389/fphar.2018.00699; GPMDB: 98.
  1919. Duda P, et al. (2018) "Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging." Aging (Albany NY) 10(7):1682–1697; PMID: 30026405; doi: 10.18632/aging.101501; GPMDB: 59.
  1920. Evans J, et al. (2019) "Menstrual fluid factors facilitate tissue repair: identification and functional action in endometrial and skin repair." FASEB J 33(1):584–605; PMID: 30036086; doi: 10.1096/fj.201800086R; GPMDB: 46.
  1921. Iglesias-Gato D, et al. (2018) "The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications." Clin Cancer Res 24(21):5433–5444; PMID: 30042207; doi: 10.1158/1078-0432.CCR-18-1229; GPMDB: 21.
  1922. Ghezraoui H, et al. (2018) "53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ." Nature 560(7716):122–127; PMID: 30046110; doi: 10.1038/s41586-018-0362-1; GPMDB: 8.
  1923. Nilsen BW, et al. (2018) "Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes." Eur J Oral Sci 126(5):345–358; PMID: 30051916; doi: 10.1111/eos.12559; GPMDB: 92.
  1924. Stokman MF, et al. (2019) "Changes in the urinary extracellular vesicle proteome are associated with nephronophthisis-related ciliopathies." J Proteomics 192:27–36; PMID: 30071318; doi: 10.1016/j.jprot.2018.07.008; GPMDB: 120.
  1925. Park S, et al. (2018) "A secretome profile indicative of oleate-induced proliferation of HepG2 hepatocellular carcinoma cells." Exp Mol Med 50(8):1–14; PMID: 30076294; doi: 10.1038/s12276-018-0120-3; GPMDB: 24.
  1926. de la Parra C, et al. (2018) "A widespread alternate form of cap-dependent mRNA translation initiation." Nat Commun 9(1):3068; PMID: 30076308; doi: 10.1038/s41467-018-05539-0; GPMDB: 21.
  1927. Kozono S, et al. (2018) "Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells." Nat Commun 9(1):3069; PMID: 30093655; doi: 10.1038/s41467-018-05402-2; GPMDB: 12.
  1928. Kumar G, et al. (2018) "Proteome Profiles of Head Kidney and Spleen of Rainbow Trout (Oncorhynchus Mykiss)." Proteomics 18(17):e1800101; PMID: 30094954; doi: 10.1002/pmic.201800101; GPMDB: 54.
  1929. Schiza C, et al. (2018) "Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies." Mol Cell Proteomics 17(12):2480–2495; PMID: 30097533; doi: 10.1074/mcp.RA118.000749; GPMDB: 44.
  1930. Hwang H, et al. (2018) "Identification of Missing Proteins in Human Olfactory Epithelial Tissue by Liquid Chromatography-Tandem Mass Spectrometry." J Proteome Res 17(12):4320–4324; PMID: 30113170; doi: 10.1021/acs.jproteome.8b00408; GPMDB: 23.
  1931. Macron C, et al. (2018) "Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification." J Proteome Res 17(12):4113–4126; PMID: 30124047; doi: 10.1021/acs.jproteome.8b00300; GPMDB: 24.
  1932. Simunovic F, et al. (2019) "Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: A quantitative proteomics approach." J Cell Biochem 120(1):396–404; PMID: 30126049; doi: 10.1002/jcb.27394; GPMDB: 20.
  1933. Shen ZQ, et al. (2019) "Characterization of the Sperm Proteome and Reproductive Outcomes with in Vitro, Fertilization after a Reduction in Male Ejaculatory Abstinence Period." Mol Cell Proteomics 18(Suppl 1):S109–S117; PMID: 30126978; doi: 10.1074/mcp.RA117.000541; GPMDB: 18.
  1934. Locatelli G, et al. (2018) "Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model." Nat Neurosci 21(9):1196–1208; PMID: 30127427; doi: 10.1038/s41593-018-0212-3; GPMDB: 78.
  1935. DeLeon-Pennell KY, et al. (2018) "LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling." Basic Res Cardiol 113(5):40; PMID: 30132266; doi: 10.1007/s00395-018-0699-5; GPMDB: 120.
  1936. Weßbecher IM, et al. (2018) "DNA mismatch repair activity of MutLα is regulated by CK2-dependent phosphorylation of MLH1 (S477)." Mol Carcinog 57(12):1723–1734; PMID: 30136313; doi: 10.1002/mc.22892; GPMDB: 2.
  1937. Bruning U, et al. (2018) "Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation." Cell Metab 28(6):866–880.e15; PMID: 30146486; doi: 10.1016/j.cmet.2018.07.019; GPMDB: 2.
  1938. Varland S, et al. (2018) "N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae." Mol Cell Proteomics 17(12):2309–2323; PMID: 30150368; doi: 10.1074/mcp.RA118.000982; GPMDB: 17.
  1939. Béguin EP, et al. (2019) "Integrated proteomic analysis of tumor necrosis factor α and interleukin 1β-induced endothelial inflammation." J Proteomics 192:89–101; PMID: 30153514; doi: 10.1016/j.jprot.2018.08.011; GPMDB: 51.
  1940. Yanovich G, et al. (2018) "Clinical Proteomics of Breast Cancer Reveals a Novel Layer of Breast Cancer Classification." Cancer Res 78(20):6001–6010; PMID: 30154156; doi: 10.1158/0008-5472.CAN-18-1079; GPMDB: 30.
  1941. Ten-Doménech I, et al. (2018) "Improving Fractionation of Human Milk Proteins through Calcium Phosphate Coprecipitation and Their Rapid Characterization by Capillary Electrophoresis." J Proteome Res 17(10):3557–3564; PMID: 30156851; doi: 10.1021/acs.jproteome.8b00526; GPMDB: 26.
  1942. Guneykaya D, et al. (2018) "Transcriptional and Translational Differences of Microglia from Male and Female Brains." Cell Rep 24(10):2773–2783.e6; PMID: 30184509; doi: 10.1016/j.celrep.2018.08.001; GPMDB: 8.
  1943. Carnielli CM, et al. (2018) "Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer." Nat Commun 9(1):3598; PMID: 30185791; doi: 10.1038/s41467-018-05696-2; GPMDB: 122.
  1944. Barkovits K, et al. (2018) "Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry." J Proteome Res 17(10):3418–3430; PMID: 30207155; doi: 10.1021/acs.jproteome.8b00308; GPMDB: 44.
  1945. Abreha MH, et al. (2018) "Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Disease." Proteomics 18(20):e1800108; PMID: 30230243; doi: 10.1002/pmic.201800108; GPMDB: 29.
  1946. Finamore F, et al. (2019) "A high glucose level is associated with decreased aspirin-mediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: A pilot study." J Proteomics 192:258–266; PMID: 30240925; doi: 10.1016/j.jprot.2018.09.007; GPMDB: 18.
  1947. Ohta S, et al. (2019) "Quantitative Proteomics of the Mitotic Chromosome Scaffold Reveals the Association of BAZ1B with Chromosomal Axes." Mol Cell Proteomics 18(2):169–181; PMID: 30266865; doi: 10.1074/mcp.RA118.000923; GPMDB: 3.
  1948. Sun J, et al. (2018) "Multiproteases Combined with High-pH Reverse-Phase Separation Strategy Verified Fourteen Missing Proteins in Human Testis Tissue." J Proteome Res 17(12):4171–4177; PMID: 30280576; doi: 10.1021/acs.jproteome.8b00397; GPMDB: 108.
  1949. Sepil I, et al. (2019) "Quantitative Proteomics Identification of Seminal Fluid Proteins in Male Drosophila melanogaster." Mol Cell Proteomics 18(Suppl 1):S46–S58; PMID: 30287546; doi: 10.1074/mcp.RA118.000831; GPMDB: 87.
  1950. Szklanna PB, et al. (2019) "The Platelet Releasate is Altered in Human Pregnancy." Proteomics Clin Appl 13(3):e1800162; PMID: 30318839; doi: 10.1002/prca.201800162; GPMDB: 31.
  1951. Erdmann J, et al. (2018) "Environment-driven changes of mRNA and protein levels in Pseudomonas aeruginosa." Environ Microbiol 20(11):3952–3963; PMID: 30346651; doi: 10.1111/1462-2920.14419; GPMDB: 253.
  1952. Krahmer N, et al. (2018) "Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis." Dev Cell 47(2):205–221.e7; PMID: 30352176; doi: 10.1016/j.devcel.2018.09.017; GPMDB: 134.
  1953. van Mierlo G, et al. (2018) "Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state." Stem Cell Res 33:135–145; PMID: 30352361; doi: 10.1016/j.scr.2018.09.017; GPMDB: 6.
  1954. El-Rami FE, et al. (2019) "Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants." Mol Cell Proteomics 18(1):127–150; PMID: 30352803; doi: 10.1074/mcp.RA118.001125; GPMDB: 8.
  1955. Serra A, et al. (2018) "Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo." Arterioscler Thromb Vasc Biol 38(10):2396–2409; PMID: 30354219; doi: 10.1161/ATVBAHA.118.311552; GPMDB: 16.
  1956. Zhao Y, et al. (2019) "Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers." Exp Eye Res 179:32–46; PMID: 30359574; doi: 10.1016/j.exer.2018.10.011; GPMDB: 3.
  1957. Magagnotti C, et al. (2019) "Identification of nephropathy predictors in urine from children with a recent diagnosis of type 1 diabetes." J Proteomics 193:205–216; PMID: 30366120; doi: 10.1016/j.jprot.2018.10.010; GPMDB: 51.
  1958. Del Gaudio F, et al. (2018) "Chemoproteomic fishing identifies arzanol as a positive modulator of brain glycogen phosphorylase." Chem Commun (Camb) 54(91):12863–12866; PMID: 30375590; doi: 10.1039/c8cc07692h; GPMDB: 82.
  1959. Tamminen M, et al. (2018) "Proteome evolution under non-substitutable resource limitation." Nat Commun 9(1):4650; PMID: 30405128; doi: 10.1038/s41467-018-07106-z; GPMDB: 32.
  1960. Wang L, et al. (2018) "Proteomic Analysis of Larval Integument in a Dominant Obese Translucent (Obs) Silkworm Mutant." J Insect Sci 18(6):; PMID: 30412263; doi: 10.1093/jisesa/iey098; GPMDB: 6.
  1961. Bonnet J, et al. (2019) "Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects." J Proteomics 196:150–161; PMID: 30414516; doi: 10.1016/j.jprot.2018.11.005; GPMDB: 40.
  1962. Gontan C, et al. (2018) "REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice." Nat Commun 9(1):4752; PMID: 30420655; doi: 10.1038/s41467-018-07060-w; GPMDB: 120.
  1963. Gfeller D, et al. (2018) "The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands." J Immunol 201(12):3705–3716; PMID: 30429286; doi: 10.4049/jimmunol.1800914; GPMDB: 11.
  1964. Bigenzahn JW, et al. (2018) "LZTR1 is a regulator of RAS ubiquitination and signaling." Science 362(6419):1171–1177; PMID: 30442766; doi: 10.1126/science.aap8210; GPMDB: 20.
  1965. Cominetti O, et al. (2018) "Obesity shows preserved plasma proteome in large independent clinical cohorts." Sci Rep 8(1):16981; PMID: 30451909; doi: 10.1038/s41598-018-35321-7; GPMDB: 318.
  1966. Narzt MS, et al. (2019) "A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids." Redox Biol 20:467–482; PMID: 30466060; doi: 10.1016/j.redox.2018.11.006; GPMDB: 18.
  1967. Cavanagh JP, et al. (2019) "Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate." J Proteomics 197:106–114; PMID: 30472255; doi: 10.1016/j.jprot.2018.11.013; GPMDB: 12.
  1968. Zhu J, et al. (2019) "Discovery and Quantification of Nonhuman Proteins in Human Milk." J Proteome Res 18(1):225–238; PMID: 30489082; doi: 10.1021/acs.jproteome.8b00550; GPMDB: 74.
  1969. Back S, et al. (2019) "Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress." J Proteome Res 18(1):309–318; PMID: 30489083; doi: 10.1021/acs.jproteome.8b00623; GPMDB: 20.
  1970. Novo D, et al. (2018) "Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels." Nat Commun 9(1):5069; PMID: 30498210; doi: 10.1038/s41467-018-07339-y; GPMDB: 2.
  1971. Giovani PA, et al. (2019) "Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth." J Periodontol 90(7):775–787; PMID: 30499115; doi: 10.1002/JPER.18-0217; GPMDB: 6.
  1972. Gruhlke MCH, et al. (2019) "The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects." Free Radic Biol Med 131:144–153; PMID: 30500420; doi: 10.1016/j.freeradbiomed.2018.11.022; GPMDB: 24.
  1973. Wolf A, et al. (2018) "Olfactory cleft proteome does not reflect olfactory performance in patients with idiopathic and postinfectious olfactory disorder: A pilot study." Sci Rep 8(1):17554; PMID: 30510230; doi: 10.1038/s41598-018-35776-8; GPMDB: 21.
  1974. Tascher G, et al. (2019) "Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth." FASEB J 33(3):3772–3783; PMID: 30521760; doi: 10.1096/fj.201801463R; GPMDB: 36.
  1975. Cann ML, et al. (2019) "Dasatinib Is Preferentially Active in the Activated B-Cell Subtype of Diffuse Large B-Cell Lymphoma." J Proteome Res 18(1):522–534; PMID: 30540191; doi: 10.1021/acs.jproteome.8b00841; GPMDB: 24.
  1976. Khodadoust MS, et al. (2019) "B-cell lymphomas present immunoglobulin neoantigens." Blood 133(8):878–881; PMID: 30545830; doi: 10.1182/blood-2018-06-845156; GPMDB: 52.
  1977. Roustan V, et al. (2018) "Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii." Front Plant Sci 9:1590; PMID: 30546371; doi: 10.3389/fpls.2018.01590; GPMDB: 54.
  1978. Yao Z, et al. (2019) "Label-Free Proteomic Analysis of Exosomes Secreted from THP-1-Derived Macrophages Treated with IFN-α Identifies Antiviral Proteins Enriched in Exosomes." J Proteome Res 18(3):855–864; PMID: 30550287; doi: 10.1021/acs.jproteome.8b00514; GPMDB: 23.
  1979. Alves Feliciano C, et al. (2019) "CotL, a new morphogenetic spore coat protein of Clostridium difficile." Environ Microbiol 21(3):984–1003; PMID: 30556639; doi: 10.1111/1462-2920.14505; GPMDB: 6.
  1980. Yelamanchi SD, et al. (2018) "Proteomic Analysis of the Human Anterior Pituitary Gland." OMICS 22(12):759–769; PMID: 30571610; doi: 10.1089/omi.2018.0160; GPMDB: 3.
  1981. Nanaware PP, et al. (2019) "HLA-DO Modulates the Diversity of the MHC-II Self-peptidome." Mol Cell Proteomics 18(3):490–503; PMID: 30573663; doi: 10.1074/mcp.RA118.000956; GPMDB: 26.
  1982. Sathe G, et al. (2019) "Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer's Disease." Proteomics Clin Appl 13(4):e1800105; PMID: 30578620; doi: 10.1002/prca.201800105; GPMDB: 48.
  1983. Aloui C, et al. (2019) "Differential protein expression of blood platelet components associated with adverse transfusion reactions." J Proteomics 194:25–36; PMID: 30590131; doi: 10.1016/j.jprot.2018.12.019; GPMDB: 48.
  1984. Zhou Z, et al. (2019) "Comprehensive Analysis of Lysine Acetylome Reveals a Site-Specific Pattern in Rapamycin-Induced Autophagy." J Proteome Res 18(3):865–877; PMID: 30592415; doi: 10.1021/acs.jproteome.8b00533; GPMDB: 6.
  1985. Merlos Rodrigo MA, et al. (2019) "Proteomic Signature of Neuroblastoma Cells UKF-NB-4 Reveals Key Role of Lysosomal Sequestration and the Proteasome Complex in Acquiring Chemoresistance to Cisplatin." J Proteome Res 18(3):1255–1263; PMID: 30592607; doi: 10.1021/acs.jproteome.8b00867; GPMDB: 9.
  1986. Dunn J, et al. (2019) "Proteomic analysis discovers the differential expression of novel proteins and phosphoproteins in meningioma including NEK9, HK2 and SET and deregulation of RNA metabolism." EBioMedicine 40:77–91; PMID: 30594554; doi: 10.1016/j.ebiom.2018.12.048; GPMDB: 78.
  1987. Żylicz JJ, et al. (2019) "The Implication of Early Chromatin Changes in X Chromosome Inactivation." Cell 176(1-2):182–197.e23; PMID: 30595450; doi: 10.1016/j.cell.2018.11.041; GPMDB: 10.
  1988. Liebelt F, et al. (2019) "SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock." Cell Rep 26(1):236–249.e4; PMID: 30605679; doi: 10.1016/j.celrep.2018.12.027; GPMDB: 57.
  1989. Queiroz RML, et al. (2019) "Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS)." Nat Biotechnol 37(2):169–178; PMID: 30607034; doi: 10.1038/s41587-018-0001-2; GPMDB: 106.
  1990. Orre LM, et al. (2019) "SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization." Mol Cell 73(1):166–182.e7; PMID: 30609389; doi: 10.1016/j.molcel.2018.11.035; GPMDB: 18.
  1991. Landsberg CD, et al. (2018) "A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-κB Inhibitory Activity of the HIV-2-Encoded Vpx." Front Immunol 9:2978; PMID: 30619335; doi: 10.3389/fimmu.2018.02978; GPMDB: 48.
  1992. Yang H, et al. (2019) "Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics." Mol Cell Proteomics 18(4):773–785; PMID: 30622160; doi: 10.1074/mcp.TIR118.000918; GPMDB: 2.
  1993. Chen D, et al. (2019) "Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Large-Scale Phosphoproteomics with the Production of over 11,000 Phosphopeptides from the Colon Carcinoma HCT116 Cell Line." Anal Chem 91(3):2201–2208; PMID: 30624053; doi: 10.1021/acs.analchem.8b04770; GPMDB: 40.
  1994. Gallart-Palau X, et al. (2019) "Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer's disease." Brain Pathol 29(5):593–605; PMID: 30629763; doi: 10.1111/bpa.12699; GPMDB: 20.
  1995. Chen Z, et al. (2019) "Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics." Nat Commun 10(1):104; PMID: 30631047; doi: 10.1038/s41467-018-08004-0; GPMDB: 30.
  1996. Hansen M, et al. (2019) "Macrophage Phosphoproteome Analysis Reveals MINCLE-dependent and -independent Mycobacterial Cord Factor Signaling." Mol Cell Proteomics 18(4):669–685; PMID: 30635358; doi: 10.1074/mcp.RA118.000929; GPMDB: 72.
  1997. Tripathi SK, et al. (2019) "Quantitative Proteomics Reveals the Dynamic Protein Landscape during Initiation of Human Th17 Cell Polarization." iScience 11:334–355; PMID: 30641411; doi: 10.1016/j.isci.2018.12.020; GPMDB: 75.
  1998. Pfaff F, et al. (2019) "Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus." Viruses 11(1):; PMID: 30642035; doi: 10.3390/v11010053; GPMDB: 110.
  1999. Kosack L, et al. (2019) "The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease." Cancer Cell 35(1):125–139.e9; PMID: 30645971; doi: 10.1016/j.ccell.2018.11.018; GPMDB: 20.
  2000. Liu Z, et al. (2019) "Integrative Transcriptome and Proteome Analysis Identifies Major Metabolic Pathways Involved in Pepper Fruit Development." J Proteome Res 18(3):982–994; PMID: 30650966; doi: 10.1021/acs.jproteome.8b00673; GPMDB: 24.
  2001. van Oorschot R, et al. (2019) "Molecular mechanisms of bleeding disorderassociated GFI1BQ287* mutation and its affected pathways in megakaryocytes and platelets." Haematologica 104(7):1460–1472; PMID: 30655368; doi: 10.3324/haematol.2018.194555; GPMDB: 63.
  2002. Tsukada T, et al. (2019) "Identification of TGFβ-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry." Cell Tissue Res 376(2):281–293; PMID: 30666536; doi: 10.1007/s00441-018-02989-2; GPMDB: 11.
  2003. Gärtner SMK, et al. (2019) "Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility." Eur J Cell Biol 98(2-4):103–115; PMID: 30679029; doi: 10.1016/j.ejcb.2019.01.001; GPMDB: 180.
  2004. Hurcombe JA, et al. (2019) "Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function." Nat Commun 10(1):403; PMID: 30679422; doi: 10.1038/s41467-018-08235-1; GPMDB: 1.
  2005. Fornecker LM, et al. (2019) "Multi-omics dataset to decipher the complexity of drug resistance in diffuse large B-cell lymphoma." Sci Rep 9(1):895; PMID: 30696890; doi: 10.1038/s41598-018-37273-4; GPMDB: 20.
  2006. Dayon L, et al. (2019) "Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood-Brain Barrier Permeability in Older Adults." J Proteome Res 18(3):1162–1174; PMID: 30702894; doi: 10.1021/acs.jproteome.8b00809; GPMDB: 128.
  2007. McKetney J, et al. (2019) "Proteomic Atlas of the Human Brain in Alzheimer's Disease." J Proteome Res 18(3):1380–1391; PMID: 30735395; doi: 10.1021/acs.jproteome.9b00004; GPMDB: 22.
  2008. West KL, et al. (2019) "Proteomic characterization of the arsenic response locus in S. cerevisiae." Epigenetics 14(2):130–145; PMID: 30739529; doi: 10.1080/15592294.2019.1580110; GPMDB: 9.
  2009. Dikicioglu D, et al. (2019) "Transcriptional regulation of the genes involved in protein metabolism and processing in Saccharomyces cerevisiae." FEMS Yeast Res 19(2):; PMID: 30753445; doi: 10.1093/femsyr/foz014; GPMDB: 48.
  2010. Ramello MC, et al. (2019) "An immunoproteomic approach to characterize the CAR interactome and signalosome." Sci Signal 12(568):; PMID: 30755478; doi: 10.1126/scisignal.aap9777; GPMDB: 54.
  2011. Furuyama K, et al. (2019) "Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells." Nature 567(7746):43–48; PMID: 30760930; doi: 10.1038/s41586-019-0942-8; GPMDB: 1.
  2012. Mohanty V, et al. (2019) "Proteomics and Visual Health Research: Proteome of the Human Sclera Using High-Resolution Mass Spectrometry." OMICS 23(2):98–110; PMID: 30767726; doi: 10.1089/omi.2018.0185; GPMDB: 2.
  2013. Patil S, et al. (2019) "Proteomic Changes in Oral Keratinocytes Chronically Exposed to Shisha (Water Pipe)." OMICS 23(2):86–97; PMID: 30767727; doi: 10.1089/omi.2018.0173; GPMDB: 18.
  2014. Eraslan B, et al. (2019) "Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues." Mol Syst Biol 15(2):e8513; PMID: 30777893; doi: 10.15252/msb.20188513; GPMDB: 28.
  2015. Pauwels AM, et al. (2019) "Spatiotemporal Changes of the Phagosomal Proteome in Dendritic Cells in Response to LPS Stimulation." Mol Cell Proteomics 18(5):909–922; PMID: 30808727; doi: 10.1074/mcp.RA119.001316; GPMDB: 20.
  2016. Angelidis I, et al. (2019) "An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics." Nat Commun 10(1):963; PMID: 30814501; doi: 10.1038/s41467-019-08831-9; GPMDB: 32.
  2017. Yang W, et al. (2019) "Proteomic analysis reveals a protective role of specific macrophage subsets in liver repair." Sci Rep 9(1):2953; PMID: 30814596; doi: 10.1038/s41598-019-39007-6; GPMDB: 40.
  2018. Parker BL, et al. (2019) "An integrative systems genetic analysis of mammalian lipid metabolism." Nature 567(7747):187–193; PMID: 30814737; doi: 10.1038/s41586-019-0984-y; GPMDB: 78.
  2019. Jiang Y, et al. (2019) "Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma." Nature 567(7747):257–261; PMID: 30814741; doi: 10.1038/s41586-019-0987-8; GPMDB: 688.
  2020. Brummer T, et al. (2019) "NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease." EMBO Mol Med 11(4):; PMID: 30833305; doi: 10.15252/emmm.201809695; GPMDB: 72.
  2021. Hansen BK, et al. (2019) "Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation." Nat Commun 10(1):1055; PMID: 30837475; doi: 10.1038/s41467-019-09024-0; GPMDB: 123.
  2022. Marei WFA, et al. (2019) "Proteomic changes in oocytes after in vitro maturation in lipotoxic conditions are different from those in cumulus cells." Sci Rep 9(1):3673; PMID: 30842615; doi: 10.1038/s41598-019-40122-7; GPMDB: 2.
  2023. Yi L, et al. (2019) "Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells." Anal Chem 91(9):5794–5801; PMID: 30843680; doi: 10.1021/acs.analchem.9b00024; GPMDB: 20.
  2024. Lin YH, et al. (2019) "Self-Assembled STrap for Global Proteomics and Salivary Biomarker Discovery." J Proteome Res 18(4):1907–1915; PMID: 30848925; doi: 10.1021/acs.jproteome.9b00037; GPMDB: 51.
  2025. Herbst FA, et al. (2019) "Proteogenomic Refinement of the Neomegalonema perideroedesT Genome Annotation." Proteomics 19(9):e1800330; PMID: 30865376; doi: 10.1002/pmic.201800330; GPMDB: 9.
  2026. Liu F, et al. (2019) "Integrated Analyses of Phenotype and Quantitative Proteome of CMTM4 Deficient Mice Reveal Its Association with Male Fertility." Mol Cell Proteomics 18(6):1070–1084; PMID: 30867229; doi: 10.1074/mcp.RA119.001416; GPMDB: 1.
  2027. Gallud A, et al. (2019) "Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study." Sci Rep 9(1):4366; PMID: 30867451; doi: 10.1038/s41598-019-40579-6; GPMDB: 45.
  2028. Obradović MMS, et al. (2019) "Glucocorticoids promote breast cancer metastasis." Nature 567(7749):540–544; PMID: 30867597; doi: 10.1038/s41586-019-1019-4; GPMDB: 23.
  2029. Berg P, et al. (2019) "Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics." BMC Bioinformatics 20(Suppl 2):102; PMID: 30871482; doi: 10.1186/s12859-019-2619-6; GPMDB: 1.
  2030. Vandervore LV, et al. (2019) "Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics." Brain 142(4):867–884; PMID: 30879067; doi: 10.1093/brain/awz045; GPMDB: 14.
  2031. Sacco F, et al. (2019) "Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets." Cell Metab 29(6):1422–1432.e3; PMID: 30879985; doi: 10.1016/j.cmet.2019.02.012; GPMDB: 24.
  2032. Sinha A, et al. (2019) "The Proteogenomic Landscape of Curable Prostate Cancer." Cancer Cell 35(3):414–427.e6; PMID: 30889379; doi: 10.1016/j.ccell.2019.02.005; GPMDB: 108.
  2033. Xu B, et al. (2019) "Dysregulation of Myosin Complex and Striated Muscle Contraction Pathway in the Brains of ALS-SOD1 Model Mice." ACS Chem Neurosci 10(5):2408–2417; PMID: 30889949; doi: 10.1021/acschemneuro.8b00704; GPMDB: 1.
  2034. Schmitt M, et al. (2019) "Quantitative Proteomics Links the Intermediate Filament Nestin to Resistance to Targeted BRAF Inhibition in Melanoma Cells." Mol Cell Proteomics 18(6):1096–1109; PMID: 30890564; doi: 10.1074/mcp.RA119.001302; GPMDB: 51.
  2035. Borgermann N, et al. (2019) "SUMOylation promotes protective responses to DNA-protein crosslinks." EMBO J 38(8):; PMID: 30914427; doi: 10.15252/embj.2019101496; GPMDB: 52.
  2036. Betancourt LH, et al. (2019) "Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data." Sci Rep 9(1):5154; PMID: 30914758; doi: 10.1038/s41598-019-41625-z; GPMDB: 111.
  2037. Sinclair LV, et al. (2019) "Antigen receptor control of methionine metabolism in T cells." Elife; PMID: 30916644; doi: 10.7554/eLife.44210; GPMDB: 7.
  2038. Lofthouse EM, et al. (2019) "Ursodeoxycholic acid inhibits uptake and vasoconstrictor effects of taurocholate in human placenta." FASEB J 33(7):8211–8220; PMID: 30922127; doi: 10.1096/fj.201900015RR; GPMDB: 1.
  2039. Chachami G, et al. (2019) "Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen." Mol Cell Proteomics 18(6):1197–1209; PMID: 30926672; doi: 10.1074/mcp.RA119.001401; GPMDB: 69.
  2040. Musiani D, et al. (2019) "Proteomics profiling of arginine methylation defines PRMT5 substrate specificity." Sci Signal 12(575):; PMID: 30940768; doi: 10.1126/scisignal.aat8388; GPMDB: 76.
  2041. Yang M, et al. (2019) "Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia." Nat Commun 10(1):1519; PMID: 30944321; doi: 10.1038/s41467-019-09469-3; GPMDB: 3.
  2042. Johansson HJ, et al. (2019) "Breast cancer quantitative proteome and proteogenomic landscape." Nat Commun 10(1):1600; PMID: 30962452; doi: 10.1038/s41467-019-09018-y; GPMDB: 12.
  2043. Zecha J, et al. (2019) "TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach." Mol Cell Proteomics 18(7):1468–1478; PMID: 30967486; doi: 10.1074/mcp.TIR119.001385; GPMDB: 28.
  2044. Erhart F, et al. (2019) "Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon γ production." Cytotherapy 21(6):643–658; PMID: 30975602; doi: 10.1016/j.jcyt.2019.03.002; GPMDB: 8.
  2045. Karim N, et al. (2019) "Proteomic manifestations of genetic defects in autosomal recessive congenital ichthyosis." J Proteomics 201:104–109; PMID: 30978464; doi: 10.1016/j.jprot.2019.04.007; GPMDB: 96.
  2046. Na CH, et al. (2019) "Integrated Transcriptomic and Proteomic Analysis of Human Eccrine Sweat Glands Identifies Missing and Novel Proteins." Mol Cell Proteomics 18(7):1382–1395; PMID: 30979791; doi: 10.1074/mcp.RA118.001101; GPMDB: 3.
  2047. Guergues J, et al. (2019) "Improved Methodology for Sensitive and Rapid Quantitative Proteomic Analysis of Adult-Derived Mouse Microglia: Application to a Novel In Vitro Mouse Microglial Cell Model." Proteomics 19(11):e1800469; PMID: 30980500; doi: 10.1002/pmic.201800469; GPMDB: 6.
  2048. Madugundu AK, et al. (2019) "Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells." Proteomics 19(15):e1800315; PMID: 30983154; doi: 10.1002/pmic.201800315; GPMDB: 2.
  2049. Zhou B, et al. (2019) "Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer." Clin Proteomics 16:15; PMID: 31011308; doi: 10.1186/s12014-019-9236-2; GPMDB: 2.
  2050. Trzeciecka A, et al. (2019) "Dataset of growth cone-enriched lipidome and proteome of embryonic to early postnatal mouse brain." Data Brief 24:103865; PMID: 31016214; doi: 10.1016/j.dib.2019.103865; GPMDB: 120.
  2051. Masoumi Z, et al. (2019) "Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells." Int J Mol Sci 20(8):; PMID: 31027199; doi: 10.3390/ijms20082038; GPMDB: 20.
  2052. Quintieri L, et al. (2019) "Proteomic analysis of the food spoiler Pseudomonas fluorescens ITEM 17298 reveals the antibiofilm activity of the pepsin-digested bovine lactoferrin." Food Microbiol 82:177–193; PMID: 31027772; doi: 10.1016/j.fm.2019.02.003; GPMDB: 110.
  2053. Löffler MW, et al. (2019) "Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma." Genome Med 11(1):28; PMID: 31039795; doi: 10.1186/s13073-019-0636-8; GPMDB: 178.
  2054. Eckert MA, et al. (2019) "Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts." Nature 569(7758):723–728; PMID: 31043742; doi: 10.1038/s41586-019-1173-8; GPMDB: 107.
  2055. Chen F, et al. (2019) "A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau." Nature 569(7756):409–412; PMID: 31043746; doi: 10.1038/s41586-019-1139-x; GPMDB: 8.
  2056. Dybas JM, et al. (2019) "Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4+ T cells." Nat Immunol 20(6):747–755; PMID: 31061531; doi: 10.1038/s41590-019-0381-6; GPMDB: 118.
  2057. Papaioannou MD, et al. (2019) "Proteomic analysis of meningiomas reveals clinically distinct molecular patterns." Neuro Oncol 21(8):1028–1038; PMID: 31077268; doi: 10.1093/neuonc/noz084; GPMDB: 78.
  2058. Spörrer M, et al. (2019) "Treatment of keratinocytes with 4-phenylbutyrate in epidermolysis bullosa: Lessons for therapies in keratin disorders." EBioMedicine 44:502–515; PMID: 31078522; doi: 10.1016/j.ebiom.2019.04.062; GPMDB: 41.
  2059. Wang H, et al. (2019) "Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming." Cell Syst 8(5):412–426.e7; PMID: 31078528; doi: 10.1016/j.cels.2019.03.009; GPMDB: 24.
  2060. Murphy JP, et al. (2019) "Therapy-Induced MHC I Ligands Shape Neo-Antitumor CD8 T Cell Responses during Oncolytic Virus-Based Cancer Immunotherapy." J Proteome Res 18(6):2666–2675; PMID: 31095916; doi: 10.1021/acs.jproteome.9b00173; GPMDB: 11.
  2061. Ott E, et al. (2019) "Proteomic and Metabolomic Profiling of Deinococcus radiodurans Recovering After Exposure to Simulated Low Earth Orbit Vacuum Conditions." Front Microbiol 10:909; PMID: 31110498; doi: 10.3389/fmicb.2019.00909; GPMDB: 17.
  2062. Chu F, et al. (2019) "Hair Proteome Variation at Different Body Locations on Genetically Variant Peptide Detection for Protein-Based Human Identification." Sci Rep 9(1):7641; PMID: 31113963; doi: 10.1038/s41598-019-44007-7; GPMDB: 36.
  2063. Charitou T, et al. (2019) "Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRASG13D mutation." Br J Cancer 121(1):37–50; PMID: 31133691; doi: 10.1038/s41416-019-0477-7; GPMDB: 523.
  2064. Chang TT, et al. (2019) "Plasma proteome plus site-specific N-glycoprofiling for hepatobiliary carcinomas." J Pathol Clin Res 5(3):199–212; PMID: 31136099; doi: 10.1002/cjp2.136; GPMDB: 315.
  2065. Sap KA, et al. (2019) "Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains." Mol Cell Proteomics 18(9):1705–1720; PMID: 31138642; doi: 10.1074/mcp.RA119.001486; GPMDB: 64.
  2066. Shraibman B, et al. (2019) "Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma." Mol Cell Proteomics 18(6):1255–1268; PMID: 31154438; doi: 10.1074/mcp.RA119.001524; GPMDB: 75.
  2067. Pladevall-Morera D, et al. (2019) "Proteomic characterization of chromosomal common fragile site (CFS)-associated proteins uncovers ATRX as a regulator of CFS stability." Nucleic Acids Res 47(15):8004–8018; PMID: 31180492; doi: 10.1093/nar/gkz510; GPMDB: 32.
  2068. Wang Y, et al. (2019) "Multiomics Analyses of HNF4α Protein Domain Function during Human Pluripotent Stem Cell Differentiation." iScience 16:206–217; PMID: 31185456; doi: 10.1016/j.isci.2019.05.028; GPMDB: 96.
  2069. Brennan CM, et al. (2019) "Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells." Genes Dev 33(15-16):1031–1047; PMID: 31196865; doi: 10.1101/gad.327494.119; GPMDB: 147.
  2070. Ma F, et al. (2019) "In Depth Quantification of Extracellular Matrix Proteins from Human Pancreas." J Proteome Res 18(8):3156–3165; PMID: 31200599; doi: 10.1021/acs.jproteome.9b00241; GPMDB: 30.
  2071. Mendonça CF, et al. (2019) "Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease." Neurobiol Dis 130:104509; PMID: 31207390; doi: 10.1016/j.nbd.2019.104509; GPMDB: 367.
  2072. Panhale A, et al. (2019) "CAPRI enables comparison of evolutionarily conserved RNA interacting regions." Nat Commun 10(1):2682; PMID: 31213602; doi: 10.1038/s41467-019-10585-3; GPMDB: 175.
  2073. Schoor C, et al. (2019) "Investigation of Oligodendrocyte Precursor Cell Differentiation by Quantitative Proteomics." Proteomics 19(14):e1900057; PMID: 31216117; doi: 10.1002/pmic.201900057; GPMDB: 5.
  2074. Alriquet M, et al. (2019) "Assembly of Proteins by Free RNA during the Early Phase of Proteostasis Stress." J Proteome Res 18(7):2835–2847; PMID: 31244213; doi: 10.1021/acs.jproteome.9b00143; GPMDB: 12.
  2075. Drabovich AP, et al. (2019) "Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients." Mol Cell Proteomics 18(9):1807–1823; PMID: 31249104; doi: 10.1074/mcp.RA119.001612; GPMDB: 10.
  2076. Lignitto L, et al. (2019) "Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1." Cell 178(2):316–329.e18; PMID: 31257023; doi: 10.1016/j.cell.2019.06.003; GPMDB: 1.
  2077. Holthenrich A, et al. (2019) "Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion." Blood 134(12):979–982; PMID: 31262780; doi: 10.1182/blood.2019000786; GPMDB: 12.
  2078. Pierre N, et al. (2020) "Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn's Disease." J Crohns Colitis 14(2):205–215; PMID: 31282946; doi: 10.1093/ecco-jcc/jjz130; GPMDB: 96.
  2079. Narayan R, et al. (2019) "Acute myeloid leukemia immunopeptidome reveals HLA presentation of mutated nucleophosmin." PLoS One 14(7):e0219547; PMID: 31291378; doi: 10.1371/journal.pone.0219547; GPMDB: 86.
  2080. Gomig THB, et al. (2019) "High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data." Data Brief 25:104125; PMID: 31294064; doi: 10.1016/j.dib.2019.104125; GPMDB: 69.
  2081. McDermott BT, et al. (2019) "Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin-1β." J Biol Chem 294(35):13027–13039; PMID: 31300557; doi: 10.1074/jbc.RA118.006865; GPMDB: 12.
  2082. Christakopoulos C, et al. (2019) "Proteomics reveals a set of highly enriched proteins in epiretinal membrane compared with inner limiting membrane." Exp Eye Res 186:107722; PMID: 31302158; doi: 10.1016/j.exer.2019.107722; GPMDB: 142.
  2083. Hsu CW, et al. (2019) "Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma." Mol Cell Proteomics 18(10):1939–1949; PMID: 31315917; doi: 10.1074/mcp.RA119.001654; GPMDB: 975.
  2084. Kang T, et al. (2019) "Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse Pancreatic Islets Following Euglycemia." J Proteome Res 18(9):3245–3258; PMID: 31317746; doi: 10.1021/acs.jproteome.9b00160; GPMDB: 66.
  2085. Patil S, et al. (2019) "Chronic shisha exposure alters phosphoproteome of oral keratinocytes." J Cell Commun Signal 13(3):281–289; PMID: 31321732; doi: 10.1007/s12079-019-00528-4; GPMDB: 6.
  2086. Buser DP, et al. (2019) "Quantitative proteomics reveals reduction of endocytic machinery components in gliomas." EBioMedicine 46:32–41; PMID: 31331834; doi: 10.1016/j.ebiom.2019.07.039; GPMDB: 51.
  2087. Billing AM, et al. (2019) "A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells." Mol Cell Proteomics 18(10):1950–1966; PMID: 31332097; doi: 10.1074/mcp.RA119.001356; GPMDB: 209.
  2088. Hollin T, et al. (2019) "Essential role of GEXP15, a specific Protein Phosphatase type 1 partner, in Plasmodium berghei in asexual erythrocytic proliferation and transmission." PLoS Pathog 15(7):e1007973; PMID: 31348803; doi: 10.1371/journal.ppat.1007973; GPMDB: 58.
  2089. Losada-Barragán M, et al. (2019) "Thymic Microenvironment Is Modified by Malnutrition and Leishmania infantum Infection." Front Cell Infect Microbiol 9:252; PMID: 31355153; doi: 10.3389/fcimb.2019.00252; GPMDB: 11.
  2090. Hillier C, et al. (2019) "Landscape of the Plasmodium Interactome Reveals Both Conserved and Species-Specific Functionality." Cell Rep 28(6):1635–1647.e5; PMID: 31390575; doi: 10.1016/j.celrep.2019.07.019; GPMDB: 723.
  2091. Stewart PA, et al. (2019) "Proteogenomic landscape of squamous cell lung cancer." Nat Commun 10(1):3578; PMID: 31395880; doi: 10.1038/s41467-019-11452-x; GPMDB: 58.
  2092. Olson MG, et al. (2019) "Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells." Infect Immun 87(11):; PMID: 31405957; doi: 10.1128/IAI.00537-19; GPMDB: 314.
  2093. Fotouhi O, et al. (2019) "Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors." Oncogene 38(43):6881–6897; PMID: 31406256; doi: 10.1038/s41388-019-0938-8; GPMDB: 1.
  2094. Brophy RH, et al. (2019) "Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury." Osteoarthritis Cartilage 27(12):1778–1789; PMID: 31430535; doi: 10.1016/j.joca.2019.08.002; GPMDB: 11.
  2095. Ong JWJ, et al. (2019) "Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics." Cells 8(9):; PMID: 31455003; doi: 10.3390/cells8090975; GPMDB: 1.
  2096. Denes BJ, et al. (2019) "Notch Coordinates Periodontal Ligament Maturation through Regulating Lamin A." J Dent Res 98(12):1357–1366; PMID: 31461625; doi: 10.1177/0022034519871448; GPMDB: 1.
  2097. Schulte F, et al. (2019) "Mapping Relative Differences in Human Salivary Gland Secretions by Dried Saliva Spot Sampling and nanoLC-MS/MS." Proteomics 19(20):e1900023; PMID: 31476108; doi: 10.1002/pmic.201900023; GPMDB: 36.
  2098. Defenouillère Q, et al. (2019) "The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose." Sci Signal 12(597):; PMID: 31481524; doi: 10.1126/scisignal.aaw8000; GPMDB: 6.
  2099. Gao Y, et al. (2019) "Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio)." J Proteome Res 18(10):3762–3769; PMID: 31483678; doi: 10.1021/acs.jproteome.9b00462; GPMDB: 4.
  2100. Al Ahmad A, et al. (2019) "Papillary Renal Cell Carcinomas Rewire Glutathione Metabolism and Are Deficient in Both Anabolic Glucose Synthesis and Oxidative Phosphorylation." Cancers (Basel) 11(9):; PMID: 31484429; doi: 10.3390/cancers11091298; GPMDB: 33.
  2101. Liebelt F, et al. (2019) "The poly-SUMO2/3 protease SENP6 enables assembly of the constitutive centromere-associated network by group deSUMOylation." Nat Commun 10(1):3987; PMID: 31485003; doi: 10.1038/s41467-019-11773-x; GPMDB: 46.
  2102. Harel M, et al. (2019) "Proteomics of Melanoma Response to Immunotherapy Reveals Mitochondrial Dependence." Cell 179(1):236–250.e18; PMID: 31495571; doi: 10.1016/j.cell.2019.08.012; GPMDB: 27.
  2103. Sleat DE, et al. (2019) "Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome." Mol Cell Proteomics 18(11):2244–2261; PMID: 31501224; doi: 10.1074/mcp.RA119.001587; GPMDB: 132.
  2104. Wilson R, et al. (2020) "Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis." Inflamm Bowel Dis 26(1):80–92; PMID: 31504521; doi: 10.1093/ibd/izz179; GPMDB: 6.
  2105. Piano D, et al. (2019) "Characterization under quasi-native conditions of the capsanthin/capsorubin synthase from Capsicum annuum L." Plant Physiol Biochem 143:165–175; PMID: 31505449; doi: 10.1016/j.plaphy.2019.09.007; GPMDB: 4.
  2106. Dou M, et al. (2019) "High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform." Anal Chem 91(20):13119–13127; PMID: 31509397; doi: 10.1021/acs.analchem.9b03349; GPMDB: 20.
  2107. Lugli F, et al. (2019) "Enamel peptides reveal the sex of the Late Antique 'Lovers of Modena'." Sci Rep 9(1):13130; PMID: 31511583; doi: 10.1038/s41598-019-49562-7; GPMDB: 16.
  2108. Gnanasundram SV, et al. (2019) "At least two molecules of the RNA helicase Has1 are simultaneously present in pre-ribosomes during ribosome biogenesis." Nucleic Acids Res 47(20):10852–10864; PMID: 31511893; doi: 10.1093/nar/gkz767; GPMDB: 17.
  2109. Kampstra ASB, et al. (2019) "Ligandomes obtained from different HLA-class II-molecules are homologous for N- and C-terminal residues outside the peptide-binding cleft." Immunogenetics 71(8-9):519–530; PMID: 31520135; doi: 10.1007/s00251-019-01129-6; GPMDB: 77.
  2110. Sjödin S, et al. (2019) "Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and Parkinson's disease." Alzheimers Res Ther 11(1):82; PMID: 31521194; doi: 10.1186/s13195-019-0533-9; GPMDB: 27.
  2111. Israel S, et al. (2019) "An integrated genome-wide multi-omics analysis of gene expression dynamics in the preimplantation mouse embryo." Sci Rep 9(1):13356; PMID: 31527703; doi: 10.1038/s41598-019-49817-3; GPMDB: 21.
  2112. Moutaoufik MT, et al. (2019) "Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis." iScience 19:1114–1132; PMID: 31536960; doi: 10.1016/j.isci.2019.08.057; GPMDB: 708.
  2113. Lim MY, et al. (2019) "Evaluating False Transfer Rates from the Match-between-Runs Algorithm with a Two-Proteome Model." J Proteome Res 18(11):4020–4026; PMID: 31547658; doi: 10.1021/acs.jproteome.9b00492; GPMDB: 40.
  2114. Uckeley ZM, et al. (2019) "Quantitative Proteomics of Uukuniemi Virus-host Cell Interactions Reveals GBF1 as Proviral Host Factor for Phleboviruses." Mol Cell Proteomics 18(12):2401–2417; PMID: 31570497; doi: 10.1074/mcp.RA119.001631; GPMDB: 20.
  2115. Simonetti B, et al. (2019) "Molecular identification of a BAR domain-containing coat complex for endosomal recycling of transmembrane proteins." Nat Cell Biol 21(10):1219–1233; PMID: 31576058; doi: 10.1038/s41556-019-0393-3; GPMDB: 2.
  2116. Kawahara R, et al. (2019) "Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia." Proteomics 19(21-22):e1900174; PMID: 31576646; doi: 10.1002/pmic.201900174; GPMDB: 5.
  2117. Baers LL, et al. (2019) "Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism." Plant Physiol 181(4):1721–1738; PMID: 31578229; doi: 10.1104/pp.19.00897; GPMDB: 39.
  2118. Velásquez E, et al. (2019) "Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients." J Proteome Res 18(12):4240–4253; PMID: 31581776; doi: 10.1021/acs.jproteome.9b00398; GPMDB: 46.
  2119. Lundby A, et al. (2019) "Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites." Cell 179(2):543–560.e26; PMID: 31585087; doi: 10.1016/j.cell.2019.09.008; GPMDB: 255.
  2120. Bichmann L, et al. (2019) "MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics." J Proteome Res 18(11):3876–3884; PMID: 31589052; doi: 10.1021/acs.jproteome.9b00313; GPMDB: 38.
  2121. Lin Z, et al. (2019) "Alternative Strategy To Explore Missing Proteins with Low Molecular Weight." J Proteome Res 18(12):4180–4188; PMID: 31592669; doi: 10.1021/acs.jproteome.9b00353; GPMDB: 3.
  2122. Noya SB, et al. (2019) "The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep." Science 366(6462):; PMID: 31601739; doi: 10.1126/science.aav2642; GPMDB: 96.
  2123. Radzisheuskaya A, et al. (2019) "PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia." Nat Struct Mol Biol 26(11):999–1012; PMID: 31611688; doi: 10.1038/s41594-019-0313-z; GPMDB: 148.
  2124. Racle J, et al. (2019) "Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes." Nat Biotechnol 37(11):1283–1286; PMID: 31611696; doi: 10.1038/s41587-019-0289-6; GPMDB: 131.
  2125. Stadlmann J, et al. (2019) "Improved Sensitivity in Low-Input Proteomics Using Micropillar Array-Based Chromatography." Anal Chem 91(22):14203–14207; PMID: 31612716; doi: 10.1021/acs.analchem.9b02899; GPMDB: 68.
  2126. McRae EKS, et al. (2020) "An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21." RNA 26(1):44–57; PMID: 31653714; doi: 10.1261/rna.072199.119; GPMDB: 108.
  2127. Kenny A, et al. (2019) "Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease." Sci Rep 9(1):15437; PMID: 31659197; doi: 10.1038/s41598-019-51837-y; GPMDB: 32.
  2128. Arima N, et al. (2020) "Multiorgan Systems Study Reveals Igfbp7 as a Suppressor of Gluconeogenesis after Gastric Bypass Surgery." J Proteome Res 19(1):129–143; PMID: 31661273; doi: 10.1021/acs.jproteome.9b00441; GPMDB: 4.
  2129. Mallam AL, et al. (2019) "Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes." Cell Rep 29(5):1351–1368.e5; PMID: 31665645; doi: 10.1016/j.celrep.2019.09.060; GPMDB: 122.
  2130. Deshmukh AS, et al. (2019) "Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine." Cell Metab 30(5):963–975.e7; PMID: 31668873; doi: 10.1016/j.cmet.2019.10.001; GPMDB: 28.
  2131. Alvarez Hayes J, et al. (2020) "Hfq modulates global protein pattern and stress response in Bordetella pertussis." J Proteomics 211:103559; PMID: 31669358; doi: 10.1016/j.jprot.2019.103559; GPMDB: 16.
  2132. Walker C, et al. (2020) "Understanding and Eliminating the Detrimental Effect of Thiamine Deficiency on the Oleaginous Yeast Yarrowia lipolytica." Appl Environ Microbiol 86(3):; PMID: 31704686; doi: 10.1128/AEM.02299-19; GPMDB: 16.
  2133. Sohier P, et al. (2020) "Proteome analysis of formalin-fixed paraffin-embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas." J Pathol 250(3):251–261; PMID: 31729028; doi: 10.1002/path.5366; GPMDB: 61.
  2134. Newey A, et al. (2019) "Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment." J Immunother Cancer 7(1):309; PMID: 31735170; doi: 10.1186/s40425-019-0769-8; GPMDB: 193.
  2135. Thompson A, et al. (2019) "TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set." Anal Chem 91(24):15941–15950; PMID: 31738517; doi: 10.1021/acs.analchem.9b04474; GPMDB: 20.
  2136. Aarts CEM, et al. (2019) "Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair." Blood Adv 3(22):3562–3574; PMID: 31738831; doi: 10.1182/bloodadvances.2019031609; GPMDB: 6.
  2137. Kim JJ, et al. (2019) "Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity." Genes Dev 33(23-24):1751–1774; PMID: 31753913; doi: 10.1101/gad.331231.119; GPMDB: 66.
  2138. Fang EF, et al. (2019) "NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome." Nat Commun 10(1):5284; PMID: 31754102; doi: 10.1038/s41467-019-13172-8; GPMDB: 32.
  2139. Zhang Y, et al. (2020) "Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines." J Proteome Res 19(1):401–408; PMID: 31773964; doi: 10.1021/acs.jproteome.9b00590; GPMDB: 16.
  2140. Löffler MW, et al. (2019) "A Non-interventional Clinical Trial Assessing Immune Responses After Radiofrequency Ablation of Liver Metastases From Colorectal Cancer." Front Immunol 10:2526; PMID: 31803175; doi: 10.3389/fimmu.2019.02526; GPMDB: 76.
  2141. Hartenbach FARR, et al. (2020) "Proteomic analysis of whole saliva in chronic periodontitis." J Proteomics 213:103602; PMID: 31809901; doi: 10.1016/j.jprot.2019.103602; GPMDB: 56.
  2142. Dozio V, et al. (2019) "Cerebrospinal Fluid-Derived Microvesicles From Sleeping Sickness Patients Alter Protein Expression in Human Astrocytes." Front Cell Infect Microbiol 9:391; PMID: 31824868; doi: 10.3389/fcimb.2019.00391; GPMDB: 24.
  2143. Szibor M, et al. (2020) "Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET." Biochim Biophys Acta Bioenerg 1861(2):148137; PMID: 31825809; doi: 10.1016/j.bbabio.2019.148137; GPMDB: 96.
  2144. Loo LSW, et al. (2020) "Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors." Stem Cells 38(4):542–555; PMID: 31828876; doi: 10.1002/stem.3135; GPMDB: 1.
  2145. Sarkizova S, et al. (2020) "A large peptidome dataset improves HLA class I epitope prediction across most of the human population." Nat Biotechnol 38(2):199–209; PMID: 31844290; doi: 10.1038/s41587-019-0322-9; GPMDB: 392.
  2146. Solleder M, et al. (2020) "Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands." Mol Cell Proteomics 19(2):390–404; PMID: 31848261; doi: 10.1074/mcp.TIR119.001641; GPMDB: 208.
  2147. Tang F, et al. (2019) "LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function." Nat Commun 10(1):5755; PMID: 31848340; doi: 10.1038/s41467-019-13591-7; GPMDB: 14.
  2148. Zhang Y, et al. (2020) "Glyco-CPLL: An Integrated Method for In-Depth and Comprehensive N-Glycoproteome Profiling of Human Plasma." J Proteome Res 19(2):655–666; PMID: 31860302; doi: 10.1021/acs.jproteome.9b00557; GPMDB: 12.
  2149. Nobre LV, et al. (2019) "Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions." Elife; PMID: 31873071; doi: 10.7554/eLife.49894; GPMDB: 354.
  2150. Mühlhofer M, et al. (2019) "The Heat Shock Response in Yeast Maintains Protein Homeostasis by Chaperoning and Replenishing Proteins." Cell Rep 29(13):4593–4607.e8; PMID: 31875563; doi: 10.1016/j.celrep.2019.11.109; GPMDB: 15.
  2151. Matas-Nadal C, et al. (2020) "Evaluation of Tumor Interstitial Fluid-Extraction Methods for Proteome Analysis: Comparison of Biopsy Elution versus Centrifugation." J Proteome Res 19(7):2598–2605; PMID: 31877049; doi: 10.1021/acs.jproteome.9b00770; GPMDB: 10.
  2152. Van JAD, et al. (2020) "Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro." Mol Cell Proteomics 19(3):501–517; PMID: 31879271; doi: 10.1074/mcp.RA119.001858; GPMDB: 90.
  2153. Nguyen AM, et al. (2020) "Upregulation of CD73 Confers Acquired Radioresistance and is Required for Maintaining Irradiation-selected Pancreatic Cancer Cells in a Mesenchymal State." Mol Cell Proteomics 19(2):375–389; PMID: 31879272; doi: 10.1074/mcp.RA119.001779; GPMDB: 20.
  2154. Mugahid DA, et al. (2019) "Proteomic and Transcriptomic Changes in Hibernating Grizzly Bears Reveal Metabolic and Signaling Pathways that Protect against Muscle Atrophy." Sci Rep 9(1):19976; PMID: 31882638; doi: 10.1038/s41598-019-56007-8; GPMDB: 16.
  2155. Rispoli LA, et al. (2019) "Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows." PLoS One 14(12):e0227095; PMID: 31887207; doi: 10.1371/journal.pone.0227095; GPMDB: 5.
  2156. Bhuiyan F, et al. (2020) "Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach." J Proteomics 214:103632; PMID: 31891784; doi: 10.1016/j.jprot.2019.103632; GPMDB: 50.
  2157. Róka B, et al. (2019) "The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice." Int J Mol Sci 21(1):; PMID: 31892161; doi: 10.3390/ijms21010200; GPMDB: 120.
  2158. Isobe K, et al. (2020) "CRISPR-Cas9/phosphoproteomics identifies multiple noncanonical targets of myosin light chain kinase." Am J Physiol Renal Physiol 318(3):F600–F616; PMID: 31904282; doi: 10.1152/ajprenal.00431.2019; GPMDB: 75.
  2159. Hose J, et al. (2020) "The genetic basis of aneuploidy tolerance in wild yeast." Elife; PMID: 31909711; doi: 10.7554/eLife.52063; GPMDB: 24.
  2160. Bian Y, et al. (2020) "Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS." Nat Commun 11(1):157; PMID: 31919466; doi: 10.1038/s41467-019-13973-x; GPMDB: 2175.
  2161. Bai B, et al. (2020) "Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer's Disease Progression." Neuron 105(6):975–991.e7; PMID: 31926610; doi: 10.1016/j.neuron.2019.12.015; GPMDB: 308.
  2162. Hijazi M, et al. (2020) "Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring." Nat Biotechnol 38(4):493–502; PMID: 31959955; doi: 10.1038/s41587-019-0391-9; GPMDB: 874.
  2163. Xu K, et al. (2020) "Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility." Development 147(2):; PMID: 31969357; doi: 10.1242/dev.181057; GPMDB: 3.
  2164. Meng K, et al. (2020) "Quantitative Mitochondrial Proteomics Reveals ANXA7 as a Crucial Factor in Mitophagy." J Proteome Res 19(3):1275–1284; PMID: 31975592; doi: 10.1021/acs.jproteome.9b00800; GPMDB: 3.
  2165. Gonnet J, et al. (2020) "Mechanisms of innate events during skin reaction following intradermal injection of seasonal influenza vaccine." J Proteomics 216:103670; PMID: 31991189; doi: 10.1016/j.jprot.2020.103670; GPMDB: 48.
  2166. Veyel D, et al. (2020) "Biomarker discovery for chronic liver diseases by multi-omics - a preclinical case study." Sci Rep 10(1):1314; PMID: 31992752; doi: 10.1038/s41598-020-58030-6; GPMDB: 4.
  2167. Thézénas ML, et al. (2020) "Amine oxidase 3 is a novel pro-inflammatory marker of oxidative stress in peritoneal endometriosis lesions." Sci Rep 10(1):1495; PMID: 32001775; doi: 10.1038/s41598-020-58362-3; GPMDB: 18.
  2168. Lindberg T, et al. (2020) "An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations." J Proteomics 217:103647; PMID: 32006680; doi: 10.1016/j.jprot.2020.103647; GPMDB: 21.
  2169. Yasuda S, et al. (2020) "Stress- and ubiquitylation-dependent phase separation of the proteasome." Nature 578(7794):296–300; PMID: 32025036; doi: 10.1038/s41586-020-1982-9; GPMDB: 6.
  2170. Nitschko V, et al. (2020) "Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila." Nucleic Acids Res 48(7):3906–3921; PMID: 32025726; doi: 10.1093/nar/gkaa072; GPMDB: 12.
  2171. Pini T, et al. (2020) "Obesity significantly alters the human sperm proteome, with potential implications for fertility." J Assist Reprod Genet 37(4):777–787; PMID: 32026202; doi: 10.1007/s10815-020-01707-8; GPMDB: 20.
  2172. Storey AJ, et al. (2020) "Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags." J Proteome Res 19(3):1183–1195; PMID: 32027144; doi: 10.1021/acs.jproteome.9b00704; GPMDB: 2.
  2173. Eldridge MJG, et al. (2020) "Active nuclear import of the deacetylase Sirtuin-2 is controlled by its C-terminus and importins." Sci Rep 10(1):2034; PMID: 32042025; doi: 10.1038/s41598-020-58397-6; GPMDB: 6.
  2174. Koehler S, et al. (2020) "Proteome Analysis of Isolated Podocytes Reveals Stress Responses in Glomerular Sclerosis." J Am Soc Nephrol 31(3):544–559; PMID: 32047005; doi: 10.1681/ASN.2019030312; GPMDB: 3.
  2175. Zhao Q, et al. (2020) "Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific Antigens in Ovarian Cancer." Cancer Immunol Res 8(4):544–555; PMID: 32047025; doi: 10.1158/2326-6066.CIR-19-0541; GPMDB: 12.
  2176. Plum T, et al. (2020) "Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation." Immunity 52(2):404–416.e5; PMID: 32049054; doi: 10.1016/j.immuni.2020.01.012; GPMDB: 12.
  2177. Ray S, et al. (2020) "Circadian rhythms in the absence of the clock gene Bmal1." Science 367(6479):800–806; PMID: 32054765; doi: 10.1126/science.aaw7365; GPMDB: 40.
  2178. Saddala MS, et al. (2020) "Placental growth factor regulates the pentose phosphate pathway and antioxidant defense systems in human retinal endothelial cells." J Proteomics 217:103682; PMID: 32058040; doi: 10.1016/j.jprot.2020.103682; GPMDB: 1.
  2179. Ge M, et al. (2020) "Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia." Cancer Sci 111(4):1279–1290; PMID: 32058648; doi: 10.1111/cas.14351; GPMDB: 6.
  2180. Kosok M, et al. (2020) "Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer." iScience 23(2):100868; PMID: 32058975; doi: 10.1016/j.isci.2020.100868; GPMDB: 8.
  2181. Dou Y, et al. (2020) "Proteogenomic Characterization of Endometrial Carcinoma." Cell 180(4):729–748.e26; PMID: 32059776; doi: 10.1016/j.cell.2020.01.026; GPMDB: 208.
  2182. Kalaora S, et al. (2020) "Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma." Nat Commun 11(1):896; PMID: 32060274; doi: 10.1038/s41467-020-14639-9; GPMDB: 30.
  2183. Kurimchak AM, et al. (2020) "Functional proteomics interrogation of the kinome identifies MRCKA as a therapeutic target in high-grade serous ovarian carcinoma." Sci Signal 13(619):; PMID: 32071169; doi: 10.1126/scisignal.aax8238; GPMDB: 51.
  2184. Touzelet O, et al. (2020) "The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins." Mol Cell Proteomics 19(5):793–807; PMID: 32075873; doi: 10.1074/mcp.RA119.001546; GPMDB: 15.
  2185. Agudelo Garcia PA, et al. (2020) "Hat1-Dependent Lysine Acetylation Targets Diverse Cellular Functions." J Proteome Res 19(4):1663–1673; PMID: 32081014; doi: 10.1021/acs.jproteome.9b00843; GPMDB: 8.
  2186. Peters F, et al. (2020) "Murine Epidermal Ceramide Synthase 4 Is a Key Regulator of Skin Barrier Homeostasis." J Invest Dermatol 140(10):1927–1937.e5; PMID: 32092351; doi: 10.1016/j.jid.2020.02.006; GPMDB: 40.
  2187. Fan Y, et al. (2020) "Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of Checkpoint Kinase 1 via Activating Mammalian Target of Rapamycin C1/Ribosomal Protein S6 Kinase b-1 Pathway." Circulation 141(19):1554–1569; PMID: 32098494; doi: 10.1161/CIRCULATIONAHA.119.040747; GPMDB: 31.
  2188. Zhang J, et al. (2020) "Global Phosphoproteomic Analysis Reveals Significant Metabolic Reprogramming in the Termination of Liver Regeneration in Mice." J Proteome Res 19(4):1788–1799; PMID: 32105074; doi: 10.1021/acs.jproteome.0c00028; GPMDB: 24.
  2189. Kwon OK, et al. (2020) "Identification of Novel Prognosis and Prediction Markers in Advanced Prostate Cancer Tissues Based on Quantitative Proteomics." Cancer Genomics Proteomics 17(2):195–208; PMID: 32108042; doi: 10.21873/cgp.20180; GPMDB: 5.
  2190. Villaseñor R, et al. (2020) "ChromID identifies the protein interactome at chromatin marks." Nat Biotechnol 38(6):728–736; PMID: 32123383; doi: 10.1038/s41587-020-0434-2; GPMDB: 32.
  2191. Subbannayya Y, et al. (2020) "What Makes Cornea Immunologically Unique and Privileged? Mechanistic Clues from a High-Resolution Proteomic Landscape of the Human Cornea." OMICS 24(3):129–139; PMID: 32125911; doi: 10.1089/omi.2019.0190; GPMDB: 2.
  2192. Crescitelli R, et al. (2020) "Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation." J Extracell Vesicles 9(1):1722433; PMID: 32128073; doi: 10.1080/20013078.2020.1722433; GPMDB: 60.
  2193. Ding H, et al. (2020) "Urine Proteomics: Evaluation of Different Sample Preparation Workflows for Quantitative, Reproducible, and Improved Depth of Analysis." J Proteome Res 19(4):1857–1862; PMID: 32129078; doi: 10.1021/acs.jproteome.9b00772; GPMDB: 16.
  2194. Bernatik O, et al. (2020) "Phosphorylation of multiple proteins involved in ciliogenesis by Tau Tubulin kinase 2." Mol Biol Cell 31(10):1032–1046; PMID: 32129703; doi: 10.1091/mbc.E19-06-0334; GPMDB: 165.
  2195. Montellese C, et al. (2020) "USP16 counteracts mono-ubiquitination of RPS27a and promotes maturation of the 40S ribosomal subunit." Elife; PMID: 32129764; doi: 10.7554/eLife.54435; GPMDB: 18.
  2196. Ramat A, et al. (2020) "The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm." Cell Res 30(5):421–435; PMID: 32132673; doi: 10.1038/s41422-020-0294-9; GPMDB: 12.
  2197. Tannous A, et al. (2020) "Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics." J Proteome Res 19(4):1718–1730; PMID: 32134668; doi: 10.1021/acs.jproteome.9b00862; GPMDB: 25.
  2198. Shayan R, et al. (2020) "Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy." Molecules 25(5):; PMID: 32138239; doi: 10.3390/molecules25051125; GPMDB: 2.
  2199. Parker BL, et al. (2020) "Quantification of exercise-regulated ubiquitin signaling in human skeletal muscle identifies protein modification cross talk via NEDDylation." FASEB J 34(4):5906–5916; PMID: 32141134; doi: 10.1096/fj.202000075R; GPMDB: 45.
  2200. Wilson JP, et al. (2020) "Tryp-N: A Thermostable Protease for the Production of N-terminal Argininyl and Lysinyl Peptides." J Proteome Res 19(4):1459–1469; PMID: 32141294; doi: 10.1021/acs.jproteome.9b00713; GPMDB: 3.
  2201. Dietachmayr M, et al. (2020) "Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival." Nat Commun 11(1):1268; PMID: 32152317; doi: 10.1038/s41467-020-15059-5; GPMDB: 3.
  2202. Wan X, et al. (2020) "The MHC-II peptidome of pancreatic islets identifies key features of autoimmune peptides." Nat Immunol 21(4):455–463; PMID: 32152506; doi: 10.1038/s41590-020-0623-7; GPMDB: 9.
  2203. Kjell J, et al. (2020) "Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts." Front Cell Neurosci 14:32; PMID: 32153367; doi: 10.3389/fncel.2020.00032; GPMDB: 75.
  2204. Coscia F, et al. (2020) "A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis." J Pathol 251(1):100–112; PMID: 32154592; doi: 10.1002/path.5420; GPMDB: 52.
  2205. Yin CF, et al. (2020) "Phosphoproteome Analysis Reveals Dynamic Heat Shock Protein 27 Phosphorylation in Tanshinone IIA-Induced Cell Death." J Proteome Res 19(4):1620–1634; PMID: 32154729; doi: 10.1021/acs.jproteome.9b00836; GPMDB: 168.
  2206. Chong C, et al. (2020) "Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes." Nat Commun 11(1):1293; PMID: 32157095; doi: 10.1038/s41467-020-14968-9; GPMDB: 85.
  2207. Wegrzyn AB, et al. (2020) "Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease." FEBS J 287(23):5096–5113; PMID: 32160399; doi: 10.1111/febs.15292; GPMDB: 71.
  2208. Chen L, et al. (2020) "Identification of an Unconventional Subpeptidome Bound to the Behçet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1)." Mol Cell Proteomics 19(5):871–883; PMID: 32161166; doi: 10.1074/mcp.RA119.001617; GPMDB: 11.
  2209. Tanaka A, et al. (2020) "Prolyl 4-hydroxylase alpha 1 protein expression risk-stratifies early stage colorectal cancer." Oncotarget 11(8):813–824; PMID: 32166002; doi: 10.18632/oncotarget.27491; GPMDB: 44.
  2210. Carnesecchi J, et al. (2020) "Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity." Nat Commun 11(1):1388; PMID: 32170121; doi: 10.1038/s41467-020-15223-x; GPMDB: 36.
  2211. Aasebø E, et al. (2020) "Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia." Cancers (Basel) 12(3):; PMID: 32192169; doi: 10.3390/cancers12030709; GPMDB: 214.
  2212. Ooi CP, et al. (2020) "Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance." J Proteomics 219:103735; PMID: 32198071; doi: 10.1016/j.jprot.2020.103735; GPMDB: 6.
  2213. Guergues J, et al. (2020) "Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes." J Proteomics 220:103753; PMID: 32200115; doi: 10.1016/j.jprot.2020.103753; GPMDB: 30.
  2214. Li J, et al. (2020) "TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples." Nat Methods 17(4):399–404; PMID: 32203386; doi: 10.1038/s41592-020-0781-4; GPMDB: 9.
  2215. Campbell K, et al. (2020) "Building blocks are synthesized on demand during the yeast cell cycle." Proc Natl Acad Sci U S A 117(14):7575–7583; PMID: 32213592; doi: 10.1073/pnas.1919535117; GPMDB: 105.
  2216. Rinfret Robert C, et al. (2020) "Interplay of Ubiquitin-Like Modifiers Following Arsenic Trioxide Treatment." J Proteome Res 19(5):1999–2010; PMID: 32223133; doi: 10.1021/acs.jproteome.9b00807; GPMDB: 18.
  2217. Hör J, et al. (2020) "Grad-seq in a Gram-positive bacterium reveals exonucleolytic sRNA activation in competence control." EMBO J 39(9):e103852; PMID: 32227509; doi: 10.15252/embj.2019103852; GPMDB: 184.
  2218. Reustle A, et al. (2020) "Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy." Genome Med 12(1):32; PMID: 32228647; doi: 10.1186/s13073-020-00731-8; GPMDB: 1017.
  2219. Atlasi Y, et al. (2020) "The translational landscape of ground state pluripotency." Nat Commun 11(1):1617; PMID: 32238817; doi: 10.1038/s41467-020-15449-9; GPMDB: 48.
  2220. Huang C, et al. (2020) "Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2." J Biol Chem 295(19):6518–6531; PMID: 32241914; doi: 10.1074/jbc.RA119.012026; GPMDB: 72.
  2221. Morishita Y, et al. (2020) "Thyrocyte cell survival and adaptation to chronic endoplasmic reticulum stress due to misfolded thyroglobulin." J Biol Chem 295(20):6876–6887; PMID: 32241916; doi: 10.1074/jbc.RA120.012656; GPMDB: 1.
  2222. Mizukami H, et al. (2020) "Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach." J Proteome Res 19(5):2122–2135; PMID: 32242669; doi: 10.1021/acs.jproteome.0c00060; GPMDB: 22.
  2223. Ölander M, et al. (2020) "Cell-type-resolved proteomic analysis of the human liver." Liver Int 40(7):1770–1780; PMID: 32243721; doi: 10.1111/liv.14452; GPMDB: 24.
  2224. Xu G, et al. (2020) "Diversity in Aβ deposit morphology and secondary proteome insolubility across models of Alzheimer-type amyloidosis." Acta Neuropathol Commun 8(1):43; PMID: 32252825; doi: 10.1186/s40478-020-00911-y; GPMDB: 57.
  2225. Carter SP, et al. (2020) "Genetic Deletion of Zebrafish Rab28 Causes Defective Outer Segment Shedding, but Not Retinal Degeneration." Front Cell Dev Biol 8:136; PMID: 32258030; doi: 10.3389/fcell.2020.00136; GPMDB: 12.
  2226. Guérit D, et al. (2020) "Primary myeloid cell proteomics and transcriptomics: importance of β-tubulin isotypes for osteoclast function." J Cell Sci 133(10):; PMID: 32265273; doi: 10.1242/jcs.239772; GPMDB: 9.
  2227. Djomehri SI, et al. (2020) "Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors." Nat Commun 11(1):1723; PMID: 32265444; doi: 10.1038/s41467-020-15283-z; GPMDB: 4.
  2228. Busso CS, et al. (2020) "A comprehensive analysis of sialolith proteins and the clinical implications." Clin Proteomics 17:12; PMID: 32265614; doi: 10.1186/s12014-020-09275-w; GPMDB: 1.
  2229. Rohlenova K, et al. (2020) "Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis." Cell Metab 31(4):862–877.e14; PMID: 32268117; doi: 10.1016/j.cmet.2020.03.009; GPMDB: 15.
  2230. Hoesl C, et al. (2020) "The secretome of skin cancer cells activates the mTOR/MYC pathway in healthy keratinocytes and induces tumorigenic properties." Biochim Biophys Acta Mol Cell Res 1867(8):118717; PMID: 32283126; doi: 10.1016/j.bbamcr.2020.118717; GPMDB: 12.
  2231. Jarzab A, et al. (2020) "Meltome atlas-thermal proteome stability across the tree of life." Nat Methods 17(5):495–503; PMID: 32284610; doi: 10.1038/s41592-020-0801-4; GPMDB: 31.
  2232. Lee S, et al. (2020) "Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer." Cell Rep 31(2):107502; PMID: 32294438; doi: 10.1016/j.celrep.2020.03.066; GPMDB: 11.
  2233. Podvin S, et al. (2020) "Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses." Mol Cell Proteomics 19(6):1017–1034; PMID: 32295833; doi: 10.1074/mcp.RA120.002079; GPMDB: 13.
  2234. Goebel T, et al. (2020) "Proteaphagy in Mammalian Cells Can Function Independent of ATG5/ATG7." Mol Cell Proteomics 19(7):1120–1131; PMID: 32299840; doi: 10.1074/mcp.RA120.001983; GPMDB: 149.
  2235. Pancholi S, et al. (2020) "Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities." Oncogene 39(25):4781–4797; PMID: 32307447; doi: 10.1038/s41388-020-1284-6; GPMDB: 36.
  2236. Chen Z, et al. (2020) "Phosphoproteomics Analysis Reveals a Potential Role of CHK1 in Regulation of Innate Immunity through IRF3." J Proteome Res 19(6):2264–2277; PMID: 32314919; doi: 10.1021/acs.jproteome.9b00829; GPMDB: 48.
  2237. Pourhaghighi R, et al. (2020) "BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain." Cell Syst 10(4):333–350.e14; PMID: 32325033; doi: 10.1016/j.cels.2020.03.003; GPMDB: 578.
  2238. Bach-Pages M, et al. (2020) "Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method." Biomolecules 10(4):; PMID: 32344669; doi: 10.3390/biom10040661; GPMDB: 8.
  2239. Hégarat N, et al. (2020) "Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B." EMBO J 39(11):e104419; PMID: 32350921; doi: 10.15252/embj.2020104419; GPMDB: 2.
  2240. Ojalill M, et al. (2020) "Interaction between prostate cancer cells and prostate fibroblasts promotes accumulation and proteolytic processing of basement membrane proteins." Prostate 80(9):715–726; PMID: 32364250; doi: 10.1002/pros.23985; GPMDB: 18.
  2241. Bekes K, et al. (2020) "Saliva proteomic patterns in patients with molar incisor hypomineralization." Sci Rep 10(1):7560; PMID: 32371984; doi: 10.1038/s41598-020-64614-z; GPMDB: 10.
  2242. Rayaprolu S, et al. (2020) "Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease." Mol Neurodegener 15(1):28; PMID: 32381088; doi: 10.1186/s13024-020-00377-5; GPMDB: 1.
  2243. Pandey K, et al. (2020) "In-depth mining of the immunopeptidome of an acute myeloid leukemia cell line using complementary ligand enrichment and data acquisition strategies." Mol Immunol 123:7–17; PMID: 32387766; doi: 10.1016/j.molimm.2020.04.008; GPMDB: 140.
  2244. Chu F, et al. (2020) "Proteomic Characterization of Damaged Single Hairs Recovered after an Explosion for Protein-Based Human Identification." J Proteome Res 19(8):3088–3099; PMID: 32394717; doi: 10.1021/acs.jproteome.0c00102; GPMDB: 8.
  2245. Iliuk A, et al. (2020) "Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification." J Proteome Res 19(7):2563–2574; PMID: 32396726; doi: 10.1021/acs.jproteome.0c00151; GPMDB: 34.
  2246. Rolfes V, et al. (2020) "Platelets Fuel the Inflammasome Activation of Innate Immune Cells." Cell Rep 31(6):107615; PMID: 32402278; doi: 10.1016/j.celrep.2020.107615; GPMDB: 14.
  2247. Beumer J, et al. (2020) "High-Resolution mRNA and Secretome Atlas of Human Enteroendocrine Cells." Cell 181(6):1291–1306.e19; PMID: 32407674; doi: 10.1016/j.cell.2020.04.036; GPMDB: 33.
  2248. Cunningham DL, et al. (2020) "Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study." Sci Rep 10(1):7950; PMID: 32409632; doi: 10.1038/s41598-020-64534-y; GPMDB: 377.
  2249. van Geelen L, et al. (2020) "Natural brominated phenoxyphenols kill persistent and biofilm-incorporated cells of MRSA and other pathogenic bacteria." Appl Microbiol Biotechnol 104(13):5985–5998; PMID: 32418125; doi: 10.1007/s00253-020-10654-4; GPMDB: 12.
  2250. de la Fuente AG, et al. (2020) "Changes in the Oligodendrocyte Progenitor Cell Proteome with Ageing." Mol Cell Proteomics 19(8):1281–1302; PMID: 32434922; doi: 10.1074/mcp.RA120.002102; GPMDB: 4.
  2251. Cervantes M, et al. (2020) "BMAL1 Associates with NOP58 in the Nucleolus and Contributes to Pre-rRNA Processing." iScience 23(6):101151; PMID: 32450515; doi: 10.1016/j.isci.2020.101151; GPMDB: 24.
  2252. Van JAD, et al. (2020) "Urinary proteomics links keratan sulfate degradation and lysosomal enzymes to early type 1 diabetes." PLoS One 15(5):e0233639; PMID: 32453760; doi: 10.1371/journal.pone.0233639; GPMDB: 90.
  2253. Wolf EJ, et al. (2020) "MKRN2 Physically Interacts with GLE1 to Regulate mRNA Export and Zebrafish Retinal Development." Cell Rep 31(8):107693; PMID: 32460013; doi: 10.1016/j.celrep.2020.107693; GPMDB: 42.
  2254. Gouveia D, et al. (2020) "Shortlisting SARS-CoV-2 Peptides for Targeted Studies from Experimental Data-Dependent Acquisition Tandem Mass Spectrometry Data." Proteomics 20(14):e2000107; PMID: 32462744; doi: 10.1002/pmic.202000107; GPMDB: 10.
  2255. Lim Y, et al. (2020) "Proteome-wide identification of arginine methylation in colorectal cancer tissues from patients." Proteome Sci 18:6; PMID: 32467672; doi: 10.1186/s12953-020-00162-8; GPMDB: 4.
  2256. Wong PP, et al. (2020) "Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells." Cell 181(6):1346–1363.e21; PMID: 32473126; doi: 10.1016/j.cell.2020.02.003; GPMDB: 18.
  2257. Macron C, et al. (2020) "Exploration of human cerebrospinal fluid: A large proteome dataset revealed by trapped ion mobility time-of-flight mass spectrometry." Data Brief 31:105704; PMID: 32478154; doi: 10.1016/j.dib.2020.105704; GPMDB: 1.
  2258. Plott TJ, et al. (2020) "Age-Related Changes in Hair Shaft Protein Profiling and Genetically Variant Peptides." Forensic Sci Int Genet 47:102309; PMID: 32485593; doi: 10.1016/j.fsigen.2020.102309; GPMDB: 67.
  2259. Couté Y, et al. (2020) "Mass Spectrometry-Based Characterization of the Virion Proteome, Phosphoproteome, and Associated Kinase Activity of Human Cytomegalovirus." Microorganisms 8(6):; PMID: 32486127; doi: 10.3390/microorganisms8060820; GPMDB: 6.
  2260. Goecker ZC, et al. (2020) "Optimal processing for proteomic genotyping of single human hairs." Forensic Sci Int Genet 47:102314; PMID: 32505640; doi: 10.1016/j.fsigen.2020.102314; GPMDB: 130.
  2261. Ramesha KP, et al. (2020) "Deep Proteome Profiling of Semen of Indian Indigenous Malnad Gidda (Bos indicus) Cattle." J Proteome Res 19(8):3364–3376; PMID: 32508098; doi: 10.1021/acs.jproteome.0c00237; GPMDB: 129.
  2262. Sebastian Monasor L, et al. (2020) "Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models." Elife; PMID: 32510331; doi: 10.7554/eLife.54083; GPMDB: 24.
  2263. Sembler-Møller ML, et al. (2020) "Proteomics of saliva, plasma, and salivary gland tissue in Sjögren's syndrome and non-Sjögren patients identify novel biomarker candidates." J Proteomics 225:103877; PMID: 32540407; doi: 10.1016/j.jprot.2020.103877; GPMDB: 158.
  2264. Bansal P, et al. (2020) "An Interaction Network of RNA-Binding Proteins Involved in Drosophila Oogenesis." Mol Cell Proteomics 19(9):1485–1502; PMID: 32554711; doi: 10.1074/mcp.RA119.001912; GPMDB: 24.
  2265. Thouvenel L, et al. (2020) "The final assembly of trehalose polyphleates takes place within the outer layer of the mycobacterial cell envelope." J Biol Chem 295(32):11184–11194; PMID: 32554804; doi: 10.1074/jbc.RA120.013299; GPMDB: 64.
  2266. Müller JB, et al. (2020) "The proteome landscape of the kingdoms of life." Nature 582(7813):592–596; PMID: 32555458; doi: 10.1038/s41586-020-2402-x; GPMDB: 6.
  2267. Petereit J, et al. (2020) "Mitochondrial CLPP2 Assists Coordination and Homeostasis of Respiratory Complexes." Plant Physiol 184(1):148–164; PMID: 32571844; doi: 10.1104/pp.20.00136; GPMDB: 29.
  2268. Martin NA, et al. (2020) "Absence of miRNA-146a Differentially Alters Microglia Function and Proteome." Front Immunol 11:1110; PMID: 32582192; doi: 10.3389/fimmu.2020.01110; GPMDB: 44.
  2269. Silva JM, et al. (2020) "Proteomics pinpoints alterations in grade I meningiomas of male versus female patients." Sci Rep 10(1):10335; PMID: 32587372; doi: 10.1038/s41598-020-67113-3; GPMDB: 24.
  2270. Zecha J, et al. (2020) "Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing." Mol Cell Proteomics 19(9):1503–1522; PMID: 32591346; doi: 10.1074/mcp.RA120.002164; GPMDB: 96.
  2271. Zhang Y, et al. (2020) "Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue." J Proteome Res 19(8):3130–3142; PMID: 32597661; doi: 10.1021/acs.jproteome.0c00131; GPMDB: 6.
  2272. Ma J, et al. (2020) "Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins." Aging (Albany NY) 12(13):13529–13554; PMID: 32602849; doi: 10.18632/aging.103461; GPMDB: 10.
  2273. Sudaryatma PE, et al. (2020) "Bovine Respiratory Syncytial Virus Decreased Pasteurella multocida Adherence by Downregulating the Expression of Intercellular Adhesion Molecule-1 on the Surface of Upper Respiratory Epithelial Cells." Vet Microbiol 246:108748; PMID: 32605748; doi: 10.1016/j.vetmic.2020.108748; GPMDB: 18.
  2274. Kenny HC, et al. (2020) "Effectiveness of Resistive Vibration Exercise and Whey Protein Supplementation Plus Alkaline Salt on the Skeletal Muscle Proteome Following 21 Days of Bed Rest in Healthy Males." J Proteome Res 19(8):3438–3451; PMID: 32609523; doi: 10.1021/acs.jproteome.0c00256; GPMDB: 58.
  2275. Fenech EJ, et al. (2020) "Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling." Elife; PMID: 32614325; doi: 10.7554/eLife.57306; GPMDB: 136.
  2276. Locard-Paulet M, et al. (2020) "LymphoAtlas: a dynamic and integrated phosphoproteomic resource of TCR signaling in primary T cells reveals ITSN2 as a regulator of effector functions." Mol Syst Biol 16(7):e9524; PMID: 32618424; doi: 10.15252/msb.20209524; GPMDB: 108.
  2277. Oh S, et al. (2020) "Integrated pharmaco-proteogenomics defines two subgroups in isocitrate dehydrogenase wild-type glioblastoma with prognostic and therapeutic opportunities." Nat Commun 11(1):3288; PMID: 32620753; doi: 10.1038/s41467-020-17139-y; GPMDB: 18.
  2278. Hanses U, et al. (2020) "Intronic CRISPR Repair in a Preclinical Model of Noonan Syndrome-Associated Cardiomyopathy." Circulation 142(11):1059–1076; PMID: 32623905; doi: 10.1161/CIRCULATIONAHA.119.044794; GPMDB: 456.
  2279. Wood AJ, et al. (2020) "C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodeling." JCI Insight 5(15):; PMID: 32634128; doi: 10.1172/jci.insight.137029; GPMDB: 30.
  2280. Zhang Y, et al. (2020) "Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy." Epilepsy Res 166:106412; PMID: 32668389; doi: 10.1016/j.eplepsyres.2020.106412; GPMDB: 1.
  2281. Xiao Y, et al. (2020) "Decreased Mitochondrial DNA Content Drives OXPHOS Dysregulation in Chromophobe Renal Cell Carcinoma." Cancer Res 80(18):3830–3840; PMID: 32694149; doi: 10.1158/0008-5472.CAN-20-0754; GPMDB: 72.
  2282. Gouveia D, et al. (2020) "Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window." J Proteome Res 19(11):4407–4416; PMID: 32697082; doi: 10.1021/acs.jproteome.0c00535; GPMDB: 14.
  2283. Chen Q, et al. (2020) "Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts." Biochim Biophys Acta Mol Basis Dis 1866(11):165899; PMID: 32698045; doi: 10.1016/j.bbadis.2020.165899; GPMDB: 18.
  2284. Cao W, et al. (2020) "Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma." Nat Commun 11(1):3675; PMID: 32699215; doi: 10.1038/s41467-020-17227-z; GPMDB: 3.
  2285. Blume JE, et al. (2020) "Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona." Nat Commun 11(1):3662; PMID: 32699280; doi: 10.1038/s41467-020-17033-7; GPMDB: 114.
  2286. Buljan M, et al. (2020) "Kinase Interaction Network Expands Functional and Disease Roles of Human Kinases." Mol Cell 79(3):504–520.e9; PMID: 32707033; doi: 10.1016/j.molcel.2020.07.001; GPMDB: 730.
  2287. Osthues T, et al. (2020) "The Lipid Receptor G2A (GPR132) Mediates Macrophage Migration in Nerve Injury-Induced Neuropathic Pain." Cells 9(7):; PMID: 32708184; doi: 10.3390/cells9071740; GPMDB: 1.
  2288. Pathak KV, et al. (2020) "Molecular Profiling of Innate Immune Response Mechanisms in Ventilator-associated Pneumonia." Mol Cell Proteomics 19(10):1688–1705; PMID: 32709677; doi: 10.1074/mcp.RA120.002207; GPMDB: 85.
  2289. Cheng YC, et al. (2020) "Anchorage independence altered vasculogenic phenotype of melanoma cells through downregulation in aminopeptidase N /syndecan-1/integrin β4 axis." Aging (Albany NY) 12(17):16803–16819; PMID: 32756007; doi: 10.18632/aging.103425; GPMDB: 80.
  2290. Perino M, et al. (2020) "Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem Cells." Stem Cell Reports 15(6):1287–1300; PMID: 32763159; doi: 10.1016/j.stemcr.2020.07.007; GPMDB: 11.
  2291. Tiwari A, et al. (2020) "Loss of HIF1A From Pancreatic Cancer Cells Increases Expression of PPP1R1B and Degradation of p53 to Promote Invasion and Metastasis." Gastroenterology 159(5):1882–1897.e5; PMID: 32768595; doi: 10.1053/j.gastro.2020.07.046; GPMDB: 6.
  2292. Mirauta BA, et al. (2020) "Population-scale proteome variation in human induced pluripotent stem cells." Elife; PMID: 32773033; doi: 10.7554/eLife.57390; GPMDB: 16.
  2293. Ripmeester EGJ, et al. (2020) "Impaired chondrocyte U3 snoRNA expression in osteoarthritis impacts the chondrocyte protein translation apparatus." Sci Rep 10(1):13426; PMID: 32778764; doi: 10.1038/s41598-020-70453-9; GPMDB: 6.
  2294. Steiner G, et al. (2020) "Enabling Routine MHC-II-Associated Peptide Proteomics for Risk Assessment of Drug-Induced Immunogenicity." J Proteome Res 19(9):3792–3806; PMID: 32786679; doi: 10.1021/acs.jproteome.0c00309; GPMDB: 162.
  2295. D'Alessandro A, et al. (2020) "Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level." J Proteome Res 19(11):4417–4427; PMID: 32786691; doi: 10.1021/acs.jproteome.0c00365; GPMDB: 49.
  2296. Wang Y, et al. (2020) "A New Workflow for the Analysis of Phosphosite Occupancy in Paired Samples by Integration of Proteomics and Phosphoproteomics Data Sets." J Proteome Res 19(9):3807–3816; PMID: 32786891; doi: 10.1021/acs.jproteome.0c00345; GPMDB: 42.
  2297. Hoshino A, et al. (2020) "Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers." Cell 182(4):1044–1061.e18; PMID: 32795414; doi: 10.1016/j.cell.2020.07.009; GPMDB: 562.
  2298. Kirak O, et al. (2020) "Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts." Int J Mol Sci 21(16):; PMID: 32796510; doi: 10.3390/ijms21165743; GPMDB: 1.
  2299. Drummond E, et al. (2020) "Phosphorylated tau interactome in the human Alzheimer's disease brain." Brain 143(9):2803–2817; PMID: 32812023; doi: 10.1093/brain/awaa223; GPMDB: 27.
  2300. Pang CNI, et al. (2020) "Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes." Mol Cell Proteomics 19(11):1876–1895; PMID: 32817346; doi: 10.1074/mcp.RA120.002154; GPMDB: 72.
  2301. Maffioli E, et al. (2020) "Proteomic Analysis Reveals a Mitochondrial Remodeling of βTC3 Cells in Response to Nanotopography." Front Cell Dev Biol 8:508; PMID: 32850772; doi: 10.3389/fcell.2020.00508; GPMDB: 9.
  2302. Werner AC, et al. (2020) "Coronin 1B Controls Endothelial Actin Dynamics at Cell-Cell Junctions and Is Required for Endothelial Network Assembly." Front Cell Dev Biol 8:708; PMID: 32850828; doi: 10.3389/fcell.2020.00708; GPMDB: 8.
  2303. Mantini G, et al. (2020) "Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers." Cell Oncol (Dordr) 43(6):1147–1159; PMID: 32860207; doi: 10.1007/s13402-020-00548-y; GPMDB: 100.
  2304. Chang YY, et al. (2020) "Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape." PLoS Pathog 16(8):e1008822; PMID: 32866204; doi: 10.1371/journal.ppat.1008822; GPMDB: 18.
  2305. Simats A, et al. (2020) "A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke." Mol Cell Proteomics 19(12):1921–1936; PMID: 32868372; doi: 10.1074/mcp.RA120.002283; GPMDB: 120.
  2306. Holder J, et al. (2020) "Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit." Elife; PMID: 32869743; doi: 10.7554/eLife.59885; GPMDB: 240.
  2307. Kooij R, et al. (2020) "Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos." J Am Chem Soc 142(39):16825–16841; PMID: 32886496; doi: 10.1021/jacs.0c07726; GPMDB: 24.
  2308. Wang B, et al. (2021) "Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell." J Proteomics 230:103965; PMID: 32891891; doi: 10.1016/j.jprot.2020.103965; GPMDB: 164.
  2309. Starkl P, et al. (2020) "IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcusaureus." Immunity 53(4):793–804.e9; PMID: 32910906; doi: 10.1016/j.immuni.2020.08.002; GPMDB: 12.
  2310. van Gelder CAGH, et al. (2020) "Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons." Mol Cell Proteomics 19(12):1952–1968; PMID: 32912969; doi: 10.1074/mcp.RA120.002199; GPMDB: 20.
  2311. Jiang L, et al. (2020) "A Quantitative Proteome Map of the Human Body." Cell 183(1):269–283.e19; PMID: 32916130; doi: 10.1016/j.cell.2020.08.036; GPMDB: 35.
  2312. Cao S, et al. (2020) "Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes." Reprod Domest Anim 55(11):1607–1618; PMID: 32920902; doi: 10.1111/rda.13819; GPMDB: 30.
  2313. Uyy E, et al. (2020) "Diabetic nephropathy associates with deregulation of enzymes involved in kidney sulphur metabolism." J Cell Mol Med 24(20):12131–12140; PMID: 32935914; doi: 10.1111/jcmm.15855; GPMDB: 95.
  2314. Faridi P, et al. (2020) "Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma." Cancer Immunol Res 8(10):1322–1334; PMID: 32938616; doi: 10.1158/2326-6066.CIR-19-0894; GPMDB: 108.
  2315. Lindhout FW, et al. (2020) "Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons." Elife; PMID: 32940601; doi: 10.7554/eLife.58124; GPMDB: 1.
  2316. O'Neill JS, et al. (2020) "Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis." Nat Commun 11(1):4706; PMID: 32943618; doi: 10.1038/s41467-020-18330-x; GPMDB: 84.
  2317. Lee-Law PY, et al. (2021) "Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models." J Hepatol 74(2):394–406; PMID: 32950589; doi: 10.1016/j.jhep.2020.09.010; GPMDB: 49.
  2318. Liu JJ, et al. (2020) "Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice." Neuropharmacology 181:108324; PMID: 32976891; doi: 10.1016/j.neuropharm.2020.108324; GPMDB: 67.
  2319. Schumacher N, et al. (2021) "Cell-autonomous hepatocyte-specific GP130 signaling is sufficient to trigger a robust innate immune response in mice." J Hepatol 74(2):407–418; PMID: 32987028; doi: 10.1016/j.jhep.2020.09.021; GPMDB: 1.
  2320. Adhikari B, et al. (2020) "PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase." Nat Chem Biol 16(11):1179–1188; PMID: 32989298; doi: 10.1038/s41589-020-00652-y; GPMDB: 93.
  2321. Bassal M, et al. (2020) "Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity." Mol Plant 13(12):1709–1732; PMID: 33007468; doi: 10.1016/j.molp.2020.09.024; GPMDB: 86.
  2322. Gabaev I, et al. (2020) "Quantitative Proteomics Analysis of Lytic KSHV Infection in Human Endothelial Cells Reveals Targets of Viral Immune Modulation." Cell Rep 33(2):108249; PMID: 33053346; doi: 10.1016/j.celrep.2020.108249; GPMDB: 1.
  2323. Gordon DE, et al. (2020) "Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms." Science 370(6521):; PMID: 33060197; doi: 10.1126/science.abe9403; GPMDB: 198.
  2324. Leng L, et al. (2020) "Pathological features of COVID-19-associated lung injury: a preliminary proteomics report based on clinical samples." Signal Transduct Target Ther 5(1):240; PMID: 33060566; doi: 10.1038/s41392-020-00355-9; GPMDB: 13.
  2325. Demmers LC, et al. (2020) "Single-cell derived tumor organoids display diversity in HLA class I peptide presentation." Nat Commun 11(1):5338; PMID: 33087703; doi: 10.1038/s41467-020-19142-9; GPMDB: 24.
  2326. Wang J, et al. (2020) "HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis." Cell 183(5):1264–1281.e20; PMID: 33091337; doi: 10.1016/j.cell.2020.09.054; GPMDB: 54.
  2327. Faca VM, et al. (2020) "Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network." Sci Rep 10(1):18056; PMID: 33093574; doi: 10.1038/s41598-020-74939-4; GPMDB: 153.
  2328. Zhao Q, et al. (2020) "Lysine Acetylome Study of Human Hepatocellular Carcinoma Tissues for Biomarkers and Therapeutic Targets Discovery." Front Genet 11:572663; PMID: 33093847; doi: 10.3389/fgene.2020.572663; GPMDB: 1.
  2329. Ilik İA, et al. (2020) "SON and SRRM2 are essential for nuclear speckle formation." Elife; PMID: 33095160; doi: 10.7554/eLife.60579; GPMDB: 6.
  2330. Di Meo A, et al. (2021) "Proteomic Profiling of the Human Tissue and Biological Fluid Proteome." J Proteome Res 20(1):444–452; PMID: 33107741; doi: 10.1021/acs.jproteome.0c00502; GPMDB: 92.
  2331. Alayi TD, et al. (2020) "Tandem Mass Tag-Based Serum Proteome Profiling for Biomarker Discovery in Young Duchenne Muscular Dystrophy Boys." ACS Omega 5(41):26504–26517; PMID: 33110978; doi: 10.1021/acsomega.0c03206; GPMDB: 72.
  2332. Gibbard E, et al. (2021) "Whole-proteome analysis of mesonephric-derived cancers describes new potential biomarkers." Hum Pathol 108:1–11; PMID: 33121982; doi: 10.1016/j.humpath.2020.10.005; GPMDB: 8.
  2333. Al-Majdoub ZM, et al. (2020) "Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin." FEBS Lett 594(23):4134–4150; PMID: 33128234; doi: 10.1002/1873-3468.13982; GPMDB: 146.
  2334. Dyring-Andersen B, et al. (2020) "Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin." Nat Commun 11(1):5587; PMID: 33154365; doi: 10.1038/s41467-020-19383-8; GPMDB: 157.
  2335. Asad S, et al. (2021) "Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease." J Pharm Sci 110(1):239–250; PMID: 33159915; doi: 10.1016/j.xphs.2020.11.001; GPMDB: 132.
  2336. Chen X, et al. (2021) "Comprehensive Analysis of the Proteome and PTMomes of C2C12 Myoblasts Reveals that Sialylation Plays a Role in the Differentiation of Skeletal Muscle Cells." J Proteome Res 20(1):222–235; PMID: 33216553; doi: 10.1021/acs.jproteome.0c00353; GPMDB: 51.
  2337. Hu Z, et al. (2021) "UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2." Oncogene 40(3):647–662; PMID: 33219317; doi: 10.1038/s41388-020-01551-1; GPMDB: 3.
  2338. Zaro BW, et al. (2020) "Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells." Elife; PMID: 33236985; doi: 10.7554/eLife.62210; GPMDB: 64.
  2339. Ouni E, et al. (2020) "Divide-and-Conquer Matrisome Protein (DC-MaP) Strategy: An MS-Friendly Approach to Proteomic Matrisome Characterization." Int J Mol Sci 21(23):; PMID: 33266304; doi: 10.3390/ijms21239141; GPMDB: 90.
  2340. Braun F, et al. (2020) "The proteomic landscape of small urinary extracellular vesicles during kidney transplantation." J Extracell Vesicles 10(1):e12026; PMID: 33304478; doi: 10.1002/jev2.12026; GPMDB: 89.
  2341. Bailey A, et al. (2021) "Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells." Toxicol Sci 180(1):136–147; PMID: 33372950; doi: 10.1093/toxsci/kfaa184; GPMDB: 35.
  2342. Tam V, et al. (2020) "DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics." Elife; PMID: 33382035; doi: 10.7554/eLife.64940; GPMDB: 263.
  2343. Subbannayya Y, et al. (2020) "The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function." Int J Mol Sci 22(1):; PMID: 33383959; doi: 10.3390/ijms22010275; GPMDB: 3.
  2344. Dietze R, et al. (2021) "Phosphoproteomics identify arachidonic-acid-regulated signal transduction pathways modulating macrophage functions with implications for ovarian cancer." Theranostics 11(3):1377–1395; PMID: 33391540; doi: 10.7150/thno.52442; GPMDB: 63.
  2345. Khan MJ, et al. (2021) "Why Inclusion Matters for Alzheimer's Disease Biomarker Discovery in Plasma." J Alzheimers Dis 79(3):1327–1344; PMID: 33427747; doi: 10.3233/JAD-201318; GPMDB: 25.
  2346. Fissolo N, et al. (2021) "CSF SERPINA3 Levels Are Elevated in Patients With Progressive MS." Neurol Neuroimmunol Neuroinflamm 8(2):; PMID: 33436375; doi: 10.1212/NXI.0000000000000941; GPMDB: 30.
  2347. Tijms BM, et al. (2020) "Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics." Brain 143(12):3776–3792; PMID: 33439986; doi: 10.1093/brain/awaa325; GPMDB: 50.
  2348. Prust N, et al. (2021) "In-Depth Characterization of the Staphylococcus aureus Phosphoproteome Reveals New Targets of Stk1." Mol Cell Proteomics 20:100034; PMID: 33444734; doi: 10.1074/mcp.RA120.002232; GPMDB: 27.
  2349. Ölander M, et al. (2021) "Hepatocyte size fractionation allows dissection of human liver zonation." J Cell Physiol 236(8):5885–5894; PMID: 33452735; doi: 10.1002/jcp.30273; GPMDB: 36.
  2350. Gastaldello A, et al. (2021) "The immunopeptidomes of two transmissible cancers and their host have a common, dominant peptide motif." Immunology 163(2):169–184; PMID: 33460454; doi: 10.1111/imm.13307; GPMDB: 9.
  2351. Lobato-Gil S, et al. (2021) "Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation." Cell Rep 34(3):108635; PMID: 33472076; doi: 10.1016/j.celrep.2020.108635; GPMDB: 24.
  2352. Huang KK, et al. (2021) "Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer." Genome Biol 22(1):44; PMID: 33482911; doi: 10.1186/s13059-021-02261-x; GPMDB: 80.
  2353. Osório H, et al. (2021) "Proteomics Analysis of Gastric Cancer Patients with Diabetes Mellitus." J Clin Med 10(3):; PMID: 33494396; doi: 10.3390/jcm10030407; GPMDB: 40.
  2354. Amer N, et al. (2021) "Aggresomes predict poor outcomes and implicate proteostasis in the pathogenesis of pediatric choroid plexus tumors." J Neurooncol 152(1):67–78; PMID: 33501605; doi: 10.1007/s11060-020-03694-3; GPMDB: 84.
  2355. González-Prieto R, et al. (2021) "Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex." Cell Rep 34(4):108691; PMID: 33503430; doi: 10.1016/j.celrep.2021.108691; GPMDB: 12.
  2356. Yang F, et al. (2020) "Integrative Proteomic and Phosphoproteomic Analyses of Granulosa Cells During Follicular Atresia in Porcine." Front Cell Dev Biol 8:624985; PMID: 33520998; doi: 10.3389/fcell.2020.624985; GPMDB: 77.
  2357. Aravamudhan S, et al. (2021) "Phosphoproteomics of the developing heart identifies PERM1 - An outer mitochondrial membrane protein." J Mol Cell Cardiol 154:41–59; PMID: 33549681; doi: 10.1016/j.yjmcc.2021.01.010; GPMDB: 104.
  2358. Bankar R, et al. (2021) "Proteomic investigation reveals dominant alterations of neutrophil degranulation and mRNA translation pathways in patients with COVID-19." iScience 24(3):102135; PMID: 33558857; doi: 10.1016/j.isci.2021.102135; GPMDB: 24.
  2359. Deng L, et al. (2021) "Mouse model of Alzheimer's disease demonstrates differential effects of early disease pathology on various brain regions." Proteomics 21(7-8):e2000213; PMID: 33559908; doi: 10.1002/pmic.202000213; GPMDB: 4.
  2360. van Alphen C, et al. (2021) "The influence of delay in mononuclear cell isolation on acute myeloid leukemia phosphorylation profiles." J Proteomics 238:104134; PMID: 33561558; doi: 10.1016/j.jprot.2021.104134; GPMDB: 69.
  2361. Sukumaran A, et al. (2021) "Zinc limitation in Klebsiella pneumoniae profiled by quantitative proteomics influences transcriptional regulation and cation transporter-associated capsule production." BMC Microbiol 21(1):43; PMID: 33568055; doi: 10.1186/s12866-021-02091-8; GPMDB: 16.
  2362. Kong S, et al. (2021) "Global analysis of lysine acetylome reveals the potential role of CCL18 in non-small cell lung cancer." Proteomics 21(7-8):e2000144; PMID: 33570763; doi: 10.1002/pmic.202000144; GPMDB: 17.
  2363. Sivakova B, et al. (2021) "Label-Free Quantitative Phosphoproteomics of the Fission Yeast Schizosaccharomyces pombe Using Strong Anion Exchange- and Porous Graphitic Carbon-Based Fractionation Strategies." Int J Mol Sci 22(4):; PMID: 33572424; doi: 10.3390/ijms22041747; GPMDB: 68.
  2364. Pluska L, et al. (2021) "The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains." EMBO J 40(6):e106094; PMID: 33576509; doi: 10.15252/embj.2020106094; GPMDB: 2.
  2365. Bala K, et al. (2021) "Identification of differentially expressed proteins between fused and open sutures in sagittal nonsyndromic craniosynostosis during suture development by quantitative proteomic analysis." Proteomics Clin Appl 15(2-3):e2000031; PMID: 33580899; doi: 10.1002/prca.202000031; GPMDB: 3.
  2366. Silbern I, et al. (2021) "Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling." Mol Cell Proteomics 20:100061; PMID: 33582301; doi: 10.1016/j.mcpro.2021.100061; GPMDB: 180.
  2367. Dudek M, et al. (2021) "Circadian time series proteomics reveals daily dynamics in cartilage physiology." Osteoarthritis Cartilage 29(5):739–749; PMID: 33610821; doi: 10.1016/j.joca.2021.02.008; GPMDB: 72.
  2368. Pietrowska M, et al. (2021) "Proteomic profile of melanoma cell-derived small extracellular vesicles in patients' plasma: a potential correlate of melanoma progression." J Extracell Vesicles 10(4):e12063; PMID: 33613873; doi: 10.1002/jev2.12063; GPMDB: 30.
  2369. Yuan S, et al. (2021) "Translatomic profiling reveals novel self-restricting virus-host interactions during HBV infection." J Hepatol 75(1):74–85; PMID: 33621634; doi: 10.1016/j.jhep.2021.02.009; GPMDB: 3.
  2370. Gassaway BM, et al. (2021) "Categorization of Phosphorylation Site Behavior during the Diauxic Shift in Saccharomyces cerevisiae." J Proteome Res 20(5):2487–2496; PMID: 33630598; doi: 10.1021/acs.jproteome.0c00943; GPMDB: 42.
  2371. Kalaora S, et al. (2021) "Identification of bacteria-derived HLA-bound peptides in melanoma." Nature 592(7852):138–143; PMID: 33731925; doi: 10.1038/s41586-021-03368-8; GPMDB: 153.
  2372. Schmid D, et al. (2021) "Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies." J Neurochem 158(2):522–538; PMID: 33735443; doi: 10.1111/jnc.15350; GPMDB: 299.
  2373. Wegler C, et al. (2021) "Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes." Mol Pharm 18(4):1792–1805; PMID: 33739838; doi: 10.1021/acs.molpharmaceut.1c00053; GPMDB: 93.
  2374. Zhang X, et al. (2021) "Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature." Front Cell Dev Biol 9:649265; PMID: 33748143; doi: 10.3389/fcell.2021.649265; GPMDB: 4.
  2375. Cifani P, et al. (2021) "Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics." J Proteome Res 20(4):1835–1848; PMID: 33749263; doi: 10.1021/acs.jproteome.0c00638; GPMDB: 1.
  2376. Dourthe C, et al. (2021) "Proteomic Profiling of Hepatocellular Adenomas Paves the Way to Diagnostic and Prognostic Approaches." Hepatology 74(3):1595–1610; PMID: 33754354; doi: 10.1002/hep.31826; GPMDB: 467.
  2377. Maier JI, et al. (2021) "EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission." Cell Rep 34(12):108883; PMID: 33761352; doi: 10.1016/j.celrep.2021.108883; GPMDB: 20.
  2378. Kim D, et al. (2021) "Comparative Proteome Research in a Zebrafish Model for Vanishing White Matter Disease." Int J Mol Sci 22(5):; PMID: 33800130; doi: 10.3390/ijms22052707; GPMDB: 2.
  2379. Li X, et al. (2021) "Structural and Functional Characterization of Fibronectin in Extracellular Vesicles From Hepatocytes." Front Cell Dev Biol 9:640667; PMID: 33816490; doi: 10.3389/fcell.2021.640667; GPMDB: 3.
  2380. Bakochi A, et al. (2021) "Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis." Elife; PMID: 33821792; doi: 10.7554/eLife.64159; GPMDB: 109.
  2381. Rodrigues JG, et al. (2021) "Terminal α2,6-sialylation of epidermal growth factor receptor modulates antibody therapy response of colorectal cancer cells." Cell Oncol (Dordr) 44(4):835–850; PMID: 33847896; doi: 10.1007/s13402-021-00606-z; GPMDB: 12.
  2382. Marcu A, et al. (2021) "HLA Ligand Atlas: a benign reference of HLA-presented peptides to improve T-cell-based cancer immunotherapy." J Immunother Cancer 9(4):; PMID: 33858848; doi: 10.1136/jitc-2020-002071; GPMDB: 1490.
  2383. Nyström EEL, et al. (2021) "An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function." Science 372(6539):; PMID: 33859001; doi: 10.1126/science.abb1590; GPMDB: 16.
  2384. Díez P, et al. (2021) "Dynamic Intracellular Metabolic Cell Signaling Profiles During Ag-Dependent B-Cell Differentiation." Front Immunol 12:637832; PMID: 33859640; doi: 10.3389/fimmu.2021.637832; GPMDB: 105.
  2385. Wei P, et al. (2019) "Urinary Metabolomic and Proteomic Analyses in a Mouse Model of Prostatic Inflammation." Urine (Amst) 1:17–23; PMID: 33870183; doi: 10.1016/j.urine.2020.05.002; GPMDB: 24.
  2386. Iwan A, et al. (2021) "Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation." Biomed Rep 14(6):54; PMID: 33884197; doi: 10.3892/br.2021.1430; GPMDB: 4.
  2387. Del Favero G, et al. (2021) "Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function." Arch Toxicol 95(6):2201–2221; PMID: 33890134; doi: 10.1007/s00204-021-03042-y; GPMDB: 58.
  2388. Lavalou J, et al. (2021) "Formation of polarized contractile interfaces by self-organized Toll-8/Cirl GPCR asymmetry." Dev Cell 56(11):1574–1588.e7; PMID: 33932333; doi: 10.1016/j.devcel.2021.03.030; GPMDB: 17.
  2389. Demmers LC, et al. (2021) "HLA Class II Presentation Is Specifically Altered at Elevated Temperatures in the B-Lymphoblastic Cell Line JY." Mol Cell Proteomics 20:100089; PMID: 33933681; doi: 10.1016/j.mcpro.2021.100089; GPMDB: 36.
  2390. Maheshwari G, et al. (2021) "Tandem mass tag-based proteomics for studying the effects of a biotechnologically produced oyster mushroom against hepatic steatosis in obese Zucker rats." J Proteomics 242:104255; PMID: 33957313; doi: 10.1016/j.jprot.2021.104255; GPMDB: 1.
  2391. Englert H, et al. (2021) "Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation." EBioMedicine 67:103382; PMID: 34000623; doi: 10.1016/j.ebiom.2021.103382; GPMDB: 36.
  2392. Parker R, et al. (2021) "Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells." Cell Rep 35(8):109179; PMID: 34004174; doi: 10.1016/j.celrep.2021.109179; GPMDB: 30.
  2393. Chen X, et al. (2021) "Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells." Cell Death Discov 7(1):114; PMID: 34006825; doi: 10.1038/s41420-021-00487-z; GPMDB: 2.
  2394. Gallais F, et al. (2021) "Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing." Anal Bioanal Chem 413(29):7265–7275; PMID: 34013402; doi: 10.1007/s00216-021-03401-9; GPMDB: 3.
  2395. Pisani F, et al. (2021) "Regulation of aquaporin-4 expression in the central nervous system investigated using M23-AQP4 null mouse." Glia 69(9):2235–2251; PMID: 34038017; doi: 10.1002/glia.24032; GPMDB: 7.
  2396. Chen H, et al. (2021) "Proteomics analysis reveals the effect of 1α,25(OH)2VD3-glycosides on development of early testes in piglets." Sci Rep 11(1):11341; PMID: 34059707; doi: 10.1038/s41598-021-90676-8; GPMDB: 3.
  2397. Shaba E, et al. (2021) "Proteome Characterization of BALF Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Unveiling Undercover Molecular Pathways." Int J Mol Sci 22(11):; PMID: 34071777; doi: 10.3390/ijms22115696; GPMDB: 4.
  2398. Hatje FA, et al. (2021) "Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice." J Am Soc Nephrol 32(9):2175–2193; PMID: 34074698; doi: 10.1681/ASN.2020091346; GPMDB: 15.
  2399. Wu CT, et al. (2021) "SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment." Cell Metab 33(8):1565–1576.e5; PMID: 34081912; doi: 10.1016/j.cmet.2021.05.013; GPMDB: 40.
  2400. Hu S, et al. (2021) "Integrated metabolomics and proteomics analysis reveals energy metabolism disorders in the livers of sleep-deprived mice." J Proteomics 245:104290; PMID: 34089895; doi: 10.1016/j.jprot.2021.104290; GPMDB: 1.
  2401. Lei T, et al. (2021) "Proteomic profile of human stem cells from dental pulp and periodontal ligament." J Proteomics 245:104280; PMID: 34089896; doi: 10.1016/j.jprot.2021.104280; GPMDB: 9.
  2402. Kugeratski FG, et al. (2021) "Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker." Nat Cell Biol 23(6):631–641; PMID: 34108659; doi: 10.1038/s41556-021-00693-y; GPMDB: 10.
  2403. Burns AP, et al. (2021) "A Universal and High-Throughput Proteomics Sample Preparation Platform." Anal Chem 93(24):8423–8431; PMID: 34110797; doi: 10.1021/acs.analchem.1c00265; GPMDB: 36.
  2404. Friedrich C, et al. (2021) "Comprehensive micro-scaled proteome and phosphoproteome characterization of archived retrospective cancer repositories." Nat Commun 12(1):3576; PMID: 34117251; doi: 10.1038/s41467-021-23855-w; GPMDB: 154.
  2405. Mercer TJ, et al. (2021) "Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy." EMBO J 40(14):e105985; PMID: 34121209; doi: 10.15252/embj.2020105985; GPMDB: 234.
  2406. de la Calle Arregui C, et al. (2021) "Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling." Nat Commun 12(1):3660; PMID: 34135321; doi: 10.1038/s41467-021-23857-8; GPMDB: 3.
  2407. Zeng X, et al. (2021) "MSTracer: A Machine Learning Software Tool for Peptide Feature Detection from Liquid Chromatography-Mass Spectrometry Data." J Proteome Res 20(7):3455–3462; PMID: 34137255; doi: 10.1021/acs.jproteome.0c01029; GPMDB: 3.
  2408. Griffante G, et al. (2021) "Human cytomegalovirus-induced host protein citrullination is crucial for viral replication." Nat Commun 12(1):3910; PMID: 34162877; doi: 10.1038/s41467-021-24178-6; GPMDB: 15.
  2409. Nagler A, et al. (2021) "Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics." Cell Rep 35(13):109305; PMID: 34166618; doi: 10.1016/j.celrep.2021.109305; GPMDB: 144.
  2410. Brauer M, et al. (2021) "What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile." Front Microbiol 12:682111; PMID: 34177868; doi: 10.3389/fmicb.2021.682111; GPMDB: 240.
  2411. Hirama T, et al. (2021) "Proteogenomic identification of an immunogenic HLA class I neoantigen in mismatch repair-deficient colorectal cancer tissue." JCI Insight 6(14):; PMID: 34185709; doi: 10.1172/jci.insight.146356; GPMDB: 11.
  2412. Schaffert A, et al. (2021) "Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation." Environ Int 156:106730; PMID: 34186270; doi: 10.1016/j.envint.2021.106730; GPMDB: 169.
  2413. Schlagowski AM, et al. (2021) "Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol." EMBO J 40(16):e107913; PMID: 34191328; doi: 10.15252/embj.2021107913; GPMDB: 3.
  2414. Vaz C, et al. (2021) "Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis." J Fungi (Basel) 7(7):; PMID: 34201883; doi: 10.3390/jof7070501; GPMDB: 2.
  2415. Rusanov AL, et al. (2021) "Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages." Int J Mol Sci 22(12):; PMID: 34204832; doi: 10.3390/ijms22126323; GPMDB: 18.
  2416. Bauzá-Martinez J, et al. (2021) "HLA-B and cysteinylated ligands distinguish the antigen presentation landscape of extracellular vesicles." Commun Biol 4(1):825; PMID: 34211107; doi: 10.1038/s42003-021-02364-y; GPMDB: 12.
  2417. Yang H, et al. (2021) "Heat Adaptation Induced Cross Protection Against Ethanol Stress in Tetragenococcus halophilus: Physiological Characteristics and Proteomic Analysis." Front Microbiol 12:686672; PMID: 34220775; doi: 10.3389/fmicb.2021.686672; GPMDB: 14.
  2418. Stingl C, et al. (2021) "Alteration of protein expression and spliceosome pathway activity during Barrett's carcinogenesis." J Gastroenterol 56(9):791–807; PMID: 34227026; doi: 10.1007/s00535-021-01802-2; GPMDB: 91.
  2419. Wu Q, et al. (2021) "Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney." J Am Soc Nephrol 32(9):2195–2209; PMID: 34230103; doi: 10.1681/ASN.2020071035; GPMDB: 34.
  2420. Chen DY, et al. (2021) "SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway." J Virol 95(19):e0086221; PMID: 34260266; doi: 10.1128/JVI.00862-21; GPMDB: 6.
  2421. Adam RJ, et al. (2020) "Functionally Essential Tubular Proteins Are Lost to Urine-Excreted, Large Extracellular Vesicles during Chronic Renal Insufficiency." Kidney360 1(10):1105–1115; PMID: 34263177; doi: 10.34067/kid.0001212020; GPMDB: 9.
  2422. Israel S, et al. (2021) "The COP9 signalosome subunit 3 is necessary for early embryo survival by way of a stable protein deposit in mouse oocytes." Mol Hum Reprod 27(8):; PMID: 34264319; doi: 10.1093/molehr/gaab048; GPMDB: 130.
  2423. Kesavan R, et al. (2021) "The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer." Int J Mol Sci 22(13):; PMID: 34281173; doi: 10.3390/ijms22137120; GPMDB: 13.
  2424. de Azambuja Rodrigues PM, et al. (2021) "Proteomics reveals disturbances in the immune response and energy metabolism of monocytes from patients with septic shock." Sci Rep 11(1):15149; PMID: 34312428; doi: 10.1038/s41598-021-94474-0; GPMDB: 72.
  2425. Striednig B, et al. (2021) "Quorum sensing governs a transmissive Legionella subpopulation at the pathogen vacuole periphery." EMBO Rep 22(9):e52972; PMID: 34314090; doi: 10.15252/embr.202152972; GPMDB: 8.
  2426. Tabang DN, et al. (2021) "Analysis of pancreatic extracellular matrix protein post-translational modifications via electrostatic repulsion-hydrophilic interaction chromatography coupled with mass spectrometry." Mol Omics 17(5):652–664; PMID: 34318855; doi: 10.1039/d1mo00104c; GPMDB: 64.
  2427. Koyuncu S, et al. (2021) "Rewiring of the ubiquitinated proteome determines ageing in C. elegans." Nature 596(7871):285–290; PMID: 34321666; doi: 10.1038/s41586-021-03781-z; GPMDB: 72.
  2428. Psakhye I, et al. (2021) "SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover." Cell Rep 36(5):109485; PMID: 34348159; doi: 10.1016/j.celrep.2021.109485; GPMDB: 2.
  2429. Vanderboom PM, et al. (2021) "A size-exclusion-based approach for purifying extracellular vesicles from human plasma." Cell Rep Methods 1(3):; PMID: 34355211; doi: 10.1016/j.crmeth.2021.100055; GPMDB: 140.
  2430. Jang HN, et al. (2021) "Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma." Cancers (Basel) 13(15):; PMID: 34359790; doi: 10.3390/cancers13153890; GPMDB: 174.
  2431. Wang HZ, et al. (2021) "Cerebrospinal fluid proteomics reveal potential protein targets of JiaWeiSiNiSan in preventing chronic psychological stress damage." Pharm Biol 59(1):1065–1076; PMID: 34383630; doi: 10.1080/13880209.2021.1954666; GPMDB: 3.
  2432. Qi YA, et al. (2021) "Proteogenomic Analysis Unveils the HLA Class I-Presented Immunopeptidome in Melanoma and EGFR-Mutant Lung Adenocarcinoma." Mol Cell Proteomics 20:100136; PMID: 34391887; doi: 10.1016/j.mcpro.2021.100136; GPMDB: 27.
  2433. Klaeger S, et al. (2021) "Optimized Liquid and Gas Phase Fractionation Increases HLA-Peptidome Coverage for Primary Cell and Tissue Samples." Mol Cell Proteomics 20:100133; PMID: 34391888; doi: 10.1016/j.mcpro.2021.100133; GPMDB: 230.
  2434. ElAbd H, et al. (2021) "Immunopeptidomics toolkit library (IPTK): a python-based modular toolbox for analyzing immunopeptidomics data." BMC Bioinformatics 22(1):405; PMID: 34404349; doi: 10.1186/s12859-021-04315-0; GPMDB: 4.
  2435. Aviner R, et al. (2021) "Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis." Nature 596(7873):558–564; PMID: 34408324; doi: 10.1038/s41586-021-03851-2; GPMDB: 63.
  2436. Kikuchi Y, et al. (2021) "CD8+ T-cell Immune Surveillance against a Tumor Antigen Encoded by the Oncogenic Long Noncoding RNA PVT1." Cancer Immunol Res 9(11):1342–1353; PMID: 34433589; doi: 10.1158/2326-6066.CIR-20-0964; GPMDB: 11.
  2437. Gonzalez-Franquesa A, et al. (2021) "Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome." Proteomes 9(3):; PMID: 34449730; doi: 10.3390/proteomes9030037; GPMDB: 34.
  2438. Sripathi SR, et al. (2021) "Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT." Mol Cell Proteomics 20:100131; PMID: 34455105; doi: 10.1016/j.mcpro.2021.100131; GPMDB: 2.
  2439. Carruthers NJ, et al. (2021) "The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity." Sci Rep 11(1):17394; PMID: 34462518; doi: 10.1038/s41598-021-96995-0; GPMDB: 20.
  2440. Wang H, et al. (2021) "An Integrated Transcriptomics and Proteomics Analysis Implicates lncRNA MALAT1 in the Regulation of Lipid Metabolism." Mol Cell Proteomics 20:100141; PMID: 34478876; doi: 10.1016/j.mcpro.2021.100141; GPMDB: 6.
  2441. Frankovsky J, et al. (2021) "The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids." J Biol Chem 297(4):101155; PMID: 34480900; doi: 10.1016/j.jbc.2021.101155; GPMDB: 36.
  2442. Mukherjee S, et al. (2021) "Citrullination of Amyloid-β Peptides in Alzheimer's Disease." ACS Chem Neurosci 12(19):3719–3732; PMID: 34519476; doi: 10.1021/acschemneuro.1c00474; GPMDB: 10.
  2443. Zhang X, et al. (2021) "The Insufficient Activation of RIG-I-Like Signaling Pathway Contributes to Highly Efficient Replication of Porcine Picornaviruses in IBRS-2 Cells." Mol Cell Proteomics 20:100147; PMID: 34530158; doi: 10.1016/j.mcpro.2021.100147; GPMDB: 4.
  2444. Tognoli ML, et al. (2021) "RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis." EMBO J 40(20):e107680; PMID: 34532864; doi: 10.15252/embj.2021107680; GPMDB: 4.
  2445. Champagne J, et al. (2021) "Oncogene-dependent sloppiness in mRNA translation." Mol Cell 81(22):4709–4721.e9; PMID: 34562372; doi: 10.1016/j.molcel.2021.09.002; GPMDB: 30.
  2446. Gao Z, et al. (2021) "A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins." J Proteome Res 20(11):4919–4924; PMID: 34570971; doi: 10.1021/acs.jproteome.1c00603; GPMDB: 30.
  2447. Gomkale R, et al. (2021) "Mapping protein interactions in the active TOM-TIM23 supercomplex." Nat Commun 12(1):5715; PMID: 34588454; doi: 10.1038/s41467-021-26016-1; GPMDB: 87.
  2448. Kim M, et al. (2021) "A protein interaction landscape of breast cancer." Science 374(6563):eabf3066; PMID: 34591612; doi: 10.1126/science.abf3066; GPMDB: 702.
  2449. Swaney DL, et al. (2021) "A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity." Science 374(6563):eabf2911; PMID: 34591642; doi: 10.1126/science.abf2911; GPMDB: 551.
  2450. Stieglitz F, et al. (2021) "The Binary Toxin of Clostridioides difficile Alters the Proteome and Phosphoproteome of HEp-2 Cells." Front Microbiol 12:725612; PMID: 34594315; doi: 10.3389/fmicb.2021.725612; GPMDB: 57.
  2451. Ross SH, et al. (2021) "Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes." Front Immunol 12:712402; PMID: 34603285; doi: 10.3389/fimmu.2021.712402; GPMDB: 6.
  2452. Yau B, et al. (2021) "Proteomic pathways to metabolic disease and type 2 diabetes in the pancreatic islet." iScience 24(10):103099; PMID: 34622154; doi: 10.1016/j.isci.2021.103099; GPMDB: 38.
  2453. Di Persio S, et al. (2021) "Single-cell RNA-seq unravels alterations of the human spermatogonial stem cell compartment in patients with impaired spermatogenesis." Cell Rep Med 2(9):100395; PMID: 34622232; doi: 10.1016/j.xcrm.2021.100395; GPMDB: 2.
  2454. Lorente E, et al. (2021) "Acid Stripping after Infection Improves the Detection of Viral HLA Class I Natural Ligands Identified by Mass Spectrometry." Int J Mol Sci 22(19):; PMID: 34638844; doi: 10.3390/ijms221910503; GPMDB: 12.
  2455. Zhang YH, et al. (2021) "Lung proteomic biomarkers associated with chronic obstructive pulmonary disease." Am J Physiol Lung Cell Mol Physiol 321(6):L1119–L1130; PMID: 34668408; doi: 10.1152/ajplung.00198.2021; GPMDB: 456.
  2456. Lu C, et al. (2021) "Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms." J Proteome Res 20(11):5203–5211; PMID: 34669412; doi: 10.1021/acs.jproteome.1c00624; GPMDB: 192.
  2457. Saburina IN, et al. (2021) "Proteomic and electron microscopy study of myogenic differentiation of alveolar mucosa multipotent mesenchymal stromal cells in three-dimensional culture." Proteomics :e2000304; PMID: 34674377; doi: 10.1002/pmic.202000304; GPMDB: 20.
  2458. Wang Y, et al. (2021) "SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells." Nature 599(7883):136–140; PMID: 34707288; doi: 10.1038/s41586-021-04025-w; GPMDB: 2.
  2459. Biswas D, et al. (2021) "Deciphering the Interregional and Interhemisphere Proteome of the Human Brain in the Context of the Human Proteome Project." J Proteome Res 20(12):5280–5293; PMID: 34714085; doi: 10.1021/acs.jproteome.1c00511; GPMDB: 80.
  2460. Sirois I, et al. (2021) "Immunopeptidomics: Isolation of Mouse and Human MHC Class I- and II-Associated Peptides for Mass Spectrometry Analysis." J Vis Exp (176):; PMID: 34723952; doi: 10.3791/63052; GPMDB: 38.
  2461. Leung MR, et al. (2021) "In-cell structures of conserved supramolecular protein arrays at the mitochondria-cytoskeleton interface in mammalian sperm." Proc Natl Acad Sci U S A 118(45):; PMID: 34737233; doi: 10.1073/pnas.2110996118; GPMDB: 6.
  2462. Yap K, et al. (2021) "Hybridization-proximity labeling reveals spatially ordered interactions of nuclear RNA compartments." Mol Cell; PMID: 34741808; doi: 10.1016/j.molcel.2021.10.009; GPMDB: 18.
  2463. Shlomovitz I, et al. (2021) "Proteomic analysis of necroptotic extracellular vesicles." Cell Death Dis 12(11):1059; PMID: 34750357; doi: 10.1038/s41419-021-04317-z; GPMDB: 12.
  2464. Froehlich JW, et al. (2021) "The Urinary Proteomic Profile Implicates Key Regulators for Urologic Chronic Pelvic Pain Syndrome (UCPPS): A MAPP Research Network Study." Mol Cell Proteomics 21(1):100176; PMID: 34774759; doi: 10.1016/j.mcpro.2021.100176; GPMDB: 52.
  2465. Capizzi M, et al. (2021) "Developmental defects in Huntington's disease show that axonal growth and microtubule reorganization require NUMA1." Neuron; PMID: 34793694; doi: 10.1016/j.neuron.2021.10.033; GPMDB: 10.
  2466. Stirm M, et al. (2021) "A scalable, clinically severe pig model for Duchenne muscular dystrophy." Dis Model Mech 14(12):; PMID: 34796900; doi: 10.1242/dmm.049285; GPMDB: 42.
  2467. Morgenstern M, et al. (2021) "Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context." Cell Metab 33(12):2464–2483.e18; PMID: 34800366; doi: 10.1016/j.cmet.2021.11.001; GPMDB: 1024.
  2468. de Sousa BM, et al. (2021) "Capacitive interdigitated system of high osteoinductive/conductive performance for personalized acting-sensing implants." NPJ Regen Med 6(1):80; PMID: 34815414; doi: 10.1038/s41536-021-00184-6; GPMDB: 8.
  2469. Ding Y, et al. (2021) "MicroRNA-222 Transferred From Semen Extracellular Vesicles Inhibits Sperm Apoptosis by Targeting BCL2L11." Front Cell Dev Biol 9:736864; PMID: 34820370; doi: 10.3389/fcell.2021.736864; GPMDB: 8.
  2470. Rolfs Z, et al. (2021) "An atlas of protein turnover rates in mouse tissues." Nat Commun 12(1):6778; PMID: 34836951; doi: 10.1038/s41467-021-26842-3; GPMDB: 173.
  2471. Needham EJ, et al. (2021) "Personalized phosphoproteomics identifies functional signaling." Nat Biotechnol; PMID: 34857927; doi: 10.1038/s41587-021-01099-9; GPMDB: 26.
  2472. Ziemlińska E, et al. (2021) "Palm Oil-Rich Diet Affects Murine Liver Proteome and S-Palmitoylome." Int J Mol Sci 22(23):; PMID: 34884899; doi: 10.3390/ijms222313094; GPMDB: 24.
  2473. Taher L, et al. (2021) "The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice." Sci Rep 11(1):23731; PMID: 34887460; doi: 10.1038/s41598-021-03054-9; GPMDB: 28.
  2474. Almeida N, et al. (2021) "Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database." Cancers (Basel) 13(24):; PMID: 34944842; doi: 10.3390/cancers13246224; GPMDB: 24.
  2475. Halkoum R, et al. (2021) "Glyoxal induces senescence in human keratinocytes through oxidative stress and activation of the AKT/FOXO3a/p27KIP1 pathway." J Invest Dermatol; PMID: 34971698; doi: 10.1016/j.jid.2021.12.022; GPMDB: 4.
Personal tools